Assessment of Crop Residues and Corresponding Nutrients Return to Fields via Root, Stubble, and Straw in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Crop Biomass Density
Province | Typical County | Main Crop |
---|---|---|
Sichuan | Yanting County, Guanghan City | Maize, rapeseed, wheat, and rice |
Chongqing | Dianjiang County | Rapeseed, maize, and rice |
Guizhou | Zunyi City, Puding County | Maize, rape, and rice |
Yunnan | Luliang County, Luxi City | Wheat, maize, and rice |
Tibet | Dazi County | Barley |
2.2. Survey of Residue Return
2.3. Calculation of Crop Residue and Corresponding Nutrient Resources and Their Return Amount
3. Results
3.1. Biomass Density and Residue Resource
3.2. The Situation of Crop Straw Return
3.3. The Amount of Crop Residue Return
3.4. Amount of Crop Residue Nutrient Resources and Their Return
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics of the People’s Republic of China (NBS). Report on Crop Production in 2015; National Bureau of Statistics of the People’s Republic of China: Beijing, China, 2015. (In Chinese)
- Sun, B.; Zhang, L.; Yang, L.; Zhang, F.; Norse, D.; Zhu, Z. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures. Ambio 2012, 41, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Liu, Y.; Yao, D.; Wang, N.; Ye, X.; Cui, Z.; Wang, H. Phylogenetic diversity of stochasticity-dominated predatory myxobacterial community drives multi-nutrient cycling in typical farmland soils. Sci. Total Environ. 2023, 871, 161680. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhang, D.; Zhuang, L.; Zhang, L.; Yuan, W.; Singh, R.P. Assessment of runoff nutrients loss in Phyllostachys praecox cv. prevernalis forest land under simulated rainfall conditions. Environ. Sci. Pollut. Res. 2021, 28, 21874–21886. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dai, M.; Dai, S.; Dong, X. Current status and environment impact of direct straw return in China’s cropland—A review. Ecotoxicol. Environ. Saf. 2018, 159, 293–300. [Google Scholar] [CrossRef]
- Dongsheng, G.; Chunhong, H. Spatial and temporal distribution and utilization patterns of crop straw resources in China in recent 10 years. Southwest Agric. J. 2016, 29, 7. [Google Scholar]
- Dali, S.; Shengpeng, H.; Xiubin, W.; Guoqing, L.; Wei, Z. The quantity of straw nutrient resources and the potential of fertilizer substitution in China. J. Plant Nutr. Fertil. 2018, 24, 1–21. [Google Scholar]
- Whitbread, A.; Blair, G.; Konboon, Y.; Lefroy, R.; Naklang, K. Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia. Agric. Ecosyst. Environ. 2003, 100, 251–263. [Google Scholar] [CrossRef]
- Pathak, D.S.; Singh, R.; Bhatia, A.; Jain, N. Recycling of Rice Straw to Improve Wheat Yield and Soil Fertility and Reduce Atmospheric Pollution. Paddy Water Environ. 2006, 4, 111–117. [Google Scholar] [CrossRef]
- Dikgwatlhe, S.B.; Chen, Z.-D.; Lal, R.; Zhang, H.-L.; Chen, F. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain. Soil Tillage Res. 2014, 144, 110–118. [Google Scholar] [CrossRef]
- Qing, C.; Zhou, W.; Song, J.; Deng, X.; Xu, D. Impact of outsourced machinery services on farmers’ green production behavior: Evidence from Chinese rice farmers. J. Environ. Manag. 2023, 327, 116843. [Google Scholar] [CrossRef]
- Liu, B.; Wu, Q.; Wang, F.; Zhang, B. Is straw return-to-field always beneficial? Evidence from an integrated cost-benefit analysis. Energy 2019, 171, 393–402. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Z.; Li, T.; Chen, P.; Nie, T.; Zhang, Z.; Du, S. Straw return alleviates the greenhouse effect of paddy fields by increasing soil organic carbon sequestration under water-saving irrigation. Agric. Water Manag. 2023, 287, 108434. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, W.; Li, T.; Cheng, X.; Liu, Q. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources. Renew. Sustain. Energy Rev. 2018, 81, 2695–2702. [Google Scholar] [CrossRef]
- Jin, Z.; Shah, T.; Zhang, L.; Liu, H.; Peng, S.; Nie, L. Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food Energy Secur. 2020, 9, e200. [Google Scholar] [CrossRef]
- Mao, J.; Zhao, Z.; Li, X.; Zhao, H.; Lin, C. Comprehensive Benefit of Crop Straw Return Volume under Sustainable Development Management Concept in Heilongjiang, China. Sustainability 2023, 15, 4129. [Google Scholar] [CrossRef]
- Li, P.; Yin, W.; Chen, G.; Guo, Y.; Fan, Z.; Hu, F.; Feng, F.; Fan, H.; He, W. Sustainable Analysis of Maize Production under Previous Wheat Straw Returning in Arid Irrigated Areas. Sustainability 2023, 15, 8935. [Google Scholar] [CrossRef]
- Nelson, R.G. Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States—Rainfall and wind-induced soil erosion methodology. Biomass Bioenergy 2002, 22, 349–363. [Google Scholar] [CrossRef]
- Luxhøi, J.; Elsgaard, L.; Thomsen, I.; Jensen, L. Effects of long-term annual inputs of straw and organic manure on plant N uptake and soil N fluxes. Soil Use Manag. 2007, 23, 368–373. [Google Scholar] [CrossRef]
- Abdourhamane Toure, A.; Rajot, J.L.; Garba, Z.; Marticorena, B.; Petit, C.; Sebag, D. Impact of very low crop residues cover on wind erosion in the Sahel. CATENA 2011, 85, 205–214. [Google Scholar] [CrossRef]
- Waheed, A.; Li, C.; Muhammad, M.; Ahmad, M.; Khan, K.A.; Ghramh, H.A.; Wang, Z.; Zhang, D. Sustainable Potato Growth under Straw Mulching Practices. Sustainability 2023, 15, 10442. [Google Scholar] [CrossRef]
- Li, C.; Zhuang, Y.; Frolking, S.; Galloway, J.; Harriss, R.; Moore, B.; Schimel, D.; Wang, X.-K. Modeling soil organic carbon change in croplands of China. Ecol. Appl. 2003, 13, 327–336. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, G.M.; Zhuang, H.Y.; Wang, K.J. Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues. Renew. Sustain. Energy Rev. 2008, 12, 1402–1418. [Google Scholar] [CrossRef]
- Changsheng, L. Loss of soil carbon threatens Chinese agriculture: A comparison on agroecosystem carbon pool in China and the U.S. Quat. Sci. 2000, 20, 345–350. [Google Scholar]
- Xiaoyong, L.; Shutian, L. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2017, 33, 1. [Google Scholar]
- Zhao, Y.; Wang, M.; Hu, S.; Zhang, X.; Ouyang, Z.; Zhang, G.; Huang, B.; Zhao, S.; Wu, J.; Xie, D.; et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Carbon Sequestration in Soils. Science 1999, 284, 2095. [Google Scholar] [CrossRef]
- Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil Tillage Res. 2007, 94, 328–94337. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, H.; Wang, Y.; Sun, J.; Chen, D.; Tu, M.; Lin, L. Effect of straw biochar from different crops on growth and nutrient uptake by peach (Prunus davidiana) seedlings. Acta Physiol. Plant. 2022, 44, 104. [Google Scholar] [CrossRef]
- Bao, J.-C.; Yu, J.-H.; Feng, Z.; Chen, B.-H.; Lei, C.; Yang, J. Situation of distribution and utilization of crop straw resources in seven western provinces, China. Ying Yong Sheng Tai Xue Bao 2014, 25, 181–187. [Google Scholar]
- Wang, X.; Yang, L.; Steinberger, Y.; Liu, Z.; Liao, S.; Xie, G. Field crop residue estimate and availability for biofuel production in China. Renew. Sustain. Energy Rev. 2013, 27, 864–875. [Google Scholar] [CrossRef]
- Jia, W.; Qin, W.; Zhang, Q.; Wang, X.; Ma, Y.; Chen, Q. Evaluation of crop residues and manure production and their geographical distribution in China. J. Clean. Prod. 2018, 188, 954–965. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, H.; Guo, J.; Huang, M.; Zhao, K.; Hou, Y.; Li, J.; Tian, W.; Zhang, J.; Li, F.; et al. Effects of Straw Returning Combined with Organic Fertilizer Replacing 1/3 Chemical Fertilizer on Grain Yield, Grain Protein and Chemical Fertilizer Use Efficiency in Dryland Maize-wheat Double Cropping System. J. Soil Water Conserv. 2023, 37, 319–326. [Google Scholar]
- Wang, Y.-J.; Bi, Y.-Y.; Gao, C.-Y. The Assessment and Utilization of Straw Resources in China. Agric. Sci. China 2010, 9, 1807–1815. [Google Scholar] [CrossRef]
- Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef]
- Yu, M.; Wang, Q.; Su, Y.; Xi, H.; Qiao, Y.; Guo, Z.; Wang, Y.; Shen, A. Response of Soil Environment and Microbial Community Structure to Different Ratios of Long-Term Straw Return and Nitrogen Fertilizer in Wheat–Maize System. Sustainability 2023, 15, 1986. [Google Scholar] [CrossRef]
- Banowetz, G.M.; Boateng, A.; Steiner, J.J.; Griffith, S.M.; Sethi, V.; El-Nashaar, H. Assessment of straw biomass feedstock resources in the Pacific Northwest. Biomass Bioenergy 2008, 32, 629–634. [Google Scholar] [CrossRef]
- Summers, M.D.; Jenkins, B.M.; Hyde, P.R.; Williams, J.F.; Mutters, R.G.; Scardacci, S.C.; Hair, M.W. Biomass production and allocation in rice with implications for straw harvesting and utilization. Biomass Bioenergy 2003, 24, 163–173. [Google Scholar] [CrossRef]
- Jianchun, Z.; Ronghua, L.; Xiangyun, Y.; Zengqiang, Z.; Zhimin, F. Spatial and temporal distribution of crop straw resources in 30 years in China. J. Northwest AF Univ. (Nat. Sci. Ed.) 2012, 40, 139–145. [Google Scholar]
- Qu, C.S.; Li, B.; Wu, H.S.; Giesy, J.P. Controlling Air Pollution from Straw Burning in China Calls for Efficient Recycling. Environ. Sci. Technol. 2012, 46, 7934–7936. [Google Scholar] [CrossRef]
- Anning, D.K.; Qiu, H.; Zhang, C.; Ghanney, P.; Zhang, Y.; Guo, Y. Maize Straw Return and Nitrogen Rate Effects on Potato (Solanum tuberosum L.) Performance and Soil Physicochemical Characteristics in Northwest China. Sustainability 2021, 13, 5508. [Google Scholar] [CrossRef]
- Cao, G.L.; Zhang, X.; Zheng, F.C.; Wang, Y. Estimating the quantity of crop residues burnt in open field in China. Resour. Sci. 2006, 28, 9–13. [Google Scholar]
- Wang, D.; Chang, Z.; Wang, C.; Zhang, G.; Zhang, S. Regulation and effect of 100% straw return on crop yield and environment. Chin. J. Eco-Agric. 2015, 23, 1073–1082. [Google Scholar]
- Li, R.; Xu, M.; Sun, N.; Wang, J.; Wang, F.; Li, J. Dynamics Characteristic of Straw Decomposition and Nutrient Release Under Different C/N Ratio. Sci. Agric. Sin. 2023, 56, 2118–2128. [Google Scholar]
- Liu, M.; Yu, Z.; Liu, Y.; Konijn, N.T. Fertilizer requirements for wheat and maize in China: The QUEFTS approach. Nutr. Cycl. Agroecosystems 2006, 74, 245–258. [Google Scholar] [CrossRef]
- Shao, J.; Gao, C.; Afi Seglah, P.; Xie, J.; Zhao, L.; Bi, Y.; Wang, Y. Analysis of the Available Straw Nutrient Resources and Substitution of Chemical Fertilizers with Straw Returned Directly to the Field in China. Agriculture 2023, 13, 1187. [Google Scholar] [CrossRef]
Province | Crop Type | Sown Area (hm2) | (Straw + Stubble) Biomass Density (t/hm2) | Root Biomass Density (t/hm2) | (Straw + Stubble) Resources (Mt) | Root Resources (Mt) |
---|---|---|---|---|---|---|
Sichuan | Maize | 1,371,100 | 5.68 ± 0.08 | 0.56 ± 0.06 | 7.8 | 0.8 |
Rice | 1,997,800 | 5.84 ± 0.88 | 1.29 ± 0.31 | 11.7 | 2.6 | |
Rapeseed | 9,801,400 | 9.70 ± 0.80 | 1.54 ± 0.37 | 9.5 | 1.5 | |
Wheat | 1,234,100 | 7.67 ± 1.43 | 1.90 ± 0.17 | 9.5 | 2.3 | |
Chongqing | Maize | 468,400 | 3.00 ± 0.10 | 0.26 ± 0.03 | 1.4 | 0.1 |
Rice | 687,000 | 6.45 ± 0.90 | 2.05 ± 0.57 | 4.4 | 1.4 | |
Rapeseed | 204,600 | 8.64 ± 2.03 | 1.30 ± 0.45 | 1.8 | 0.3 | |
Guizhou | Maize | 778,400 | 9.35 ± 0.63 | 0.66 ± 0.12 | 7.3 | 0.5 |
Rice | 684,500 | 8.08 ± 0.70 | 3.14 ± 0.54 | 5.5 | 2.2 | |
Rapeseed | 560,800 | 6.62 ± 1.41 | 1.61 ± 0.71 | 3.7 | 0.9 | |
Yunnan | Maize | 1,505,100 | 4.13 ± 0.10 | 0.31 ± 0.04 | 6.2 | 0.5 |
Rice | 1,152,700 | 6.94 ± 0.47 | 3.74 ± 0.20 | 8.0 | 4.3 | |
Wheat | 437,300 | 6.19 ± 1.32 | 1.05 ± 0.03 | 2.7 | 0.5 | |
Tibet | Barley | 37,800 | 3.06 ± 0.39 | 0.56 ± 0.07 | 0.1 | 0.02 |
Crop Type | Province | Stubble Height (cm) | Proportion of Burning (%) | Proportion of Total Return (%) | Proportion of Partial Return (%) | Proportion of Partial Return Amount (%) |
---|---|---|---|---|---|---|
Maize | Sichuan | 20.0 | 33.9 | 8.8 | 57.3 | 6.1 |
Chongqing | 10.5 | 7.4 | 0.3 | 92.3 | 3.3 | |
Guizhou | 13.2 | 11.9 | 0.0 | 88.1 | 2.3 | |
Yunnan | 15.2 | 6.9 | 12.2 | 81.0 | 7.4 | |
Rice | Sichuan | 26.1 | 26.0 | 23.3 | 50.8 | 4.5 |
Chongqing | 28.9 | 12.3 | 10.5 | 77.3 | 9.7 | |
Guizhou | 15.0 | 11.2 | 3.6 | 85.2 | 4.4 | |
Yunnan | 24.6 | 6.0 | 16.2 | 77.8 | 17.9 | |
Rapeseed | Sichuan | 25.3 | 69.3 | 2.6 | 28.0 | 17.5 |
Chongqing | 9.9 | 3.6 | 0.0 | 96.4 | 2.4 | |
Guizhou | 8.2 | 30.6 | 0.0 | 69.4 | 1.0 | |
Wheat | Sichuan | 28.6 | 55.9 | 13.2 | 30.8 | 23.7 |
Yunnan | 18.5 | 29.1 | 8.4 | 62.4 | 16.1 | |
Barley | Tibet | 14.8 | 1.2 | 0.0 | 98.8 | 19.4 |
Province | Crop Type | Amount of Root Return (Kilotonne) | Amount of Stubble Return (Kilotonne) | Amount of Straw Return (Kilotonne) |
---|---|---|---|---|
Sichuan | Maize | 769.5 | 533.6 | 886.9 |
Rice | 2581.2 | 2571.4 | 2325.6 | |
Rapeseed | 1510.0 | 1252.6 | 623.4 | |
Wheat | 2349.6 | 3130.7 | 1299.1 | |
Chongqing | Maize | 121.1 | 50.9 | 44.1 |
Rice | 1405.1 | 1106.8 | 596.4 | |
Rapeseed | 265.9 | 103.2 | 38.5 | |
Guizhou | Maize | 510.2 | 354.2 | 141.0 |
Rice | 2152.1 | 897.6 | 341.5 | |
Rapeseed | 902.8 | 174.0 | 23.6 | |
Yunnan | Maize | 465.8 | 328.5 | 1067.8 |
Rice | 4308.2 | 1491.9 | 1959.0 | |
Wheat | 458.6 | 542.3 | 400.5 | |
Tibet | Barley | 21.3 | 21.4 | 18.1 |
Province | Crop Type | Root | Stubble | Straw | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | N | P | C/N | C | N | P | C/N | C | N | P | C/N | ||
Sichuan | Maize | 329.2 | 5.7 | 0.3 | 57.75 | 215.2 | 6.2 | 0.5 | 34.71 | 2922.3 | 83.6 | 6.2 | 34.96 |
Rice | 998.5 | 19.7 | 1.3 | 50.69 | 955.3 | 14.2 | 1 | 67.27 | 3376.4 | 50.2 | 3.6 | 67.26 | |
Rapeseed | 615.8 | 11.3 | 0.7 | 54.5 | 517.8 | 7.8 | 0.4 | 66.38 | 3417.1 | 51.2 | 2.9 | 66.74 | |
Wheat | 960.6 | 13.3 | 1.2 | 72.23 | 1312.3 | 13.7 | 2.2 | 95.79 | 2653.6 | 27.7 | 4.5 | 95.8 | |
Chongqing | Maize | 52.3 | 1 | 0.1 | 52.3 | 21 | 0.5 | 0.03 | 42.00 | 558.8 | 13.4 | 0.9 | 41.7 |
Rice | 555.7 | 10.7 | 0.7 | 51.93 | 444.5 | 6.7 | 0.5 | 66.34 | 1335.8 | 20.1 | 1.5 | 66.46 | |
Rapeseed | 111 | 2.1 | 0.1 | 52.86 | 43.5 | 0.6 | 0.04 | 72.50 | 700.9 | 9.8 | 0.7 | 71.52 | |
Guizhou | Maize | 214.4 | 3.6 | 0.3 | 59.56 | 145.1 | 3.6 | 0.2 | 40.31 | 2836.9 | 69.5 | 4.4 | 40.82 |
Rice | 840.6 | 17.3 | 1 | 48.59 | 345 | 5.5 | 0.3 | 62.73 | 1782 | 28.2 | 1.8 | 63.19 | |
Rapeseed | 374.9 | 7.1 | 0.5 | 52.8 | 73.1 | 1.1 | 0.1 | 66.45 | 1485.9 | 22.6 | 1.1 | 65.75 | |
Yunnan | Maize | 193.4 | 3.3 | 0.3 | 58.61 | 130.9 | 3.2 | 0.2 | 40.91 | 2343.8 | 58 | 4.5 | 40.41 |
Rice | 1728.6 | 33.9 | 2.9 | 50.99 | 582.2 | 10.2 | 0.9 | 57.08 | 2541.3 | 44.6 | 3.7 | 56.98 | |
Wheat | 181.7 | 3.2 | 0.5 | 56.78 | 221.5 | 2.6 | 0.3 | 85.19 | 883.7 | 10.3 | 1.1 | 85.8 | |
Tibet | Barley | 9.2 | 0.2 | 0.01 | 46 | 9.9 | 0.1 | 0.01 | 99 | 43.7 | 0.5 | 0.01 | 87.4 |
Total | 7165.8 | 132.2 | 9.8 | 54.2 | 5017.3 | 75.9 | 6.8 | 66.10 | 26,882.1 | 489.6 | 37.1 | 54.91 |
Crop | Residue Nutrient Amount (kg/hm2) | Residue Nutrient Return Amount (kg/hm2) | Optimum Fertilization Rate * (kg/hm2) | Percentage of Chemical Fertilizer Substituted by the Residue Nutrient (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Total Return to Field | Actual Return to Field | |||||||||
N | P2O5 | N | P2O5 | N | P2O5 | N | P2O5 | N | P2O5 | |
Maize | 61.0 | 10.0 | 12.1 | 2.0 | 213.7 | 83.0 | 28.6 | 12.0 | 5.6 | 2.4 |
Rice | 57.7 | 9.8 | 33.2 | 5.6 | 180.2 | 67.9 | 32.0 | 14.4 | 18.4 | 8.3 |
Rapeseed | 65.0 | 8.5 | 19.6 | 2.7 | 175.4 | 88.7 | 37.1 | 9.6 | 11.2 | 3.0 |
Wheat | 42.3 | 13.5 | 24.1 | 7.3 | 162.9 | 79.4 | 26.0 | 17.0 | 14.8 | 9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Chen, D.; Wang, X. Assessment of Crop Residues and Corresponding Nutrients Return to Fields via Root, Stubble, and Straw in Southwest China. Sustainability 2023, 15, 15138. https://doi.org/10.3390/su152015138
Luo Y, Chen D, Wang X. Assessment of Crop Residues and Corresponding Nutrients Return to Fields via Root, Stubble, and Straw in Southwest China. Sustainability. 2023; 15(20):15138. https://doi.org/10.3390/su152015138
Chicago/Turabian StyleLuo, Yong, Dianpeng Chen, and Xiaoguo Wang. 2023. "Assessment of Crop Residues and Corresponding Nutrients Return to Fields via Root, Stubble, and Straw in Southwest China" Sustainability 15, no. 20: 15138. https://doi.org/10.3390/su152015138
APA StyleLuo, Y., Chen, D., & Wang, X. (2023). Assessment of Crop Residues and Corresponding Nutrients Return to Fields via Root, Stubble, and Straw in Southwest China. Sustainability, 15(20), 15138. https://doi.org/10.3390/su152015138