The Quantification of Carbon Footprints in the Agri-Food Sector and Future Trends for Carbon Sequestration: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Characterisation of Matrix Criteria for the Descriptive Analysis
3. Results
3.1. Descriptive Analysis
3.2. Carbon Footprint Assessment Methods Based on Life Cycle Approaches
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. In IPCC Summary for Policymakers; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- NATURECropped, 2022. IPCC on How Land Can Tackle Climate Change; UN Nature Talks End in Stalemate; Ukraine’s Agricultural Crisis. NATURECropped 6 April 2022. Available online: https://www.carbonbrief.org/cropped-6-april-2022-ipcc-onhow-land-can-tackle-climatechange-un-nature-talks-end-in-stalemate-ukraines-agricultural-crisis (accessed on 2 March 2023).
- UN (United Nations). World Population Prospects: The 2017 Revision; Department of Economic and Social Affairs, Population Division (2017) ST/ESA/SER.A/423; UN (United Nations): New York, NY, USA, 2017. [Google Scholar]
- Bodirsky, B.L.; Dietrich, J.P.; Martinelli, E.; Stenstad, A.; Pradhan, P.; Gabrysch, S.; Mishra, A.; Weindl, I.; Le Mouël, C.; Rolinski, S.; et al. The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Sci. Rep. 2020, 10, 19778. [Google Scholar] [CrossRef]
- Filho, W.L.; Setti, A.F.F.; Azeiteiro, U.M.; Lokupitiya, E.; Donkor, F.K.; Etim, N.N.; Matandirotya, N.; Olooto, F.M.; Sharifi, A.; Nagy, G.J.; et al. An overview of the interactions between food production and climate change. Sci. Total. Environ. 2022, 838, 156438. [Google Scholar] [CrossRef] [PubMed]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- World in Data, 2019. Food Production is Responsible for One-Quarter of the World’s Greenhouse Gas Emissions. Available online: https://ourworldindata.org/food-ghg-emissions (accessed on 3 April 2023).
- Jaiswal, B.; Agrawal, M. Carbon Footprints of Agriculture Sector. Environmental Footprints and Eco-design of Products and Processes Book Series (EFEPP); Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- NASA (National Aeronautics and Space Administration), 2018. Carbon Dioxide. Available online: https://climate.nasa.gov/vital-signs/carbon-dioxide/ (accessed on 12 March 2019).
- Edenbrandt, A.K.; Lagerkvist, C. Consumer perceptions and attitudes towards climate information on food. J. Clean. Prod. 2022, 370, 133441. [Google Scholar] [CrossRef]
- Escribano, M.; Horrillo, A.; Mesías, F.J. Greenhouse gas emissions and carbon sequestration in organic dehesa livestock farms. Does technical-economic management matters? J. Clean. Prod. 2022, 372, 133779. [Google Scholar] [CrossRef]
- Council of the European Union. Renewed EU Sustainable Development Strategy; No. 10917/06, 26 June 2006; Council of the European Union: Brussels, Belgium, 2006; pp. 1–29. Available online: https://data.consilium.europa.eu/doc/document/ST%2010917%202006%20INIT/EN/pdf (accessed on 3 April 2023).
- WRI/WBCSD. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard. Revised Edition; World Business Council for Sustainable Development and World Resource Institute: Washington, DC, USA; World Resources Institute: Geneva, Switzerland, 2004; pp. 1–112. Available online: https://ghgprotocol.org/sites/default/files/standards/ghg-protocol-revised.pdf (accessed on 3 April 2023).
- Publicly Available Specification 2050:2008; Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services. British Standards Institute: London, UK, 2008. Available online: https://www.plateformeco2.ch/portal/documents/10279/17373/BSI_standard2008a+PAS2050.pdf/645e407d-c2c9-4abdb9d7-37564071a95d (accessed on 24 January 2021).
- Karwacka, M.; Ciurzyńska, A.; Lenart, A.; Janowicz, M. Sustainable Development in the Agri-Food Sector in Terms of the Carbon Footprint: A Review. Sustainability 2020, 12, 6463. [Google Scholar] [CrossRef]
- Pattara, C.; Russo, C.; Antrodicchia, V.; Cichelli, A. Carbon footprint as an instrument for enhancing food quality: Overview of the wine, olive oil and cereals sectors. J. Sci. Food Agric. 2017, 97, 396–410. [Google Scholar] [CrossRef]
- Esposito, B.; Sessa, M.R.; Sica, D.; Malandrino, O. Towards Circular Economy in the Agri-Food Sector. A Systematic Literature Review. Sustainability 2020, 12, 7401. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Stillitano, T.; Spada, E.; Iofrida, N.; Falcone, G.; De Luca, A.I. Sustainable Agri-Food Processes and Circular Economy Pathways in a Life Cycle Perspective: State of the Art of Applicative Research. Sustainability 2021, 13, 2472. [Google Scholar] [CrossRef]
- Flysjö, A. Potential for improving the carbon footprint of butter and blend products. J. Dairy Sci. 2011, 94, 5833–5841. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Orias, N.; Stichnothe, H.; Azapagic, A. The carbon footprint of bread. Int. J. Life Cycle Assess. 2011, 16, 351–365. [Google Scholar] [CrossRef]
- de Figueirêdo, M.C.B.; Kroeze, C.; Potting, J.; Barros, V.d.S.; de Aragão, F.A.S.; Gondim, R.S.; Santos, T.d.L.; de Boer, I.J. The carbon footprint of exported Brazilian yellow melon. J. Clean. Prod. 2013, 47, 404–414. [Google Scholar] [CrossRef]
- Svanes, E.; Aronsson, A.K.S. Carbon footprint of a Cavendish banana supply chain. Int. J. Life Cycle Assess. 2013, 18, 1450–1464. [Google Scholar] [CrossRef]
- Holka, M.; Kowalska, J.; Jakubowska, M. Reducing Carbon Footprint of Agriculture. Can Organic Farming Help to Mit-igate Climate Change? Agriculture 2022, 12, 1383. [Google Scholar] [CrossRef]
- Canavari, M.; Coderoni, S. Consumer stated preferences for dairy products with carbon footprint labels in Italy. Agric. Food Econ. 2020, 8, 4. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, R.; Han, H.; Jiang, Z. Is farmers’ agricultural production a carbon sink or source? e Variable system boundary and household survey data. J. Clean. Prod. 2020, 66, 122108. [Google Scholar] [CrossRef]
- Escribano, M.; Elghannam, A.; Mesias, F.J. Dairy sheep farms in semi-arid rangelands: A carbon footprint dilemma be-tween intensification and land-based grazing. Land Use Policy 2020, 95, 104600. [Google Scholar] [CrossRef]
- Iriarte, A.; Yáñez, P.; Villalobos, P.; Huenchuleo, C.; Rebolledo-Leiva, R. Carbon footprint of southern hemisphere fruit exported to Europe: The case of Chilean apple to the UK. J. Clean. Prod. 2021, 93, 126118. [Google Scholar] [CrossRef]
- Rinaldi, S.; Bonamente, E.; Scrucca, F.; Merico, M.C.; Asdrubali, F.; Cotana, F. Water and Carbon Footprint of Wine: Methodology Review and Application to a Case Study. Sustainability 2016, 8, 621. [Google Scholar] [CrossRef]
- Ponstein, H.J.; Meyer-Aurich, A.; Prochnow, A. Greenhouse gas emissions and mitigation options for German wine production. J. Clean. Prod. 2019, 212, 800–809. [Google Scholar] [CrossRef]
- D’Ammaro, D.; Capri, E.; Valentino, F.; Grillo, S.; Fiorini, E.; Lamastra, L. Benchmarking of carbon footprint data from the Italian wine sector: A comprehensive and extended analysis. Sci. Total. Environ. 2021, 779, 146416. [Google Scholar] [CrossRef]
- Ruviaro, C.F.; de Léis, C.M.; Lampert, V.D.N.; Barcellos, J.O.J.; Dewes, H. Carbon footprint in different beef production systems on a southern Brazilian farm: A case study. J. Clean. Prod. 2015, 96, 435–443. [Google Scholar] [CrossRef]
- Tallaksen, J.; Johnston, L.; Sharpe, K.; Reese, M.; Buchanan, E. Reducing life cycle fossil energy and greenhouse gas emissions for Midwest swine production systems. J. Clean. Prod. 2020, 246, 118998. [Google Scholar] [CrossRef]
- Soode, E.; Lampert, P.; Weber-Blaschke, G.; Richtera, K. Carbon footprints of the horticultural products strawberries, asparagus, roses and orchids in Germany. J. Clean. Prod. 2015, 87, 168–179. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, J.; Kong, X.; Sun, J.; Li, Y. Carbon footprint and economic efficiency of urban agriculture in Beijing—A comparative case study of conventional and home-delivery agriculture. J. Clean. Prod. 2019, 234, 615–625. [Google Scholar] [CrossRef]
- Roibás, L.; Elbehri, A.; Hospido, A. Evaluating the sustainability of Ecuadorian bananas: Carbon footprint, water usage and wealth distribution along the supply chain. Sustain. Prod. Consum. 2015, 2, 3–16. [Google Scholar] [CrossRef]
- Müller, K.; Holmes, A.; Deurer, M.; Clothier, B.E. Eco-efficiency as a sustainability measure for kiwifruit production in New Zealand. J. Clean. Prod. 2015, 106, 333–342. [Google Scholar] [CrossRef]
- Garofalo, P.; D’Andrea, L.; Tomaiuolo, M.; Venezia, A.; Castrignanò, A. Environmental sustainability of agri-food supply chains in Italy: The case of the whole-peeled tomato production under life cycle assessment methodology. J. Food Eng. 2017, 200, 1–12. [Google Scholar] [CrossRef]
- Seo, Y.; Someya, Y.; Dowaki, K. Environmental impacts and consumer preference for sustainably cultivated Japanese mustard spinach, komatsuna. J. Environ. Manag. 2019, 231, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Pérez, R.; Laca, A.; Laca, A.; Díaz, M. Environmental behaviour of blueberry production at small-scale in Northern Spain and improvement opportunities. J. Clean. Prod. 2022, 339, 130594. [Google Scholar] [CrossRef]
- Reisinger, A.; Ledgard, S.F.; Falconer, S.J. Sensitivity of the carbon footprint of New Zealand milk to greenhouse gas metrics. Ecol. Indic. 2017, 81, 74–82. [Google Scholar] [CrossRef]
- Coluccia, B.; Agnusdei, G.P.; De Leo, F.; Vecchio, Y.; La Fata, C.M.; Miglietta, P.P. Assessing the carbon footprint across the supply chain: Cow milk vs soy drink. Sci. Total. Environ. 2022, 806, 151200. [Google Scholar] [CrossRef]
- Cichorowski, G.; Joa, B.; Hottenroth, H.; Schmidt, M. Scenario analysis of life cycle greenhouse gas emissions of Darjeeling tea. Int. J. Life Cycle Assess. 2015, 20, 426–439. [Google Scholar] [CrossRef]
- Hu, A.H.; Chen, C.-H.; Huang, L.H.; Chung, M.-H.; Lan, Y.-C.; Chen, Z. Environmental Impact and Carbon Footprint Assessment of Taiwanese Agricultural Products: A Case Study on Taiwanese Dongshan Tea. Energies 2019, 12, 138. [Google Scholar] [CrossRef]
- Hassard, H.A.; Couch, M.H.; Techa-Erawan, T.; McLellan, B.C. Product carbon footprint and energy analysis of alternative coffee products in Japan. J. Clean. Prod. 2014, 73, 310–321. [Google Scholar] [CrossRef]
- Espinoza-Orias, N.; Azapagic, A. Understanding the impact on climate change of convenience food: Carbon footprint of sandwiches. Sustain. Prod. Consum. 2018, 15, 1–15. [Google Scholar] [CrossRef]
- Volanti, M.; Arfelli, F.; Neri, E.; Saliani, A.; Passarini, F.; Vassura, I.; Cristallo, G. Environmental Impact of Meals: How Big Is the Carbon Footprint in the School Canteens? Foods 2022, 11, 193. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organisation for Standardisation: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organisation for Standardisation: Geneva, Switzerland, 2006.
- Kucukvar, M.; Onat, N.C.; Abdella, G.M.; Tatari, O. Assessing regional and global environmental footprints and value added of the largest food producers in the world. Resour. Conserv. Recycl. 2019, 144, 187–197. [Google Scholar] [CrossRef]
- Leach, A.M.; Emery, K.A.; Gephart, J.; Davis, K.F.; Erisman, J.W.; Leip, A.; Pace, M.L.; D’Odorico, P.; Carr, J.; Noll, L.C.; et al. Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy 2016, 61, 213–223. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, J.; Zheng, J. Comparative analysis of carbon footprint between conventional smallholder operation and innovative largescale farming of urban agriculture in Beijing, China. PeerJ 2021, 9, e11632. [Google Scholar] [CrossRef] [PubMed]
- DE Pelsmacker, P.; Driesen, L.; Rayp, G. Do Consumers Care about Ethics? Willingness to Pay for Fair-Trade Coffee. J. Consum. Aff. 2005, 39, 363–385. [Google Scholar] [CrossRef]
- Bithas, K.; Latinopoulos, D. Managing tree-crops for climate mitigation. An economic evaluation trading-off carbon se-questration with market goods. Sustain. Prod. Consum. 2021, 27, 667–678. [Google Scholar] [CrossRef]
Database | Search Strings |
---|---|
Scopus | (TITLE-ABS-KEY (carbon AND footprint) AND TITLE-ABS-KEY (life cycle) AND ALL (agriculture) AND ALL (consumer)) |
Web of Science | TOPIC: (carbon footprint) AND TOPIC (life cycle) AND ALL FIELD: (agriculture) AND ALL FIELD (consumer) |
Criteria | Description |
---|---|
Place of the research | Where the case study took place |
Field of application | Context in which the application was implemented |
Product of reference | What was the product analysed |
Carbon footprint assessment methods | Different types of methods used |
Authors | Case Studies | Impact Evaluation Standards |
---|---|---|
Flysjo, 2011 [21] | butter and blends | ISO 14040 |
Espinoza-Orias et al., 2011 [22] | bread | ISO 14040; PAS 2050 |
Brito de Figueiredo et al., 2013 [23] | yellow melon | ISO 14040 |
Svanes et al., 2013 [24] | bananas | ISO 14040; ISO/TS 14067 |
Hassard et al., 2014 [46] | coffee | ISO 14040; PAS 2050 |
Cichorowski et al., 2015 [44] | tea | ISO 14040; ISO/TS 14067; GHG Protocol |
Soode et al., 2015 [35] | horticultural products | ISO 14040 |
Muller et al., 2015 [38] | kiwi | ISO 14040; PAS 2050 |
Roibas et al., 2015 [37] | bananas | ISO 14040; ISO/TS 14067; PAS 2050 |
Ruviaro et al., 2015 [33] | livestock farming | ISO 14040 |
Rinaldi et al., 2016 [30] | wine | ISO 14040; ISO/TS 14067 |
Garofalo et al., 2016 [39] | tomato | ISO 14040 |
Reisinger et al., 2016 [42] | milk | ISO 14040 |
Espinoza-Orias et al., 2018 [47] | sandwich | ISO 14040; PAS 2050 |
Seo et al., 2019 [40] | spinach | ISO 14040 |
Hu et al., 2019 [45] | tea | ISO 14040; PAS 2050 |
Hu et al., 2019 [36] | horticultural products | ISO 14040 |
Ponstein et al., 2019 [31] | wine | ISO 14040; GHG Protocol |
Chen et al., 2020 [27] | wheat, maize, apple, rice | ISO 14040 |
Tallaksen et al., 2020 [34] | livestock farming | ISO 14040 |
Escribano et al., 2020 [28] | livestock farming | ISO 14040; PAS 2050 |
D’Ammaro et al., 2021 [31] | wine | VIVA; ISO 14067 |
Hu et al., 2021 [52] | horticultural products | ISO 14040 |
Iriarte et al., 2021 [29] | apples | ISO 14067 |
Coluccia et al., 2022 [43] | milk | ISO 14040 |
Perez et al., 2022 [41] | blueberry | ISO 14040; GHG Protocol |
Volanti et al., 2022 [48] | meals for school canteens | ISO 14040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cammarata, M.; Timpanaro, G.; Incardona, S.; La Via, G.; Scuderi, A. The Quantification of Carbon Footprints in the Agri-Food Sector and Future Trends for Carbon Sequestration: A Systematic Literature Review. Sustainability 2023, 15, 15611. https://doi.org/10.3390/su152115611
Cammarata M, Timpanaro G, Incardona S, La Via G, Scuderi A. The Quantification of Carbon Footprints in the Agri-Food Sector and Future Trends for Carbon Sequestration: A Systematic Literature Review. Sustainability. 2023; 15(21):15611. https://doi.org/10.3390/su152115611
Chicago/Turabian StyleCammarata, Mariarita, Giuseppe Timpanaro, Salvatore Incardona, Giovanni La Via, and Alessandro Scuderi. 2023. "The Quantification of Carbon Footprints in the Agri-Food Sector and Future Trends for Carbon Sequestration: A Systematic Literature Review" Sustainability 15, no. 21: 15611. https://doi.org/10.3390/su152115611
APA StyleCammarata, M., Timpanaro, G., Incardona, S., La Via, G., & Scuderi, A. (2023). The Quantification of Carbon Footprints in the Agri-Food Sector and Future Trends for Carbon Sequestration: A Systematic Literature Review. Sustainability, 15(21), 15611. https://doi.org/10.3390/su152115611