A Data-Driven Comprehensive Battery SOH Evaluation and Prediction Method Based on Improved CRITIC-GRA and Att-BiGRU
Abstract
:1. Introduction
- (1)
- Based on the characteristics of real-world EV data, basic health indicators including capacity, ohmic resistance, and maximum output power are extracted using specific methods suitable for EV application scenarios.
- (2)
- An improved criteria importance through the inter-criteria correlation (CRITIC) weighting method is introduced in order to obtain objective weights for three typical battery health indicators. These weights are then combined with the grey relational analysis (GRA) method to construct a comprehensive evaluation indicator for battery health.
- (3)
- Leveraging the advantages of bidirectional gated recurrent unit (BiGRU) and attention mechanism, an Att-BiGRU deep learning model is developed to predict the comprehensive health state of batteries.
2. Data Introduction and Health Indicators Extraction
2.1. Data Introduction
2.2. Extraction of Health Representation Indicators
2.2.1. Capacity
2.2.2. Ohmic Resistance
2.2.3. Maximum Output Power
3. Methods
3.1. Comprehensive Battery Health Indicator Based on Improved CRITIC and GRA
3.1.1. Improved CRITIC Weighting Method
- Data normalization
- 2.
- Calculate the comparative strength of indicators based on information entropy
- 3.
- Calculate the conflict between indicators
- 4.
- Calculate the weights for each indicator
3.1.2. GRA Comprehensive Evaluation Method
- Construct the evaluation matrix
- 2.
- Determine the reference sequence
- 3.
- Calculate the grey relational coefficient
- 4.
- Calculate the grey relational grade
3.1.3. The Improved CRITIC-GRA Method
3.2. Battery Comprehensive Health Prediction Model Based on Att-BiGRU
3.2.1. Feature Extraction for Model Input
3.2.2. Att-BiGRU
4. Results and Discussion
4.1. Results of Comprehensive Battery Health Evaluation
4.2. Prediction of Comprehensive Health Indicator
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, C.-W.; Yuan, X.; Tao, R.; Umar, M. Can new energy vehicles help to achieve carbon neutrality targets? J. Environ. Manag. 2021, 297, 113348. [Google Scholar] [CrossRef]
- Li, T.; Ma, L.; Liu, Z.; Yi, C.; Liang, K. Dual carbon goal-based quadrilateral evolutionary game: Study on the new energy vehicle industry in China. Int. J. Environ. Res. Public Health 2023, 20, 3217. [Google Scholar] [CrossRef]
- Hou, F.; Chen, X.; Chen, X.; Yang, F.; Ma, Z.; Zhang, S.; Liu, C.; Zhao, Y.; Guo, F. Comprehensive analysis method of determining global long-term GHG mitigation potential of passenger battery electric vehicles. J. Clean. Prod. 2021, 289, 125137. [Google Scholar] [CrossRef]
- Yuan, X.; Cai, Y. Forecasting the development trend of low emission vehicle technologies: Based on patent data. Technol. Forecast. Soc. Chang. 2021, 166, 120651. [Google Scholar] [CrossRef]
- Lai, X.; Chen, Q.; Tang, X.; Zhou, Y.; Gao, F.; Guo, Y.; Bhagat, R.; Zheng, Y. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. eTransportation 2022, 12, 100169. [Google Scholar] [CrossRef]
- Lipu, M.H.; Hannan, M.; Karim, T.F.; Hussain, A.; Saad, M.H.M.; Ayob, A.; Miah, M.S.; Mahlia, T.I. Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook. J. Clean. Prod. 2021, 292, 126044. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Bian, H.; Guo, W.; Zhang, X. A review of lithium-ion battery state of charge estimation based on deep learning: Directions for improvement and future trends. J. Energy Storage 2022, 52, 104664. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Capkova, D.; Knap, V.; Fedorkova, A.S.; Stroe, D.-I. Investigation of the temperature and DOD effect on the performance-degradation behavior of lithium–sulfur pouch cells during calendar aging. Appl. Energy 2023, 332, 120543. [Google Scholar] [CrossRef]
- Olabi, A.; Wilberforce, T.; Sayed, E.T.; Abo-Khalil, A.G.; Maghrabie, H.M.; Elsaid, K.; Abdelkareem, M.A. Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission. Energy 2022, 254, 123987. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, C.; Jiang, J.; Zhang, W.; Zhang, L.; Wang, Y. Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications. J. Clean. Prod. 2021, 314, 128015. [Google Scholar] [CrossRef]
- Farmann, A.; Sauer, D.U. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles. J. Power Sources 2016, 329, 123–137. [Google Scholar] [CrossRef]
- Barai, A.; Uddin, K.; Widanage, W.D.; McGordon, A.; Jennings, P. A study of the influence of measurement timescale on internal resistance characterisation methodologies for lithium-ion cells. Sci. Rep. 2018, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.K.; Chakraborty, B. Battery management strategies: An essential review for battery state of health monitoring techniques. J. Energy Storage 2022, 51, 104427. [Google Scholar] [CrossRef]
- Ge, M.-F.; Liu, Y.; Jiang, X.; Liu, J. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries. Measurement 2021, 174, 109057. [Google Scholar] [CrossRef]
- Xiong, R.; Li, L.; Tian, J. Towards a smarter battery management system: A critical review on battery state of health monitoring methods. J. Power Sources 2018, 405, 18–29. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J.; Lund, P.D.; Zhang, Y. Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model. Energy 2022, 240, 122815. [Google Scholar] [CrossRef]
- Liu, F.; Shao, C.; Su, W.; Liu, Y. Online joint estimator of key states for battery based on a new equivalent circuit model. J. Energy Storage 2022, 52, 104780. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Li, D.; Cui, X.; Wang, L.; Li, L.; Wang, K. Electrochemical impedance spectroscopy: A new chapter in the fast and accurate estimation of the state of health for lithium-ion batteries. Energies 2023, 16, 1599. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, D.; Du, J.; Sun, H.; Li, L.; Wang, L.; Wang, K. A review of SOH prediction of Li-ion batteries based on data-driven algorithms. Energies 2023, 16, 3167. [Google Scholar] [CrossRef]
- Ng, M.-F.; Zhao, J.; Yan, Q.; Conduit, G.J.; Seh, Z.W. Predicting the state of charge and health of batteries using data-driven machine learning. Nat. Mach. Intell. 2020, 2, 161–170. [Google Scholar] [CrossRef]
- Lin, M.; Yan, C.; Wang, W.; Dong, G.; Meng, J.; Wu, J. A data-driven approach for estimating state-of-health of lithium-ion batteries considering internal resistance. Energy 2023, 277, 127675. [Google Scholar] [CrossRef]
- Xiong, R.; Sun, Y.; Wang, C.; Tian, J.; Chen, X.; Li, H.; Zhang, Q. A data-driven method for extracting aging features to accurately predict the battery health. Energy Storage Mater. 2023, 57, 460–470. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W.; Lu, J.; Sun, F. Flexible battery state of health and state of charge estimation using partial charging data and deep learning. Energy Storage Mater. 2022, 51, 372–381. [Google Scholar] [CrossRef]
- Einhorn, M.; Conte, F.V.; Kral, C.; Fleig, J. A method for online capacity estimation of lithium-ion battery cells using the state of charge and the transferred charge. IEEE Trans. Ind. Appl. 2011, 48, 736–741. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The critic method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Chen, P. Effects of the entropy weight on TOPSIS. Expert Syst. Appl. 2021, 168, 114186. [Google Scholar] [CrossRef]
- Julong, D. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
Parameter | Value |
---|---|
Cathode material | LiFePO4 |
Battery capacity | 240 Ah |
Driving range | 300 km |
Motor power | 100 kW |
Curb weight | 8500 kg |
Number | Feature | Number | Feature |
---|---|---|---|
F1 | Accumulated mileage | F6 | Charging start voltage |
F2 | Temperature | F7 | Charging end voltage |
F3 | Charging start SOC | F8 | Charging voltage difference |
F4 | Charging end SOC | F9 | Maximum charging current |
F5 | Charging SOC difference | F10 | Average charging current |
Vehicle | Capacity | Resistance | Power |
---|---|---|---|
A | 0.38 | 0.41 | 0.21 |
B | 0.34 | 0.48 | 0.18 |
C | 0.53 | 0.21 | 0.26 |
D | 0.54 | 0.24 | 0.22 |
Model | A | B | C | D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | |
XGB | 0.132 | 0.097 | 0.924 | 0.205 | 0.150 | 0.910 | 0.214 | 0.128 | 0.908 | 0.116 | 0.081 | 0.927 |
GRU | 0.094 | 0.072 | 0.942 | 0.107 | 0.088 | 0.928 | 0.106 | 0.081 | 0.933 | 0.087 | 0.067 | 0.945 |
BiGRU | 0.082 | 0.068 | 0.951 | 0.098 | 0.085 | 0.937 | 0.096 | 0.069 | 0.949 | 0.045 | 0.037 | 0.972 |
Att-BiGRU | 0.056 | 0.048 | 0.973 | 0.071 | 0.063 | 0.956 | 0.070 | 0.045 | 0.971 | 0.032 | 0.025 | 0.985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Liu, C.; Wang, Z.; Wang, Q.; Han, J.; Zhou, Y. A Data-Driven Comprehensive Battery SOH Evaluation and Prediction Method Based on Improved CRITIC-GRA and Att-BiGRU. Sustainability 2023, 15, 15084. https://doi.org/10.3390/su152015084
Liu P, Liu C, Wang Z, Wang Q, Han J, Zhou Y. A Data-Driven Comprehensive Battery SOH Evaluation and Prediction Method Based on Improved CRITIC-GRA and Att-BiGRU. Sustainability. 2023; 15(20):15084. https://doi.org/10.3390/su152015084
Chicago/Turabian StyleLiu, Peng, Cheng Liu, Zhenpo Wang, Qiushi Wang, Jinlei Han, and Yapeng Zhou. 2023. "A Data-Driven Comprehensive Battery SOH Evaluation and Prediction Method Based on Improved CRITIC-GRA and Att-BiGRU" Sustainability 15, no. 20: 15084. https://doi.org/10.3390/su152015084
APA StyleLiu, P., Liu, C., Wang, Z., Wang, Q., Han, J., & Zhou, Y. (2023). A Data-Driven Comprehensive Battery SOH Evaluation and Prediction Method Based on Improved CRITIC-GRA and Att-BiGRU. Sustainability, 15(20), 15084. https://doi.org/10.3390/su152015084