Implications of Climate Change on Wind Energy Potential
Abstract
:1. Introduction
- (1)
- What strategies, technological advances, and innovations have been used to enhance the wind energy industry and tackle the challenges presented by climate change?
- (2)
- How does climate change affect the potential of wind energy?
1.1. Impact of Climate Change on Energy Systems
1.2. The Role of Energy in Climate Change
2. Materials and Methods
3. Results
3.1. Wind Energy and Its Role in the Global Energy Mix
3.2. Enhancing Resilience and Energy Security
3.3. Technical Policies for Environmental Protection and Their Implications for Wind Energy
3.4. Climate Scenarios and Implications for Wind Energy
3.5. Developing an International Climate Policy to Protect the Environment
3.6. Current Status of Wind Energy
3.7. Intermittency and Hybrid Energy Systems
3.8. Storage Technologies for Wind Energy
3.9. Identification of Trends and Patterns in Wind Energy Potential under Various Climate Change Scenarios
Study Area | Scenarios | Historical Period | Future Period | Projected Changes | Ref. |
---|---|---|---|---|---|
America | |||||
United States (US) | SRES A2 | 1968–2000 | 2038–2070 | Parts of Kansas, Oklahoma, and northern Texas are projected to possess greater wind energy potential. | [140] |
United States | RCP 8.5 | 1979–1999 | 2079–2099 | Coastal regions within the United States may experience a 5–10% increase in 10 m wind speed per century based on climate models, but a 5–10% decrease in summer. | [141] |
CONUS | SRESA1B | 1990 to 1999 | 2040 to 2049 and 2090 to 2099 | By the 2040s, the Great Plains, Northern Great Lakes Region, and Southwest US situated to the southwest of the Rocky Mountains can expect an increase in wind speeds ranging from 0.1 to 0.2 m/s. In the 2090s, the Great Plains Region and the Southwestern US will experience an overall increase in wind speed with a mean increase of 0 to 0.1 m/s. Nevertheless, some coastal areas in the US may experience decreasing summertime winds. | [142] |
Brazil | RCP4.5 | 1961–1990 | 2021–2050 and 2070–2099 | Wind power potential at certain locations in Northeast Brazil could increase by over 40%. | [143] |
United States of America (USA) | RCP 8.5 | 1980–2005 | 2075–2099 | Annual energy production increases by 8% in the Southern Plains and decreases by 5% in the Northern Plains. | [144] |
America | SSP2-RCP2.6 and SSP2-RCP 6.0 | 1970–2000 | 2070–2100 | Regions that decrease in wind energy generation are Mexico and Central America, which are not statistically significant. | [9] |
Africa and Asia | |||||
Southern Africa | SRES A2 and B1 | 1979–2009 | 2050 | The median of the long-term mean of wind speed is expected to be close to zero by 2050. | [130] |
South Africa | RCP4.5 and RCP8.5 | 1981–2005 | 2051–2075 | The average daily wind speeds in the northeast region of South Africa are forecasted to rise, but not exceeding 6%. This increase lies within a range suitable for power generation. Nonetheless, wind energy density is foreseen to persist at a low level. | [145] |
West Africa | RCP4.5 and RCP8.5 | 1971–2000 | 2021–2050 and 2071–2100 | A reduction in energy production of up to 12% is expected in the near future, whereas power production is estimated to increase by approximately 24–30% over most regions in the far future. | [146] |
Taiwan Strait | SRES A1B | 1981–2000 | 2011–2040, 2041–2070, and 2071–2100 | Wind resources in the eastern half of the Taiwan Strait have decreased by 3% in comparison to previous years. | [131] |
Japan | +4K warming | 1951–2010 | 2051–2110 | Wind energy potential is expected to increase slightly from winter to spring in northern Japan but decrease in the southern region. Additionally, the production of wind energy is anticipated to decrease by around 5% in Japan from summer to autumn. | [147] |
China | RCP2.6, RCP4.5, RCP6.0 and RCP8.5 | 1971–2005 | 2066–2100 | There is no correlation in the projected mean wind speed for future periods compared to the past for a given AOGCM, despite interannual variability observed between 1971 and 2005. The projected interannual variation from 2066 to 2100 shows a minor dependence on the interannual variation from 1971 to 2005. | [148] |
India | RCP 4.5 and RCP 8.5 | 1979–2005 | 2006–2032 | In all three locations, the average offshore wind capacity will measurably increase each year. | [149] |
Caspian Sea | RCP4.5 and RCP8.5 | 1981–2000 | 2081–2100 | There is a forecast of a minor decrease in the annual wind energy production in the future. | [150] |
Asia | SSP2-RCP2.6 and SSP2-RCP 6.0 | 1970–2000 | 2070–2100 | Wind energy in South East Asia increased by approximately 10%, as shown by statistically significant signals. Japan experienced a significant decrease in wind energy generation, whereas Korea’s decrease was not statistically significant. | [9] |
Middle East | RCP4.5 and SSP2–4.5, RCP8.5 and SSP5–8.5 | 1965–2005 | 2020–2059 and 2060–2099 | The eastward wind speed is expected to vary between −0.8 and 0.75 m/s, with Sudan and Mauritania experiencing the most significant increase and Algeria, Morocco, and western Libya witnessing the most significant decrease. Meanwhile, Saudi Arabia, Oman, and Yemen will experience the greatest alteration in the northward wind speed, whereas Egypt and eastern Libya will experience the least change. | [151] |
Europe | |||||
East Mediterranean | SRES A2 | 1961–1990 | 2071–2100 | Wind speed increased over land and decreased over the sea, except for a significant increase observed over the Aegean Sea. | [119] |
Northern Europe | SRES A1B | 1961–1990 | 2020–2060 | The power potential has decreased by 2 to 6% in most areas. | [120] |
Europe | RCP 8.5 | 1986–2005 | 2016–2035, 2046–2065 and 2081–2100 | There has been an increase in the Baltic Sea and a decrease in southern Europe. | [121] |
Europe | RCP 4.5 and RCP 8.5 | 1979–2004 | 2021–2050 and 2061–2090 | Wind resources are expected to increase in North Africa and the Barents Sea, especially in the northern and western regions of the Black Sea area. | [122] |
Greece | RCP 4.5 and RCP 8.5 | 2006–2015 | 2036–2045 | The average wind speed experienced a shift of about ±5%, which did not differ significantly between the different RCP scenarios. However, the variability of wind speed could reach up to ±20% on a monthly basis. | [124] |
Mediterranean and the Black Sea | SRES A1B | 1961–1990 | 2021–2050 and 2061–2090 | The average wind speed and potential for wind power in the central Mediterranean Sea have decreased, except for in the Aegean Sea, Alboran Sea, and Gulf of Lion, where it has increased, showing a significant seasonality. | [125] |
United Kingdom | RCP 2.6, 6 and 8.5 | 1981–2000 | 2011–2030, 2041–2060 and 2071–2090 | The North Atlantic region and Northern Scotland have experienced the greatest increase in wind speed, whereas South England and the English Channel have recorded the largest decrease. Nevertheless, the prevailing model is inaccurate in reflecting the current distribution of wind resources in the UK. | [152] |
Crotia | SRES A2 | 1961–1990 | 2011–2040 and 2041–2070 | Significant changes in average wind speed are expected along the coast and the neighboring mainland. By 2070, there is a potential increase of up to 50% in wind speeds during summers. | [128] |
Italian peninsula | RCP 4.5 and RCP 8.5 | 1986–2005 | 2021–2050, 2051–2080, and 2071–2100 | The climate signal for the RCP 4.5 scenario is generally weak and statistically insignificant, whereas a more significant signal is observed in the medium and long term for the RCP 8.5 scenario. It is consistent with a decrease in wind production. In these regions, the RCP 8.5 scenario exhibits the least annual production decline, whereas the RCP 4.5 scenario presents moderate to long-term predictions of a slight upsurge in annual wind production, with a discernible upward trend mostly noticeable during spring. | [153] |
Europe | RCP8.5 | 1976–2005 | 2011–2040, 2041–2070, and 2071–2100 | Overall, the situation is clearer with the projected increase in extreme winds across northern, central, and southern Europe, indicating more frequent occurrences. | [154] |
Northern Europe | SSP585 | 1980–2009 | 2020–2049 | There is a general rise in the extreme winds over the North Sea and southern Baltic Sea, but a decrease over the Scandinavian Peninsula and most of the Baltic Sea. | [134] |
Ireland | RCP 4.5 and 8.5 | 1981–2000 | 2041–2060 and 2081–2100 | Wind energy is projected to decrease by no more than 2% in the future. By mid-century, these changes will be more pronounced, especially for offshore areas under the RCP 8.5 scenario. In summer, the decrease in wind energy is expected to be less than 6%, whereas in winter it could increase by up to 1.1%. | |
Central Europe | SSP2-RCP2.6 and SSP2-RCP 6.0 | 1970–2000 | 2070–2100 | There is an increase of about 10% in Central Europe (statistically significant signals). | [9] |
Türkiye | SSP5–8.5 | 1980–2014 | 2080–2100 | The increases in wind speed in Aegean Sea, Aegean Region, Marmara Region, and Marmara Sea in summer are 5.9, 7.2,10, 14.7%, respectively, and the decrease in the winter season in Turkey is 4.1%. | [155] |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trenberth, K.E. Climate Change Caused by Human Activities Is Happening and It Already Has Major Consequences. J. Energy Nat. Resour. Law 2018, 36, 463–481. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.P.; Zhai, H.-O.; Pörtner, D.; Roberts, J.; Skea, P.R.; Shukla, A.; Pirani, W.; Moufouma-Okia, C.; Péan, R.; Pidcock, S.; et al. (Eds.) IPCC, 2018: Summary for Policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; pp. 3–24. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- High-Level Commission on Carbon Prices. Report of the High-Level Commission on Carbon Prices; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Sahin, A.D. A Review of Research and Development of Wind Energy in Turkey. CLEAN–Soil Air Water 2008, 36, 734–742. [Google Scholar] [CrossRef]
- Şahin, A.D. Progress and Recent Trends in Wind Energy. Prog. Energy Combust. Sci. 2004, 30, 501–543. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Climate Change Impacts on Wind Energy: A Review. Renew. Sustain. Energy Rev. 2010, 14, 430–437. [Google Scholar] [CrossRef]
- Solaun, K.; Cerdá, E. Climate Change Impacts on Renewable Energy Generation. A Review of Quantitative Projections. Renew. Sustain. Energy Rev. 2019, 116, 109415. [Google Scholar] [CrossRef]
- Gernaat, D.E.H.J.; de Boer, H.S.; Daioglou, V.; Yalew, S.G.; Müller, C.; van Vuuren, D.P. Climate Change Impacts on Renewable Energy Supply. Nat. Clim. Chang. 2021, 11, 119–125. [Google Scholar] [CrossRef]
- Schaeffer, R.; Szklo, A.S.; Pereira de Lucena, A.F.; Moreira Cesar Borba, B.S.; Pupo Nogueira, L.P.; Fleming, F.P.; Troccoli, A.; Harrison, M.; Boulahya, M.S. Energy Sector Vulnerability to Climate Change: A Review. Energy 2012, 38, 1–12. [Google Scholar] [CrossRef]
- Eltigani, D.; Masri, S. Challenges of Integrating Renewable Energy Sources to Smart Grids: A Review. Renew. Sustain. Energy Rev. 2015, 52, 770–780. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Nik, V.M.; Chen, D.; Scartezzini, J.-L.; Hong, T. Quantifying the Impacts of Climate Change and Extreme Climate Events on Energy Systems. Nat. Energy 2020, 5, 150–159. [Google Scholar] [CrossRef]
- Isaac, M.; van Vuuren, D.P. Modeling Global Residential Sector Energy Demand for Heating and Air Conditioning in the Context of Climate Change. Energy Policy 2009, 37, 507–521. [Google Scholar] [CrossRef]
- De Cian, E.; Lanzi, E.; Roson, R. Seasonal Temperature Variations and Energy Demand. Clim. Chang. 2013, 116, 805–825. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Yearsley, J.R.; Ludwig, F.; Vögele, S.; Lettenmaier, D.P.; Kabat, P. Vulnerability of US and European Electricity Supply to Climate Change. Nat. Clim. Change 2012, 2, 676–681. [Google Scholar] [CrossRef]
- Madani, K.; Lund, J.R. Estimated Impacts of Climate Warming on California’s High-Elevation Hydropower. Clim. Change 2010, 102, 521–538. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Assessing Climate Change Impacts on the Near-Term Stability of the Wind Energy Resource over the United States. Proc. Natl. Acad. Sci. USA 2011, 108, 8167–8171. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Wild, M.; Folini, D.S.; Kazadzis, S.; Wohland, J. Climate Change Impacts on Solar Power Generation and Its Spatial Variability in Europe Based on CMIP6. Earth Syst. Dyn. 2021, 12, 1099–1113. [Google Scholar]
- Mendoza, V.; Pazos, M.; Garduño, R.; Mendoza, B. Thermodynamics of Climate Change between Cloud Cover, Atmospheric Temperature and Humidity. Sci. Rep. 2021, 11, 21244. [Google Scholar] [CrossRef] [PubMed]
- Zamuda, C.; Mignone, B.; Bilello, D.; Hallett, K.; Lee, C.; Macknick, J.; Newmark, R.; Steinberg, D.U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather.; July 1 2013. Available online: https://energy.gov/sites/prod/files/2013/07/f2/20130716-Energy%20Sector%20Vulnerabilities%20Report.pdf (accessed on 21 June 2023).
- Eyer, J.; Wichman, C.J. Does Water Scarcity Shift the Electricity Generation Mix toward Fossil Fuels? Empirical Evidence from the United States. J. Environ. Econ. Manag. 2018, 87, 224–241. [Google Scholar] [CrossRef]
- Markandya, A.; Sampedro, J.; Smith, S.J.; Van Dingenen, R.; Pizarro-Irizar, C.; Arto, I.; González-Eguino, M. Health Co-Benefits from Air Pollution and Mitigation Costs of the Paris Agreement: A Modelling Study. Lancet Planet. Health 2018, 2, e126–e133. [Google Scholar] [CrossRef]
- Qiu, M.; Zigler, C.M.; Selin, N.E. Impacts of Wind Power on Air Quality, Premature Mortality, and Exposure Disparities in the United States. Sci. Adv. 2022, 8, eabn8762. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; Davis, S.; Ciais, P. Monitoring Global Carbon Emissions in 2022. Nat Rev. Earth Environ. 2023, 4, 205–206. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Hausfather, Z.; Friedlingstein, P. Analysis: Global CO2 Emissions from Fossil Fuels Hit Record High in 2022. Available online: https://www.weforum.org/agenda/2022/11/global-co2-emissions-fossil-fuels-hit-record-2022 (accessed on 20 June 2023).
- Jackson, R.B.; Friedlingstein, P.; Le Quéré, C.; Abernethy, S.; Andrew, R.M.; Canadell, J.G.; Ciais, P.; Davis, S.J.; Deng, Z.; Liu, Z.; et al. Global Fossil Carbon Emissions Rebound near Pre-COVID-19 Levels. Environ. Res. Lett. 2022, 17, 031001. [Google Scholar] [CrossRef]
- PBL Trends in Global CO2 and Total Greenhouse Gas Emissions; 2021 Summary Report. Available online: https://www.pbl.nl/en/publications/trends-in-global-co2-and-total-greenhouse-gas-emissions-2021-summary-report (accessed on 20 June 2023).
- World—Electricity Transition. Available online: https://ember-climate.org/countries-and-regions/regions/world/ (accessed on 21 June 2023).
- Global Electricity Review 2023. Available online: https://ember-climate.org/insights/research/global-electricity-review-2023/ (accessed on 21 June 2023).
- Schumer, C.J.; Jaeger, S.; Boehm, L.; Jeffery, K.; Levin, J.; Hecke, C.; Fyson, S.; Naimoli, A.; Majid, K.; Lebling, M.; et al. Methodology Underpinning the State of Climate Action Series; WRI: World Resources Institute: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. Carbon Neutrality in the UNECE Region: Integrated Life-Cycle Assessment of Electricity Sources; ECE Energy Series; United Nations: New, York, NY, USA, 2022; ISBN 978-92-1-001485-4. [Google Scholar]
- Bhandari, R.; Kumar, B.; Mayer, F. Life Cycle Greenhouse Gas Emission from Wind Farms in Reference to Turbine Sizes and Capacity Factors. J. Clean. Prod. 2020, 277, 123385. [Google Scholar] [CrossRef]
- Wind Electricity—Analysis. Available online: https://www.iea.org/reports/wind-electricity (accessed on 20 June 2023).
- Alex Global Wind Report 2023; Global Wind Energy Council: Brussels, Belgium, 2023; Available online: https://gwec.net/globalwindreport2023/ (accessed on 20 June 2023).
- Renewable Energy and Jobs—Annual Review. 2022. Available online: https://www.irena.org/publications/2022/Sep/Renewable-Energy-and-Jobs-Annual-Review-2022 (accessed on 20 June 2023).
- A New World: The Geopolitics of the Energy Transformation. 2019. Available online: https://biblio.ugent.be/publication/8588274 (accessed on 2 October 2023).
- Stephens, J.C.; Wilson, E.J.; Peterson, T.R.; Meadowcroft, J. Getting Smart? Climate Change and the Electric Grid. Challenges 2013, 4, 201–216. [Google Scholar] [CrossRef]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A Review of Technologies, Key Drivers, and Outstanding Issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Mohamad, F.; Teh, J. Impacts of Energy Storage System on Power System Reliability: A Systematic Review. Energies 2018, 11, 1749. [Google Scholar] [CrossRef]
- Sharma, V.; Cortes, A.; Cali, U. Use of Forecasting in Energy Storage Applications: A Review. IEEE Access 2021, 9, 114690–114704. [Google Scholar] [CrossRef]
- Heffron, R.; Körner, M.-F.; Wagner, J.; Weibelzahl, M.; Fridgen, G. Industrial Demand-Side Flexibility: A Key Element of a Just Energy Transition and Industrial Development. Appl. Energy 2020, 269, 115026. [Google Scholar] [CrossRef]
- Global Energy Transformation: A Roadmap to 2050; International Renewable Energy Agency (IRENA): Abu Dhabi. 2019. Available online: https://www.h2knowledgecentre.com/content/researchpaper1605 (accessed on 2 October 2023).
- An Updated Roadmap to Net Zero Emissions by 2050—World Energy Outlook 2022—Analysis. Available online: https://www.iea.org/reports/world-energy-outlook-2022/an-updated-roadmap-to-net-zero-emissions-by-2050 (accessed on 20 June 2023).
- 30 Years of Policies for Wind Energy Lessons from 12 Wind Energy Markets. Available online: https://www.irena.org/publications/2013/Jan/30-Years-of-Policies-for-Wind-Energy-Lessons-from-12-Wind-Energy-Markets (accessed on 20 June 2023).
- Ishugah, T.F.; Li, Y.; Wang, R.Z.; Kiplagat, J.K. Advances in Wind Energy Resource Exploitation in Urban Environment: A Review. Renew. Sustain. Energy Rev. 2014, 37, 613–626. [Google Scholar] [CrossRef]
- Mey, F.; Diesendorf, M. Who Owns an Energy Transition? Strategic Action Fields and Community Wind Energy in Denmark. Energy Res. Soc. Sci. 2018, 35, 108–117. [Google Scholar] [CrossRef]
- Watson, S.; Moro, A.; Reis, V.; Baniotopoulos, C.; Barth, S.; Bartoli, G.; Bauer, F.; Boelman, E.; Bosse, D.; Cherubini, A.; et al. Future Emerging Technologies in the Wind Power Sector: A European Perspective. Renew. Sustain. Energy Rev. 2019, 113, 109270. [Google Scholar] [CrossRef]
- Díaz, H.; Serna, J.; Nieto, J.; Guedes Soares, C. Market Needs, Opportunities and Barriers for the Floating Wind Industry. J. Mar. Sci. Eng. 2022, 10, 934. [Google Scholar] [CrossRef]
- Serrano-González, J.; Lacal-Arántegui, R. Technological Evolution of Onshore Wind Turbines—A Market-Based Analysis. Wind. Energy 2016, 19, 2171–2187. [Google Scholar] [CrossRef]
- Shafiullah, G.M.; Oo, A.M.T.; Shawkat Ali, A.B.M.; Wolfs, P. Potential Challenges of Integrating Large-Scale Wind Energy into the Power Grid–A Review. Renew. Sustain. Energy Rev. 2013, 20, 306–321. [Google Scholar] [CrossRef]
- McKenna, R.; Leye, P.O.v.d.; Fichtner, W. Key Challenges and Prospects for Large Wind Turbines. Renew. Sustain. Energy Rev. 2016, 53, 1212–1221. [Google Scholar] [CrossRef]
- Hayman, B.; Wedel-Heinen, J.; Brøndsted, P. Materials Challenges in Present and Future Wind Energy. MRS Bull. 2008, 33, 343–353. [Google Scholar] [CrossRef]
- Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C.L.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H.; et al. Grand Challenges in the Science of Wind Energy. Science 2019, 366, eaau2027. [Google Scholar] [CrossRef]
- Lüthi, S.; Prässler, T. Analyzing Policy Support Instruments and Regulatory Risk Factors for Wind Energy Deployment—A Developers’ Perspective. Energy Policy 2011, 39, 4876–4892. [Google Scholar] [CrossRef]
- Saidur, R.; Islam, M.R.; Rahim, N.A.; Solangi, K.H. A Review on Global Wind Energy Policy. Renew. Sustain. Energy Rev. 2010, 14, 1744–1762. [Google Scholar] [CrossRef]
- Executive Summary—Renewables 2022—Analysis. Available online: https://www.iea.org/reports/renewables-2022/executive-summary (accessed on 20 June 2023).
- Creutzig, F.; Roy, J.; Lamb, W.; Azevedo, I.; Bruine de Bruin, W.; Dalkmann, H.; Edelenbosch, O.; Geels, F.; Grubler, A.; Hepburn, C.; et al. Towards Demand-Side Solutions for Mitigating Climate Change. Nat. Clim. Change 2018, 8, 268–271. [Google Scholar] [CrossRef]
- He, G.; Avrin, A.-P.; Nelson, J.H.; Johnston, J.; Mileva, A.; Tian, J.; Kammen, D.M. SWITCH-China: A Systems Approach to Decarbonizing China’s Power System. Environ. Sci. Technol. 2016, 50, 5467–5473. [Google Scholar] [CrossRef]
- World Energy Outlook 2022—Analysis. Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 20 June 2023).
- Sovacool, B.K.; Mukherjee, I. Conceptualizing and Measuring Energy Security: A Synthesized Approach. Energy 2011, 36, 5343–5355. [Google Scholar] [CrossRef]
- Li, F.; Qiao, W.; Sun, H.; Wan, H.; Wang, J.; Xia, Y.; Xu, Z.; Zhang, P. Smart Transmission Grid: Vision and Framework. IEEE Trans. Smart Grid 2010, 1, 168–177. [Google Scholar] [CrossRef]
- Medina, C.; Gonzalez, G. Transmission Grids to Foster High Penetration of Large-Scale Variable Renewable Energy Sources—A Review of Challenges, Problems, and Solutions. Int. J. Renew. Energy Technol. 2022, 12, 146–169. [Google Scholar] [CrossRef]
- Linnerud, K.; Mideksa, T.K.; Eskeland, G.S. The Impact of Climate Change on Nuclear Power Supply. Energy J. 2011, 32, 149–168. [Google Scholar] [CrossRef]
- Hallegatte, S. Strategies to Adapt to an Uncertain Climate Change. Glob. Environ. Change 2009, 19, 240–247. [Google Scholar] [CrossRef]
- Climate Science Special Report: Fourth National Climate Assessment (NCA4), Volume I. Available online: https://www.globalchange.gov/browse/reports/climate-science-special-report-fourth-national-climate-assessment-nca4-volume-i (accessed on 2 October 2023).
- Tegart, W.J.M.G.; Sheldon, G.W.; Griffiths, D.C. (Eds.) FAR Climate Change: Impacts Assessment of Climate Change. 1990. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/ipcc_far_wg_II_full_report.pdf (accessed on 2 October 2023).
- Alcamo, J.; Bouwman, A.; Edmonds, J.; Grubler, A.; Morita, T.; Sugandhy, A. An Evaluation of the IPCC IS92 Emission Scenarios. Available online: https://iiasa.dev.local/ (accessed on 16 August 2023).
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next Generation of Scenarios for Climate Change Research and Assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- UN. ESCAP Low Carbon Green Growth Roadmap for Asia and the Pacific: Turning Resource Constraints and the Climate Crisis into Economic Growth Opportunities; United Nations: New York, NY, USA, 2012; ISBN 978-974-680-329-8. [Google Scholar]
- European Commission. Stepping Up Europe’s 2030 Climate Ambition: Investing in a Climate-Neutral Future for the Benefit of Our People. COM (2020) 562 Final. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020DC0562 (accessed on 2 October 2023).
- IPCC. AR6 Climate Change 2021: The Physical Science Basis. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (accessed on 16 August 2023).
- Harrisson, Thomas Explainer: How ‘Shared Socioeconomic Pathways’ Explore Future Climate Change. Available online: https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change/ (accessed on 20 June 2023).
- Kerry, J. The Long-Term Strategy of the United States, Pathways to Net-Zero Greenhouse Gas Emissions by 2050. Available online: https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf (accessed on 21 June 2023).
- An Energy Sector Roadmap to Carbon Neutrality in China—Analysis. Available online: https://www.iea.org/reports/an-energy-sector-roadmap-to-carbon-neutrality-in-china (accessed on 20 June 2023).
- Jacobson, M.Z.; Delucchi, M.A.; Bauer, Z.A.F.; Goodman, S.C.; Chapman, W.E.; Cameron, M.A.; Bozonnat, C.; Chobadi, L.; Clonts, H.A.; Enevoldsen, P.; et al. 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule 2017, 1, 108–121. [Google Scholar] [CrossRef]
- Federal Office for Spatial Development ARE. 1987: Brundtland Report. Available online: https://www.are.admin.ch/are/en/home/medien-und-publikationen/publikationen/nachhaltige-entwicklung/brundtland-report.html (accessed on 16 August 2023).
- Falkner, R. The Paris Agreement and the New Logic of International Climate Politics. Int. Aff. 2016, 92, 1107–1125. [Google Scholar] [CrossRef]
- Ren21 Renewables 2022 Global Status Report. Available online: https://www.ren21.net/gsr-2022 (accessed on 20 June 2023).
- Global Wind Energy Council. Market to Watch: China. 2019. Available online: https://gwec.net/market-to-watch-china/ (accessed on 2 October 2023).
- McMorland, J.; Collu, M.; McMillan, D.; Carroll, J. Operation and Maintenance for Floating Wind Turbines: A Review. Renew. Sustain. Energy Rev. 2022, 163, 112499. [Google Scholar] [CrossRef]
- Asim, T.; Islam, S.Z.; Hemmati, A.; Khalid, M.S.U. A Review of Recent Advancements in Offshore Wind Turbine Technology. Energies 2022, 15, 579. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, X.; Yuan, J.; Liu, X.; Hu, H.; Lin, P. A Review of the Development of Key Technologies for Offshore Wind Power in China. J. Mar. Sci. Eng. 2022, 10, 929. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Lian, J. Review of Integrated Installation Technologies for Offshore Wind Turbines: Current Progress and Future Development Trends. Energy Convers. Manag. 2022, 255, 115319. [Google Scholar] [CrossRef]
- Msigwa, G.; Ighalo, J.O.; Yap, P.-S. Considerations on Environmental, Economic, and Energy Impacts of Wind Energy Generation: Projections towards Sustainability Initiatives. Sci. Total Environ. 2022, 849, 157755. [Google Scholar] [CrossRef] [PubMed]
- Offshore Wind to Become a $1 Trillion Industry—News. Available online: https://www.iea.org/news/offshore-wind-to-become-a-1-trillion-industry (accessed on 21 June 2023).
- Renewable Power Generation Costs in 2020. Available online: https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 (accessed on 20 June 2023).
- Al-Shetwi, A.Q. Sustainable Development of Renewable Energy Integrated Power Sector: Trends, Environmental Impacts, and Recent Challenges. Sci. Total Environ. 2022, 822, 153645. [Google Scholar] [CrossRef] [PubMed]
- Asiaban, S.; Kayedpour, N.; Samani, A.E.; Bozalakov, D.; De Kooning, J.D.M.; Crevecoeur, G.; Vandevelde, L. Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System. Energies 2021, 14, 2630. [Google Scholar] [CrossRef]
- Solbakken, K.; Babar, B.; Boström, T. Correlation of Wind and Solar Power in High-Latitude Arctic Areas in Northern Norway and Svalbard. Renew Energy Environ. Sustain. 2016, 1, 42. [Google Scholar] [CrossRef]
- Gupta, S.c.; Kumar, Y.; Agnihotri, G. Design of an Autonomous Renewable Hybrid Power System. Int. J. Renew. Energy Technol. 2011, 2, 86–104. [Google Scholar] [CrossRef]
- Cano, A.; Jurado, F.; Sánchez, H.; Fernández, L.M.; Castañeda, M. Optimal Sizing of Stand-Alone Hybrid Systems Based on PV/WT/FC by Using Several Methodologies. J. Energy Inst. 2014, 87, 330–340. [Google Scholar] [CrossRef]
- Sawle, Y.; Gupta, S.C. Optimal Sizing of Photo Voltaic/Wind Hybrid Energy System for Rural Electrification. In Proceedings of the 2014 6th IEEE Power India International Conference (PIICON), Delhi, India, 5–7 December 2014; pp. 1–4. [Google Scholar]
- López, M.; Rodríguez, N.; Iglesias, G. Combined Floating Offshore Wind and Solar PV. J. Mar. Sci. Eng. 2020, 8, 576. [Google Scholar] [CrossRef]
- Anagnostopoulos, J.S.; Papantonis, D.E. Simulation and Size Optimization of a Pumped–Storage Power Plant for the Recovery of Wind-Farms Rejected Energy. Renew. Energy 2008, 33, 1685–1694. [Google Scholar] [CrossRef]
- Al-Addous, M.; Al Hmidan, S.; Jaradat, M.; Alasis, E.; Barbana, N. Potential and Feasibility Study of Hybrid Wind–Hydroelectric Power System with Water-Pumping Storage: Jordan as a Case Study. Appl. Sci. 2020, 10, 3332. [Google Scholar] [CrossRef]
- Divya, K.C.; Østergaard, J. Battery Energy Storage Technology for Power Systems—An Overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Larcher, D.; Tarascon, J.-M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef]
- Devine, M.; Manwell, J.; Baring-Gould, I.; Petrie, B. Wind-Diesel Hybrid Options for Remote Villages in Alaska. In Proceedings of the AWEA Annual Conference, London, UK, 22–25 November 2004. [Google Scholar]
- Romero-Ternero, V.; García-Rodríguez, L.; Gómez-Camacho, C. Thermoeconomic Analysis of Wind Powered Seawater Reverse Osmosis Desalination in the Canary Islands. Desalination 2005, 186, 291–298. [Google Scholar] [CrossRef]
- Goosen, M.; Mahmoudi, H.; Alyousef, Y.; Ghaffour, N. Solar Desalination: A Review of Recent Developments in Environmental, Regulatory and Economic Issues. Sol. Compass 2023, 5, 100034. [Google Scholar] [CrossRef]
- Goosen, M.; Mahmoudi, H.; Ghaffour, N. Today’s and Future Challenges in Applications of Renewable Energy Technologies for Desalination. Crit. Rev. Environ. Sci. Technol. 2014, 44, 929–999. [Google Scholar] [CrossRef]
- Kirmani, S.; Jamil, M.; Akhtar, I. Economic Feasibility of Hybrid Energy Generation with Reduced Carbon Emission. IET Renew. Power Gener. 2018, 12, 934–942. [Google Scholar] [CrossRef]
- Li, J.; Du, Z.; Ruther, R.E.; AN, S.J.; David, L.A.; Hays, K.; Wood, M.; Phillip, N.D.; Sheng, Y.; Mao, C.; et al. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. JOM 2017, 69, 1484–1496. [Google Scholar] [CrossRef]
- Chen, T.; Jin, Y.; Lv, H.; Yang, A.; Liu, M.; Chen, B.; Xie, Y.; Chen, Q. Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Trans. Tianjin Univ. 2020, 26, 208–217. [Google Scholar] [CrossRef]
- Hornsdale Power Reserve—South Australia’s Big Battery. Available online: https://hornsdalepowerreserve.com.au/ (accessed on 21 June 2023).
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped Hydro Energy Storage System: A Technological Review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L. Feasibility Study and Economic Analysis of Pumped Hydro Storage and Battery Storage for a Renewable Energy Powered Island. Energy Convers. Manag. 2014, 79, 387–397. [Google Scholar] [CrossRef]
- Hunt, J.D.; Zakeri, B.; Lopes, R.; Barbosa, P.S.F.; Nascimento, A.; de Castro, N.J.; Brandão, R.; Schneider, P.S.; Wada, Y. Existing and New Arrangements of Pumped-Hydro Storage Plants. Renew. Sustain. Energy Rev. 2020, 129, 109914. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, M.-S.; Zhao, B.-C.; Dai, Z.-M. A Wind Power Plant with Thermal Energy Storage for Improving the Utilization of Wind Energy. Energies 2017, 10, 2126. [Google Scholar] [CrossRef]
- Okazaki, T.; Shirai, Y.; Nakamura, T. Concept Study of Wind Power Utilizing Direct Thermal Energy Conversion and Thermal Energy Storage. Renew. Energy 2015, 83, 332–338. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in Electrical Energy Storage System: A Critical Review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Preuster, P.; Alekseev, A.; Wasserscheid, P. Hydrogen Storage Technologies for Future Energy Systems. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 445–471. [Google Scholar] [CrossRef] [PubMed]
- Salkuti, S.R.; Jung, C.M. Comparative Analysis of Storage Techniques for a Grid with Renewable Energy Sources. Int. J. Eng. Technol. 2018, 7, 970–976. [Google Scholar] [CrossRef]
- Díaz-González, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafáfila-Robles, R. A Review of Energy Storage Technologies for Wind Power Applications. Renew. Sustain. Energy Rev. 2012, 16, 2154–2171. [Google Scholar] [CrossRef]
- Fathima, A.H.; Palanisamy, K. Battery Energy Storage Applications in Wind Integrated Systems—A Review. In Proceedings of the 2014 International Conference on Smart Electric Grid (ISEG), Guntur, India, 19–20 September 2014; pp. 1–8. [Google Scholar]
- Bocklisch, T. Hybrid Energy Storage Systems for Renewable Energy Applications. Energy Procedia 2015, 73, 103–111. [Google Scholar] [CrossRef]
- Eichelberger, S.; Mccaa, J.; Nijssen, B.; Wood, A. Climate Change Effects on Wind Speed. N. Am. Wind. 2008, 7, 68–72. [Google Scholar]
- Bloom, A.; Kotroni, V.; Lagouvardos, K. Climate Change Impact of Wind Energy Availability in the Eastern Mediterranean Using the Regional Climate Model PRECIS. Nat. Hazards Earth Syst. Sci. 2008, 8, 1249–1257. [Google Scholar] [CrossRef]
- Barstad, I.; Sorteberg, A.; dos-Santos Mesquita, M. Present and Future Offshore Wind Power Potential in Northern Europe Based on Downscaled Global Climate Runs with Adjusted SST and Sea Ice Cover. Renew. Energy 2012, 44, 398–405. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Silva Santos, C. Potential Impacts of Climate Change on European Wind Energy Resource under the CMIP5 Future Climate Projections. Renew. Energy 2017, 101, 29–40. [Google Scholar] [CrossRef]
- Davy, R.; Gnatiuk, N.; Pettersson, L.; Bobylev, L. Climate Change Impacts on Wind Energy Potential in the European Domain. Renew. Sustain. Energy Rev. 2018, 81, 1652–1659. [Google Scholar] [CrossRef]
- Emodi, N.V.; Chaiechi, T.; Beg, A.B.M.R.A. The Impact of Climate Variability and Change on the Energy System: A Systematic Scoping Review. Sci. Total Environ. 2019, 676, 545–563. [Google Scholar] [CrossRef] [PubMed]
- Katopodis, T.; Vlachogiannis, D.; Politi, N.; Gounaris, N.; Karozis, S.; Sfetsos, A. Assessment of Climate Change Impacts on Wind Resource Characteristics and Wind Energy Potential in Greece. J. Renew. Sustain. Energy 2019, 11, 066502. [Google Scholar] [CrossRef]
- Koletsis, I.; Kotroni, V.; Lagouvardos, K.; Soukissian, T. Assessment of Offshore Wind Speed and Power Potential over the Mediterranean and the Black Seas under Future Climate Changes. Renew. Sustain. Energy Rev. 2016, 60, 234–245. [Google Scholar] [CrossRef]
- Hueging, H.; Haas, R.; Born, K.; Jacob, D.; Pinto, J.G. Regional Changes in Wind Energy Potential over Europe Using Regional Climate Model Ensemble Projections. J. Appl. Meteorol. Climatol. 2013, 52, 903–917. [Google Scholar] [CrossRef]
- Hosking, J.S.; MacLeod, D.; Phillips, T.; Holmes, C.R.; Watson, P.; Shuckburgh, E.F.; Mitchell, D. Changes in European Wind Energy Generation Potential within a 1.5 °C Warmer World. Environ. Res. Lett. 2018, 13, 054032. [Google Scholar] [CrossRef]
- Pašičko, R.; Branković, Č.; Šimić, Z. Assessment of Climate Change Impacts on Energy Generation from Renewable Sources in Croatia. Renew. Energy 2012, 46, 224–231. [Google Scholar] [CrossRef]
- Jerez, S.; Tobin, I.; Turco, M.; Jiménez-Guerrero, P.; Vautard, R.; Montávez, J.P. Future Changes, or Lack Thereof, in the Temporal Variability of the Combined Wind-plus-Solar Power Production in Europe. Renew. Energy 2019, 139, 251–260. [Google Scholar] [CrossRef]
- Fant, C.; Adam Schlosser, C.; Strzepek, K. The Impact of Climate Change on Wind and Solar Resources in Southern Africa. Appl. Energy 2016, 161, 556–564. [Google Scholar] [CrossRef]
- Chang, T.-J.; Chen, C.-L.; Tu, Y.-L.; Yeh, H.-T.; Wu, Y.-T. Evaluation of the Climate Change Impact on Wind Resources in Taiwan Strait. Energy Convers. Manag. 2015, 95, 435–445. [Google Scholar] [CrossRef]
- Kumar, D.; Mishra, V.; Ganguly, A.R. Evaluating Wind Extremes in CMIP5 Climate Models. Clim. Dyn. 2015, 45, 441–453. [Google Scholar] [CrossRef]
- Rapella, L.; Faranda, D.; Gaetani, M.; Drobinski, P.; Ginesta, M. Climate Change on Extreme Winds Already Affects Off-Shore Wind Power Availability in Europe. Environ. Res. Lett. 2023, 18, 034040. [Google Scholar] [CrossRef]
- Larsén, X.G.; Imberger, M.; Hannesdóttir, Á.; Hahmann, A.N. The Impact of Climate Change on Extreme Winds over Northern Europe According to CMIP6. Wind. Energy Sci. 2023. [Google Scholar] [CrossRef]
- Mattu, K.L.; Bloomfield, H.C.; Thomas, S.; Martínez-Alvarado, O.; Rodríguez-Hernández, O. The Impact of Tropical Cyclones on Potential Offshore Wind Farms. Energy Sustain. Dev. 2022, 68, 29–39. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Dantuono, K.E.; Renner, E.J.; Letson, F.L.; Pryor, S.C. Extreme Wind and Waves in U.S. East Coast Offshore Wind Energy Lease Areas. Energies 2021, 14, 1053. [Google Scholar] [CrossRef]
- Anagnostopoulou, C.; Zanis, P.; Katragkou, E.; Tegoulias, I.; Tolika, K. Recent Past and Future Patterns of the Etesian Winds Based on Regional Scale Climate Model Simulations. Clim. Dyn. 2013, 42, 376. [Google Scholar] [CrossRef]
- Vanem, E. Non-Stationary Extreme Value Models to Account for Trends and Shifts in the Extreme Wave Climate Due to Climate Change. Appl. Ocean. Res. 2015, 52, 201–211. [Google Scholar] [CrossRef]
- Shope, J.B.; Storlazzi, C.D.; Erikson, L.H.; Hegermiller, C.A. Changes to Extreme Wave Climates of Islands within the Western Tropical Pacific throughout the 21st Century under RCP 4.5 and RCP 8.5, with Implications for Island Vulnerability and Sustainability. Glob. Planet. Change 2016, 141, 25–38. [Google Scholar] [CrossRef]
- Johnson, D.L.; Erhardt, R.J. Projected Impacts of Climate Change on Wind Energy Density in the United States. Renew. Energy 2016, 85, 66–73. [Google Scholar] [CrossRef]
- Kulkarni, S.; Huang, H.-P. Changes in Surface Wind Speed over North America from CMIP5 Model Projections and Implications for Wind Energy. Adv. Meteorol. 2014, 2014, e292768. [Google Scholar] [CrossRef]
- Liu, B.; Costa, K.B.; Xie, L.; Semazzi, F.H.M. Dynamical Downscaling of Climate Change Impacts on Wind Energy Resources in the Contiguous United States by Using a Limited-Area Model with Scale-Selective Data Assimilation. Adv. Meteorol. 2014, 2014, e897246. [Google Scholar] [CrossRef]
- de Jong, P.; Barreto, T.B.; Tanajura, C.A.S.; Kouloukoui, D.; Oliveira-Esquerre, K.P.; Kiperstok, A.; Torres, E.A. Estimating the Impact of Climate Change on Wind and Solar Energy in Brazil Using a South American Regional Climate Model. Renew. Energy 2019, 141, 390–401. [Google Scholar] [CrossRef]
- Pryor, S.C.; Shepherd, T.J.; Bukovsky, M.; Barthelmie, R.J. Assessing the Stability of Wind Resource and Operating Conditions. J. Phys. Conf. Ser. 2020, 1452, 012084. [Google Scholar] [CrossRef]
- Herbst, L.; Rautenbach, H. Climate Change Impacts on South African Wind Energy Resources. Afr. Insight 2016, 45, 1–31. [Google Scholar]
- Ogunjobi, K.O.; Ajayi, V.O.; Folorunsho, A.H.; Ilori, O.W. Projected Changes in Wind Energy Potential Using CORDEX Ensemble Simulation over West Africa. Meteorol. Atmos. Phys. 2022, 134, 48. [Google Scholar] [CrossRef]
- Ohba, M. The Impact of Global Warming on Wind Energy Resources and Ramp Events in Japan. Atmosphere 2019, 10, 265. [Google Scholar] [CrossRef]
- Chen, L.; Pryor, S.C.; Li, D. Assessing the Performance of Intergovernmental Panel on Climate Change AR5 Climate Models in Simulating and Projecting Wind Speeds over China. J. Geophys. Res. Atmos. 2012, 117, D24102. [Google Scholar] [CrossRef]
- Wiley Online Library. Framework for Assessment of Climate Change Impact on Offshore Wind Energy–Kulkarni–2018–Meteorological Applications. Available online: https://rmets.onlinelibrary.wiley.com/doi/10.1002/met.1673 (accessed on 16 August 2023).
- Nabipour, N.; Mosavi, A.; Hajnal, E.; Nadai, L.; Shamshirband, S.; Chau, K.-W. Modeling Climate Change Impact on Wind Power Resources Using Adaptive Neuro-Fuzzy Inference System. Eng. Appl. Comput. Fluid Mech. 2020, 14, 491–506. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shiru, M.S.; Shahid, S. Comparison between CMIP5 and CMIP6 Models over MENA Region Using Historical Simulations and Future Projections. Sustainability 2022, 14, 10375. [Google Scholar] [CrossRef]
- Hdidouan, D.; Staffell, I. The Impact of Climate Change on the Levelised Cost of Wind Energy. Renew. Energy 2017, 101, 575–592. [Google Scholar] [CrossRef]
- Bonanno, R.; Viterbo, F.; Maurizio, R.G. Climate Change Impacts on Wind Power Generation for the Italian Peninsula. Reg Env. Change 2022, 23, 15. [Google Scholar] [CrossRef]
- Outten, S.; Sobolowski, S. Extreme Wind Projections over Europe from the Euro-CORDEX Regional Climate Models. Weather. Clim. Extrem. 2021, 33, 100363. [Google Scholar] [CrossRef]
- Işık Çetin, İ. Potential impacts of climate change on wind energy resources in Türkiye. 2023. Available online: https://open.metu.edu.tr/handle/11511/102765 (accessed on 21 June 2023).
- COVID-19 Impact on Renewable Energy Growth—Renewable Energy Market Update—Analysis. Available online: https://www.iea.org/reports/renewable-energy-market-update/covid-19-impact-on-renewable-energy-growth (accessed on 2 October 2023).
- Pryor, S.C.; Barthelmie, R.J.; Bukovsky, M.S.; Leung, L.R.; Sakaguchi, K. Climate Change Impacts on Wind Power Generation. Nat. Rev. Earth Environ. 2020, 1, 627–643. [Google Scholar] [CrossRef]
- Ma, J.; Xie, S.-P.; Kosaka, Y. Mechanisms for Tropical Tropospheric Circulation Change in Response to Global Warming. J. Clim. 2012, 25, 2979–2994. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Lima, D.C.A.; Nogueira, M. Global Offshore Wind Energy Resources Using the New ERA-5 Reanalysis. Environ. Res. Lett. 2020, 15, 1040a2. [Google Scholar] [CrossRef]
- Vásquez Anacona, H.; Mattar, C.; Alonso-de-Linaje, N.G.; Sepúlveda, H.H.; Crisóstomo, J. Wind Simulations over Western Patagonia Using the Weather Research and Forecasting Model and Reanalysis. Atmosphere 2023, 14, 1062. [Google Scholar] [CrossRef]
- Larsén, X.G.; Ott, S.; Badger, J.; Hahmann, A.N.; Mann, J. Recipes for Correcting the Impact of Effective Mesoscale Resolution on the Estimation of Extreme Winds. J. Appl. Meteorol. Climatol. 2012, 51, 521–533. [Google Scholar] [CrossRef]
- Cook, N.J. Confidence Limits for Extreme Wind Speeds in Mixed Climates. J. Wind. Eng. Ind. Aerodyn. 2004, 92, 41–51. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New High-Resolution Climate Change Projections for European Impact Research. Reg. Environ. Change 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling Climate Change with Machine Learning. ACM Comput. Surv. 2022, 55, 42:1–42:96. [Google Scholar] [CrossRef]
- Nguyen, T.; Jewik, J.; Bansal, H.; Sharma, P.; Grover, A. ClimateLearn: Benchmarking Machine Learning for Weather and Climate Modeling. arXiv, 2023; arXiv:2307.01909. [Google Scholar]
- Craig, M.T.; Wohland, J.; Stoop, L.P.; Kies, A.; Pickering, B.; Bloomfield, H.C.; Browell, J.; De Felice, M.; Dent, C.J.; Deroubaix, A.; et al. Overcoming the Disconnect between Energy System and Climate Modeling. Joule 2022, 6, 1405–1417. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Katinić, M.; Santa, R.; Marić, D. Wind Turbine Technology Trends. Appl. Sci. 2022, 12, 8653. [Google Scholar] [CrossRef]
- Wiser, R.; Bolinger, M. Benchmarking Anticipated Wind Project Lifetimes: Results from a Survey of U.S. Wind Industry Professionals; Lawrence Berkeley National Lab.(LBNL): Berkeley, CA, USA, 2019. [Google Scholar]
- Marvel, K.; Kravitz, B.; Caldeira, K. Geophysical Limits to Global Wind Power. Nat. Clim. Change 2013, 3, 118–121. [Google Scholar] [CrossRef]
- Hansen, M. Aerodynamics of Wind Turbines, 3rd ed.; Routledge: London, UK, 2015; ISBN 978-1-315-76998-1. [Google Scholar]
Technology | Min | Median | Max |
---|---|---|---|
Coal—PC | 740 | 820 | 910 |
Gas—combined cycle | 410 | 490 | 650 |
Biomass | 130 | 230 | 420 |
Solar PV—Utility-scale | 18 | 48 | 180 |
Solar PV—rooftop | 26 | 41 | 60 |
Concentrated solar power | 8.8 | 27 | 63 |
Geothermal | 6 | 38 | 79 |
Hydropower | 1 | 24 | 2200 |
Nuclear | 3.7 | 12 | 110 |
Wind Offshore | 8 | 12 | 35 |
Wind Onshore | 7 | 11 | 56 |
Total Installed Costs (2021 USD/kW) | Capacity Factor (%) | Levelized Cost of Electricity (2021 USD/kWh) | |||||||
---|---|---|---|---|---|---|---|---|---|
2010 | 2021 | Percent Change | 2010 | 2021 | Percent Change | 2010 | 2021 | Percent Change | |
Bioenergy | 2714 | 2353 | −13% | 72 | 68 | −6% | 0.078 | 0.067 | −14% |
Geothermal | 2714 | 3991 | 47% | 87 | 77 | −11% | 0.050 | 0.068 | 34% |
Hydropower | 1315 | 2135 | 62% | 44 | 45 | 2% | 0.039 | 0.048 | 24% |
Solar PV | 4808 | 857 | −82% | 14 | 17 | 25% | 0.417 | 0.048 | −88% |
CSP | 9422 | 9091 | −4% | 30 | 80 | 167% | 0.358 | 0.114 | −68% |
Onshore wind | 2042 | 1325 | −35% | 27 | 39 | 44% | 0.102 | 0.033 | −68% |
Offshore wind | 4876 | 2858 | −41% | 38 | 39 | 3% | 0.188 | 0.075 | −60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kara, T.; Şahin, A.D. Implications of Climate Change on Wind Energy Potential. Sustainability 2023, 15, 14822. https://doi.org/10.3390/su152014822
Kara T, Şahin AD. Implications of Climate Change on Wind Energy Potential. Sustainability. 2023; 15(20):14822. https://doi.org/10.3390/su152014822
Chicago/Turabian StyleKara, Tolga, and Ahmet Duran Şahin. 2023. "Implications of Climate Change on Wind Energy Potential" Sustainability 15, no. 20: 14822. https://doi.org/10.3390/su152014822
APA StyleKara, T., & Şahin, A. D. (2023). Implications of Climate Change on Wind Energy Potential. Sustainability, 15(20), 14822. https://doi.org/10.3390/su152014822