Expert-Based Assessment of the Potential of Agroforestry Systems in Plain Regions across Bihor County, Western Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Case Description
2.2. Case Study: Implementation of the Expert Model
- The cost for planting/sowing (1—the highest cost … 8—the lowest cost). This criterion considers the price of seedlings, the number of seedlings per hectare and the needed operations for planting manually and/or mechanized. According to the National Recovery and Resilience Plan, in a plain region, the cost for planting 1 ha of oak-dominated culture is 6379 EUR, while in the case of a black locust plantation, the cost is 5060 EUR, respectively [65]. In the case of cereals, there are minor differences, with the cost being 1100 EUR per hectare for wheat and 1200 EUR per hectare for maize and sunflower, respectively. These costs include plowing, land preparation, herbicide, seed cost, treatments, weeding in the case of maize and sunflower, fertilization and harvesting.
- Yearly maintenance costs for the first 3 years (1—the highest cost … 8—the lowest cost). This criterion includes the cost of grass cutting between the rows with trees/shrubs, soil mobilization around the tree/shrub seedlings and applying fertilizers/pesticides, where needed. In the case of an oak-dominated culture, the cost for the first year accounts for 2025 EUR/ha, which is similar to that of a black locust plantation. Differences between the two plantations appear in the second and third years: with 4089 EUR/ha and 2854 EUR/ha, in the case of an oak-dominated culture, and 2310 EUR/ha and 1226 EUR/ha for black locust, respectively.
- Woody biomass production after 5 years (1—the lowest quantity … 8—the highest quantity). This criterion is also correlated with the speed of growing of the woody species considered within this research.
- Fruit and cereal production after 5 years (1—the lowest price … 8—the highest price). In order to create the hierarchy, the number of fruits produced by the considered shrub species and the yield of the three cereal crops were taken into account.
- Honey production (1—the lowest quantity … 8—the highest quantity). In regard to this criterion, concrete data about honey production exist in the Romanian literature for the woody species, respectively: between 10–20 kg/ha for dog rose, 20 kg/ha in the case of European ash and pedunculate oak, between 25–40 kg/ha for blackthorn, up to 250 kg/ha in the case of honey locust and around 1000 kg/ha for black locust plantations [66,67].
- End product diversity (1—the lowest diversity … 8—the highest diversity). This criterion takes into account the number and the diversity of derived products which may be obtained from certain morphological parts of the plants (e.g., leaf extracts, juice, etc.).
- Resistance to abiotic/biotic threats (1—the lowest resistance … 8—the highest resistance). The resistance to a broad spectrum of abiotic and biotic threats was assessed (e.g., drought, frosts, bugs, fungi, etc.).
- Level of biodiversity (1—the lowest level … 8—the highest level). This criterion takes into consideration the number of flora and fauna species that could appear and live in the environment generated by the proposed combinations of agroforestry systems.
2.3. Modeled Scenarios
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cialdella, N.; Jacobson, M.; Penot, E. Economics of Agroforestry: Links between Nature and Society. Agrofor. Syst. 2023, 97, 273–277. [Google Scholar] [CrossRef]
- Tubalov, A.A. Spatial Principles of Territories Selection for Priority Development of Agroforestry Complexes. Forests 2023, 14, 1225. [Google Scholar] [CrossRef]
- Mosquera-Losada, M.R.; McAdam, J.H.; Romero-Franco, R.; Santiago-Freijanes, J.J.; Rigueiro-Rodróguez, A. Definitions and Components of Agroforestry Practices in Europe. In Agroforestry in Europe: Current Status and Future Prospects; Rigueiro-Rodróguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Advances in Agroforestry; Springer: Dordrecht, The Netherlands, 2009; pp. 3–19. ISBN 978-1-4020-8272-6. [Google Scholar]
- Mosquera-Losada, M.R.; Santiago-Freijanes, J.; Lawson, G.; Balaguer, F.; Vaets, N.; Burgess, P.; Rigueiro-Rodríguez, A. Agroforestry as Tool to Mitigate and Adapt to Climate under Lulucf Accounting. In Proceedings of the Agroforestry and Climate Change, Montpellier, France, 23 May 2016. [Google Scholar]
- den Herder, M.; Burgess, P.; Mosquera-Losada, M.R.; Herzog, F.; Hartel, T.; Upson, M.; Viholainen, I.; Rosati, A. Preliminary Stratification and Quantification of Agroforestry in Europe; European Commission: Brussels, Belgium, 2015; pp. 1–53. Available online: https://www.agforward.eu/documents/M1_Stratification%20of%20agroforestry.pdf (accessed on 29 September 2023).
- Herder, M.; Moreno, G.; Mosquera-Losada, M.R.; Palma, J.; Sidiropoulou, A.; Santiago-Freijanes, J.; Crous-Duran, J.; Paulo, J.; Tomé, M.; Pantera, A.; et al. Current Extent and Stratification of Agroforestry in the European Union. Agric. Ecosyst. Environ. 2017, 241, 121–132. [Google Scholar] [CrossRef]
- Lundgren, B.O.; Raintree, J.B. Sustained Agroforestry; ICRAF Reprint Series; ICRAF: Nairobi, Kenya, 1983. [Google Scholar]
- Leakey, R. Definition of Agroforestry Revisited. Agrofor. Today 1996, 8, 5–7. [Google Scholar]
- Augère-Granier, M.-L. Agroforestry in the European Union. 2020. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/651982/EPRS_BRI(2020)651982_EN.pdf (accessed on 29 September 2023).
- Nair, P.; Mohan Kumar, B.; Nair, V. An Introduction to Agroforestry: Four Decades of Scientific Developments; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Burgess, P.J.; Rosati, A. Advances in European Agroforestry: Results from the AGFORWARD Project. Agrofor. Syst. 2018, 92, 801–810. [Google Scholar] [CrossRef]
- Tsonkova, P.; Mirck, J.; Böhm, C.; Fütz, B. Addressing Farmer-Perceptions and Legal Constraints to Promote Agroforestry in Germany. Agrofor. Syst. 2018, 92, 1091–1103. [Google Scholar] [CrossRef]
- Santiago-Freijanes, J.; Rigueiro-Rodríguez, A.; Vazquez, J.A.; Moreno, G.; Herder, M.; Burgess, P.; Mosquera-Losada, M.R. Understanding Agroforestry Practices in Europe through Landscape Features Policy Promotion. Agrofor. Syst. 2018, 92, 1105–1115. [Google Scholar] [CrossRef]
- Mușat, M.; Ciceoi, R.; Dolocan, C.; Argatu, G.; Bogdan, I.; Petcu, M. The Suitability of Southeastern Areas of Romania for the Establishment of Shelterbelts. Agronomy 2022, 65, 111–117. [Google Scholar]
- Smith, L.G.; Westaway, S.; Mullender, S.; Ghaley, B.B.; Xu, Y.; Lehmann, L.M.; Pisanelli, A.; Russo, G.; Borek, R.; Wawer, R.; et al. Assessing the Multidimensional Elements of Sustainability in European Agroforestry Systems. Agric. Syst. 2022, 197, 103357. [Google Scholar] [CrossRef]
- Dou, Y.; Li, Y.; Li, M.; Chen, X.; Zhao, X. The Role of Agroforestry in Poverty Alleviation: A Case Study from Nujiang Prefecture, Southwestern China. Sustainability 2023, 15, 12090. [Google Scholar] [CrossRef]
- Philipp, S.M.; Zander, K. Orchard Meadows: Consumer Perception and Communication of a Traditional Agroforestry System in Germany. Agrofor. Syst. 2023, 97, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Buratti-Donham, J.; Venn, R.; Schmutz, U.; Migliorini, P. Transforming Food Systems towards Agroecology—A Critical Analysis of Agroforestry and Mixed Farming Policy in 19 European Countries. Agroecol. Sustain. Food Syst. 2023, 47, 1023–1051. [Google Scholar] [CrossRef]
- Mosquera-Losada, M.; Santos, M.G.S.; Gonçalves, B.; Ferreiro-Domínguez, N.; Castro, M.; Rigueiro-Rodríguez, A.; González-Hernández, M.P.; Fernández-Lorenzo, J.L.; Romero-Franco, R.; Aldrey-Vázquez, J.A.; et al. Policy Challenges for Agroforestry Implementation in Europe. Front. For. Glob. Chang 2023, 6, 1127601. [Google Scholar] [CrossRef]
- European Commission Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381 (accessed on 29 September 2023).
- European Commission Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions EU. Biodiversity Strategy for 2030 Bringing Nature Back into Our Lives. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590574123338&uri=CELEX:52020DC0380 (accessed on 29 September 2023).
- European Commission Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. New EU Forest Strategy for 2030. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0572 (accessed on 29 September 2023).
- Elena, M.; Bitca, M.; Adrian, T.; Popovici, L. Alley Cropping, as a Model of System Adapted to Climate Change. Ann. ORADEA Univ. Fascicle Manag. Technol. Eng. 2022, 37, 213–220. [Google Scholar]
- Dolocan, C.; Mușat, M.; Ciceoi, R.; Argatu, G.; Mușat, I.B.; Petcu, M. Aspects Regarding the Shelterbelts Establishment in Bărăgan Plain. Sci. Pap. 2022, 65, 54–60. [Google Scholar]
- Mihăilă, E.; Tăulescu, E.; Tudora, A.; Bitca, M. Reasons for Maintaining and/or Introducing Trees on Grasslands. Sci. Pap. 2022, 11, 218–227. [Google Scholar]
- Mihăilă, E.; Drăgan, D.; Marcu, C.; Costăchescu, C.; Dănescu, F.; Cojoacă, F.D. Elaboration the Substantiating Studies for the Necessity of Forest Shelterbelts to Protect the Field, Premise for Obtaining Funds for Their Realization. Land Reclam. Earth Obs. Surv. Environ. Eng. 2022, 11, 240–246. [Google Scholar]
- Nishizawa, T.; Kay, S.; Schuler, J.; Klein, N.; Herzog, F.; Aurbacher, J.; Zander, P. Ecological–Economic Modelling of Traditional Agroforestry to Promote Farmland Biodiversity with Cost-Effective Payments. Sustainability 2022, 14, 5615. [Google Scholar] [CrossRef]
- Sharma, R.; Mina, U.; Kumar, B.M. Homegarden Agroforestry Systems in Achievement of Sustainable Development Goals. A Review. Agron. Sustain. Dev. 2022, 42, 44. [Google Scholar] [CrossRef]
- Gosling, E.; Reith, E.; Knoke, T.; Paul, C. A Goal Programming Approach to Evaluate Agroforestry Systems in Eastern Panama. J. Environ. Manag. 2020, 261, 110248. [Google Scholar] [CrossRef]
- Marușca, T.; Taulescu, E.; Zevedei, P.M.; Andreoiu, A.C.; Comșia, C.C. Study on the Agroforestry System with Oak Trees (Quercus robur L.) in the Context of Changing Climate. Agric. Silvic. Vet. Med. Sci. 2020, 9, 47–54. [Google Scholar]
- Copăcean, L.; Cojocariu, L.; Simon, M. Remote Sensing and Gis for Change Detection in the Agro- Forestry-Pastoral Space. Res. J. Agric. Sci. 2021, 53, 18–26. [Google Scholar]
- Iqbal, W.; Siddiqui, T.; Ahmad, I.; Farooq, M. Effect of Allelochemicals Present in Leaf Litter of Bombax ceiba L. and Populus deltoides L. Tree Species on Wheat in Agroforestry System. Appl. Ecol. Environ. Res. 2022, 20, 4193–4209. [Google Scholar] [CrossRef]
- Ntawuruhunga, D.; Ngowi, E.E.; Mangi, H.O.; Salanga, R.J.; Shikuku, K.M. Climate-Smart Agroforestry Systems and Practices: A Systematic Review of What Works, What Doesn’t Work, and Why. For. Policy Econ. 2023, 150, 102937. [Google Scholar] [CrossRef]
- Malschi, D.; Tărău, A.; Kadar, R.; Tritean, N.; Chețan, C. Climate Warming in Relation to Wheat Pest Dynamics and Their Integrated Control in Transylvanian Crop Management Systems with No Tillage and with Agroforestry Belts. Romanian Agric. Res. 2015, 32, 279–289. [Google Scholar]
- Santos, M.; Cajaiba, R.L.; Bastos, R.; Gonzalez, D.; Petrescu Bakış, A.-L.; Ferreira, D.; Leote, P.; Barreto da Silva, W.; Cabral, J.A.; Gonçalves, B.; et al. Why Do Agroforestry Systems Enhance Biodiversity? Evidence From Habitat Amount Hypothesis Predictions. Front. Ecol. Evol. 2022, 9, 630151. [Google Scholar] [CrossRef]
- Marușca, T.; Taulescu, E.; Memedemin, D. Preliminary Study of Agrosilvopastoral Systems from Romania. Romanian J. Grassl. Forage Crops 2020, 22, 25–32. [Google Scholar]
- Soman, D.; Chavan, R.L. Soil Chemical Properties under Bamboo-Soybean Agroforestry System in Northern Transitional Zone, Karnataka. Pharma Innov. J. 2023, 12, 122–124. [Google Scholar]
- Lehmann, L.M.; Smith, J.; Westaway, S.; Pisanelli, A.; Russo, G.; Borek, R.; Sandor, M.; Gliga, A.; Smith, L.; Ghaley, B.B. Productivity and Economic Evaluation of Agroforestry Systems for Sustainable Production of Food and Non-Food Products. Sustainability 2020, 12, 5429. [Google Scholar] [CrossRef]
- Rolo, V.; Hartel, T.; Aviron, S.; Berg, S.; Crous-Duran, J.; Franca, A.; Mirck, J.; Palma, J.H.N.; Pantera, A.; Paulo, J.A.; et al. Challenges and Innovations for Improving the Sustainability of European Agroforestry Systems of High Nature and Cultural Value: Stakeholder Perspectives. Sustain. Sci. 2020, 15, 1301–1315. [Google Scholar] [CrossRef]
- Kay, S.; Rega, C.; Moreno, G.; den Herder, M.; Palma, J.H.N.; Borek, R.; Crous-Duran, J.; Freese, D.; Giannitsopoulos, M.; Graves, A.; et al. Agroforestry Creates Carbon Sinks Whilst Enhancing the Environment in Agricultural Landscapes in Europe. Land Use Policy 2019, 83, 581–593. [Google Scholar] [CrossRef]
- Goetz, A.; Hussein, H.; Thiel, A. Polycentric Governance and Agroecological Practices in the MENA Region: Insights from Lebanon, Morocco and Tunisia. Int. J. Water Resour. Dev. 2023, 39, 1–16. [Google Scholar] [CrossRef]
- Hamidov, A.; Daedlow, K.; Webber, H.; Hussein, H.; Abdurahmanov, I.; Dolidudko, A.; Seerat, A.Y.; Solieva, U.; Woldeyohanes, T.; Helming, K. Operationalizing Water-Energy-Food Nexus Research for Sustainable Development in Social-Ecological Systems: An Interdisciplinary Learning Case in Central Asia. Ecol. Soc. 2022, 27, 12. [Google Scholar] [CrossRef]
- Popovici, L.; Mihăilă, E.; Costăchescu, C.; Constandache, C. Can Agroforestry Systems Be Ordinary Practices in Romania? Can Agrofor. Syst. Be Ordinary Pract. Rom. 2018, 61, 263–268. [Google Scholar]
- Tudoran, G.-M.; Cicșa, A.; Boroeanu, M.; Dobre, A.-C.; Pascu, I.-S. Forest Dynamics after Five Decades of Management in the Romanian Carpathians. Forests 2021, 12, 783. [Google Scholar] [CrossRef]
- Enescu, C.M. Which Woody Species Should Be Used for Afforestation of Household Dumps Consisting of Demolition Materials Mixed with Organic Materials? Agronomy 2022, 65, 375–380. [Google Scholar]
- Giurca, A.; Nichiforel, L.; Stăncioiu, P.T.; Drăgoi, M.; Dima, D.-P. Unlocking Romania’s Forest-Based Bioeconomy Potential: Knowledge-Action-Gaps and the Way Forward. Land 2022, 11, 2001. [Google Scholar] [CrossRef]
- Enescu, C.M. Sandy Soils from Oltenia and Carei Plains: A Problem or an Opportunity to Increase the Forest Fund in Romania? Manag. Econ. Eng. Agric. Rural Dev. 2019, 19, 203–206. [Google Scholar]
- Lucian, D.; Aurelia, O.; Raluca, E.; Emilia, P.; Tamara, R.; Timiș-Gânsac, V. Chemical Properties of Forest Soils from Bihor County. Nat. Resour. Sustain. Dev. 2017, 7, 35–42. [Google Scholar]
- Timiș-Gânsac, V.; Enescu, C.M.; Dinca, L.; Onet, A. The Management of Non-Wood Forest Products in Bihor County. Nat. Resour. Sustain. Dev. 2018, 8, 27–34. [Google Scholar] [CrossRef]
- Marcu, C.; Dinca, L. The West Plain—A Physio-Geographical Characterisation Based on Data from Forest Management Plans. Sci. Stud. Res. 2021, 30, 59–62. [Google Scholar]
- Dincă, L.; Cântar, I. Oak Forest from Romania’s West Plain under Conservation Regime. Res. J. Agric. Sci. 2020, 52, 94–101. [Google Scholar]
- Cântar, I.; Dinca, L. The Contribution of Forests from Counties Located in Romania’s West Plain to The Area’s Long Lasting Development. Sustain. Dev. Res. 2021, 3, 7–13. [Google Scholar] [CrossRef]
- Dincă, L.; Chisalita, I.; Cantar, I.-C. Chemical Properties of Forest Soils from Romania West Plain. Rev. Chim. 2019, 70, 2371–2374. [Google Scholar] [CrossRef]
- Cărbunar, M.; Mintaș, O.; Sabău, N.C.; Borza, I.; Stanciu, A.; Pereș, A.; Venig, A.; Curilă, M.; Cărbunar, M.L.; Vidican, T.; et al. Effectiveness of Measures to Reduce the Influence of Global Climate Change on Tomato Cultivation in Solariums—Case Study: Crișurilor Plain, Bihor, Romania. Agriculture 2022, 12, 634. [Google Scholar] [CrossRef]
- Pereş, A.C.; Nandor, K. The Thermic Regime of the Crișurilor Plain. Nat. Resour. Sustain. Dev. 2013, 3, 399–404. [Google Scholar]
- Oneț, A.; Teușdea, A.; Boja, N.; Domuța, C.; Oneț, C. Effects of Common Oak (Quercus robur L.) Defolition on the Soil Properties of an Oak Forest in Western Plain of Romania. Ann. For. Res. 2016, 59, 33–47. [Google Scholar] [CrossRef]
- Dincă, L.; Timiș-Gânsac, V. Forests from the West Plain Forest Steppe—An Alternative for Agriculture? Lucr. Ştiinţ. 2021, 64, 95–100. [Google Scholar]
- Enescu, C. Which Are the Most Important Non-Wood Forest Products in the Case of Ialomița County? AgroLife Sci. J. 2017, 6, 98–103. [Google Scholar]
- Patel, N.; Blumberga, D. Insights of Bioeconomy: Biopolymer Evaluation Based on Sustainability Criteria. CONECT Int. Sci. Conf. Environ. Clim. Technol. 2023, 27, 323–338. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Fan, J.; Zhang, H.; Fang, H. Comprehensive Sustainability Indicator for Land Resource-Carrying Capacity in a Farming-Pastoral Region. Remote Sens. 2023, 15, 3726. [Google Scholar] [CrossRef]
- Debebe, Y.; Otterpohl, R.; Islam, Z. Remote Sensing and Multi-Criterion Analysis for Identifying Suitable Rainwater Harvesting Areas. Acta Geophys. 2023, 71, 855–872. [Google Scholar] [CrossRef]
- Enescu, C. Which Shrub Species Should Be Used for the Establishment of Field Shelterbelts in Romania? Agronomy 2018, 61, 464–469. [Google Scholar]
- Enescu, C. Shrub and Tree Species Used for Improvement by Afforestation of Degraded Lands in Romania. For. IDEAS 2015, 21, 3–15. [Google Scholar]
- National Institute of Statistics. Vegetable Agricultural Production for the Main Crops, by Forms of Ownership, Macro-Regions, Development Regions and Counties 2023. Available online: http://statistici.insse.ro:8077/tempo-online/#/pages/tables/insse-table (accessed on 29 September 2023).
- PNRR Planul Național de Redresare și Reziliență. Available online: https://pnrr.mmap.ro/wp-content/uploads/2022/11/Ghid-specific-PNRR_2022_C2-I.1.A_22.11.2022_APROBAT_MO.pdf (accessed on 29 September 2023).
- Beldeanu, E. Specii de Interes Sanogen Din Fondul Forestier. Editura Universităţii Transilvania Din Braşov; Editura Universitatii Transilvania: Brașov, Romania, 2004; ISBN 978-973-635-380-2. [Google Scholar]
- Ion, N. Arbori Și Arbuști Meliferi; Alex-Alex & Leti Press: Bucuresti, Romania, 2006. [Google Scholar]
- Huber, P.; Kurttila, M.; Hujala, T.; Wolfslehner, B.; Sanchez-Gonzalez, M.; Pasalodos-Tato, M.; de-Miguel, S.; Bonet, J.A.; Marques, M.; Borges, J.G.; et al. Expert-Based Assessment of the Potential of Non-Wood Forest Products to Diversify Forest Bioeconomy in Six European Regions. Forests 2023, 14, 420. [Google Scholar] [CrossRef]
- Curtu, A.; Șofletea, N.; Toader, A.; Enescu, C. Leaf Morphological and Genetic Differentiation between Quercus robur L. and Its Closest Relative, the Drought-Tolerant Quercus Pedunculiflora K. Koch. Ann. For. Sci. 2011, 68, 1163–1172. [Google Scholar] [CrossRef]
- Molder, A.; Meyer, P.; Nagel, R.-V. Integrative Management to Sustain Biodiversity and Ecological Continuity in Central European Temperate Oak (Quercus robur, Q. petraea) Forests: An Overview. For. Ecol. Manag. 2019, 437, 324–339. [Google Scholar] [CrossRef]
- Woziwoda, B.; Dyderski, M.K.; Kobus, S.; Parzych, A.; Jagodziński, A.M. Natural Regeneration and Recruitment of Native Quercus robur and Introduced Q. rubra in European Oak-Pine Mixed Forests. For. Ecol. Manag. 2019, 449, 117473. [Google Scholar] [CrossRef]
- Vastag, E.; Cocozza, C.; Orlović, S.; Kesić, L.; Kresoja, M.; Stojnić, S. Half-Sib Lines of Pedunculate Oak (Quercus robur L.) Respond Differently to Drought through Biometrical, Anatomical and Physiological Traits. Forests 2020, 11, 153. [Google Scholar] [CrossRef]
- Kruzhilin, S.N.; Taran, S.S.; Semenyutina, A.V.; Matvienko, E.Y. Growth Peculiarities and Age Dynamics of Quercus robur L. Formation in Steppe Region Conditions. Kuwait J. Sci. 2018, 45, 52–58. [Google Scholar]
- Nechita, C.; Chiriloaei, F. Interpreting the Effect of Regional Climate Fluctuations on Quercus robur L. Trees under a Temperate Continental Climate (Southern Romania). Dendrobiology 2017, 79, 77–89. [Google Scholar] [CrossRef]
- Sevillano, I.; Short, I.; Grant, J.; O’Reilly, C. Effects of Light Availability on Morphology, Growth and Biomass Allocation of Fagus sylvatica and Quercus robur Seedlings. For. Ecol. Manag. 2016, 374, 11–19. [Google Scholar] [CrossRef]
- Deligoz, A.; Bayar, E. Drought Stress Responses of Seedlings of Two Oak Species (Quercus cerris and Quercus robur). Turk. J. Agric. For. 2018, 42, 114–123. [Google Scholar] [CrossRef]
- Gorban, V.; Huslystyi, A. Changes in Selected Properties of Calcic Chernozem Due to Cultivation of Robinia pseudoacacia and Quercus robur. Folia Oecologica 2023, 50, 196–203. [Google Scholar] [CrossRef]
- Fuchs, S.; Hertel, D.; Schuldt, B.; Leuschner, C. Effects of Summer Drought on the Fine Root System of Five Broadleaf Tree Species along a Precipitation Gradient. Forests 2020, 11, 289. [Google Scholar] [CrossRef]
- Buksha, I.; Pyvovar, T.; Buksha, M.; Pasternak, V. Impact of Drought on the Forest Vegetation in North-Eastern Ukraine: The Long-Term Prognoses and Adaptation Measures. Silva Balc. 2019, 20, 27–38. [Google Scholar]
- Constandache, C.; Tudor, C.; Popovici, L.; Dincă, L. Ecological Reconstruction of the Stands Affected by Drought from Meadows of Inland Rivers. Sci. Pap. 2022, 11, 76–84. [Google Scholar]
- Turczański, K.; Rutkowski, P.; Dyderski, M.K.; Wrońska-Pilarek, D.; Nowiński, M. Soil pH and Organic Matter Content Affects European Ash (Fraxinus excelsior L.) Crown Defoliation and Its Impact on Understory Vegetation. Forests 2020, 11, 22. [Google Scholar] [CrossRef]
- Roibu, C.-C.; Sfeclă, V.; Mursa, A.; Ionita, M.; Nagavciuc, V.; Chiriloaei, F.; Leșan, I.; Popa, I. The Climatic Response of Tree Ring Width Components of Ash (Fraxinus excelsior L.) and Common Oak (Quercus robur L.) from Eastern Europe. Forests 2020, 11, 600. [Google Scholar] [CrossRef]
- Mănescu, M. Research on Evolution of Stands Installed on Degraded Lands on Dobrogea. Analele ICAS 2002, 45, 165–170. [Google Scholar]
- Vlasin, H.D.; Budiu, V.; Stan, R. The Effect of Species and Antierosional Land Preparation of Eroded Lands on the Maintenance of Forestry Seedlings. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2013, 70, 230–236. [Google Scholar]
- Constandache, C.; Nistor, S. Preventing and Control of Soil Erosion on Agricultural Lands by Antierosional Shelterbelts. Sci. Pap. 2014, 3, 29–36. [Google Scholar]
- Hoble, A.; Luca, E.; Dirja, M.; Marginas, P. The Variability of Biometric Measurments Used to Determine the Stand Adaptation of Fraxinus excelsior Trees after Afforestation of Degraded Land by Erosion. Agricultura 2015, 93–94, 109–117. [Google Scholar]
- Webster, C.R.; Nelson, K.; Wangen, S.R. Stand Dynamics of an Insular Population of an Invasive Tree, Acer Platanoides. For. Ecol. Manag. 2005, 208, 85–99. [Google Scholar] [CrossRef]
- Tomov, V.; Iliev, N.; Iliev, I. Analysis of the Forest Seed Production Base of Acer platanoides L. in Bulgaria. For. Ideas 2014, 20, 67–76. [Google Scholar]
- Lazic, D.; George, J.-P.; Rusanen, M.; Ballian, D.; Pfattner, S.; Konrad, H. Population Differentiation in Acer platanoides L. at the Regional Scale—Laying the Basis for Effective Conservation of Its Genetic Resources in Austria. Forests 2022, 13, 552. [Google Scholar] [CrossRef]
- Lapointe, M.; Brisson, J. A Comparison of Invasive Acer platanoides and Native A. saccharum First-Year Seedlings: Growth, Biomass Distribution and the Influence of Ecological Factors in a Forest Understory. Forests 2012, 3, 190–206. [Google Scholar] [CrossRef]
- Martin, P.H.; Marks, P.L. Intact Forests Provide Only Weak Resistance to a Shade-Tolerant Invasive Norway Maple (Acer platanoides L.). J. Ecol. 2006, 94, 1070–1079. [Google Scholar] [CrossRef]
- Banks, J.M.; Percival, G.C.; Rose, G. Variations in Seasonal Drought Tolerance Rankings. Trees 2019, 33, 1063–1072. [Google Scholar] [CrossRef]
- Lovynska, V.; Holoborodko, K.; Ivanko, I.; Sytnyk, S.; Zhukov, O.; Loza, I.; Wiche, O.; Heilmeier, H. Heavy Metal Accumulation by Acer platanoides and Robinia pseudoacacia in an Industrial City (Northern Steppe of Ukraine). Biosyst. Divers. 2023, 31, 246–253. [Google Scholar] [CrossRef]
- Fuchs, S.; Leuschner, C.; Mathias Link, R.; Schuldt, B. Hydraulic Variability of Three Temperate Broadleaf Tree Species along a Water Availability Gradient in Central Europe. New Phytol. 2021, 231, 1387–1400. [Google Scholar] [CrossRef] [PubMed]
- Budău, R. Cultura Salcâmului; Editura Universității din Oradea: Oradea, Romania, 2023; ISBN 978-606-10-2255-7. [Google Scholar]
- Kellezi, M.K.; Kortoci, Y. Comparison of Growth Rate of Black Locust (Robinia pseudoacacia L.) on Productive and Marginal Cultivated Lands for Sustainable Agroforestry Systems. Ecol. Eng. Environ. Technol. 2022, 23, 206–212. [Google Scholar] [CrossRef]
- Rahmonov, O. The Chemical Composition of Plant Litter of Black Locust (Robinia pseudoacacia L.) and Its Ecological Role in Sandy Ecosystems. Acta Ecol. Sin. 2009, 29, 237–243. [Google Scholar] [CrossRef]
- Rédei, K.; Csiha, I.; Keserű, Z.; Végh, Á.K.; Győri, J. The Silviculture of Black Locust (Robinia pseudoacacia L.) in Hungary: A Review. South-East Eur. For. 2011, 2, 101–107. [Google Scholar] [CrossRef]
- Enescu, C. Black Locust (Robinia pseudoacacia L.)—An Invasive Neophyte in the Conventional Land Reclamation Flora in Romania. Bulletion Transilv. Univ. Brasov Ser. II 2013, 6, 23–30. [Google Scholar]
- Nicolescu, V.-N.; Hernea, C.; Bakti, B.; Keserű, Z.; Antal, B.; Rédei, K. Black Locust (Robinia pseudoacacia L.) as a Multi-Purpose Tree Species in Hungary and Romania: A Review. J. For. Res. 2018, 29, 1449–1463. [Google Scholar] [CrossRef]
- Ciuvăț, A.L.; Abrudan, I.V.; Ciuvăț, C.G.; Marcu, C.; Lorenț, A.; Dincă, L.; Szilard, B. Black Locust (Robinia pseudoacacia L.) in Romanian Forestry. Diversity 2022, 14, 780. [Google Scholar] [CrossRef]
- Vilches, C.; Torremorell, A.; Rodriguez Castro, M.C.; Giorgi, A. Effects of the Invasion of Honey Locust (Gleditsia triacanthos L.) on Macrophytes and Algae of Pampean Streams (Argentina). Wetlands 2019, 40, 321–331. [Google Scholar] [CrossRef]
- Enescu, C.M. Allochthonous Tree Species Used for Afforestation of Salt-Affected Soils in Romania. Agronomy 2020, 63, 74–79. [Google Scholar]
- Constandache, C.; Nistor, S.; Ivan, V. Afforestation of Degraded Lands Inefficient for Agriculture from Southeast of Country. Analele ICAS 2006, 49, 187–204. [Google Scholar]
- Budău, R.; Enescu, C.M. The Yield of a 11 Years Old Saskatoon Berry (Amelanchier alnifolia Nutt.) Culture from Arad County, Western Romania. Sci. Pap. 2022, 22, 87–92. [Google Scholar]
- Sun, X.; Zhang, W.; Vassov, R.; Sherr, I.; Du, N.; Zwiazek, J.J. Effects of Elemental Sulfur on Soil pH and Growth of Saskatoon Berry (Amelanchier alnifolia) and Beaked Hazelnut (Corylus cornuta) Seedlings. Soil Syst. 2022, 6, 31. [Google Scholar] [CrossRef]
- Hunková, J.; Libiaková, G.; Fejér, J.; Gajdošová, A. Improved Amelanchier alnifolia (Nutt.) Nutt. Ex M. Roem. Shoot Proliferation by Manipulating Iron Source. Propag. Ornam. Plants 2017, 17, 103–107. [Google Scholar]
- Kuklina, A.G. Naturalization of Amelanchier Species from North America in a Secondary Habitat. Russ. J. Biol. Invasions 2011, 2, 103–107. [Google Scholar] [CrossRef]
- Constandache, C.; Nistor, S.; Untaru, E. Research on the Behavior of Some Species of Trees and Shrubs Used in the Composition of the Protective Forest Shelterbelts in Southeastern Romania. Rev. Silvic. Și Cineg. 2012, 30, 35–47. [Google Scholar]
- Rezzan, A.; Yildiz, O.; Sahin, H.; Eyupoğlu, O.; Mehtap, O.; Alpay Karaoğlu, Ş. Phenolic Components and Antioxidant Activity of Prunus spinosa from Gumushane, Turkey. Chem. Nat. Compd. 2015, 51, 346–349. [Google Scholar] [CrossRef]
- Balta, I.; Sevastre, B.; Mireşan, V.; Taulescu, M.; Raducu, C.; Longodor, A.L.; Marchiş, Z.; Mariş, C.S.; Coroian, A. Protective Effect of Blackthorn Fruits (Prunus spinosa) against Tartrazine Toxicity Development in Albino Wistar Rats. BMC Chem. 2019, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Soare, R.; Bonea, D.; Iancu, P.; Niculescu, M. Biochemical and Technological Properties of Rosa canina L. Fruits from Spontaneous Flora of Oltenia, Romania. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2015, 72, 182–186. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Čanadanović-Brunet, J.; Četojević Simin, D.; Ćetković, G.; Ðilas, S.; Gille, L. Effect of Rosehip (Rosa canina L.) Phytochemicals on Stable Free Radicals and Human Cancer Cells. J. Sci. Food Agric. 2012, 92, 1273–1281. [Google Scholar] [CrossRef]
- Crișan, V.; Dincă, L.; Decă, S. The Most Important Forest Fruits from Vaslui County. Ann. West Univ. Timisoara Ser. Biol. 2021, 24, 3–10. [Google Scholar]
- Suciu, A.L.; Chiș, A.C.; Barșon, G.; Tărău, A.; Morea, A.; Barb, A.; Crișan, I. Seed Pathogens Incidence in Eight Maize Hybrids (Zea mays L.) Cultivated in Transylvanian Plain. LIFE Sci. Sustain. Dev. 2021, 2, 104–109. [Google Scholar] [CrossRef]
- Topan, C.; Nicolescu, M.; Simedru, D.; Becze, A. Complex Evaluation of Storage Impact on Maize (Zea mays L.) Quality Using Chromatographic Methods. Separations 2023, 10, 412. [Google Scholar] [CrossRef]
- Revilla, P.; Alves, M.L.; Andelković, V.; Balconi, C.; Dinis, I.; Mendes-Moreira, P.; Redaelli, R.; Ruiz de Galarreta, J.I.; Vaz Patto, M.C.; Žilić, S.; et al. Traditional Foods From Maize (Zea mays L.) in Europe. Front. Nutr. 2022, 8, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bonea, D. Phenology, Yield and Protein Content of Maize (Zea mays L.) Hybrids as Affected by Different Sowing Dates. Sci. Pap. 2020, 20, 145–150. [Google Scholar]
- Barșon, G.; Șopterean, L.; Suciu, L.A.; Crișan, I.; Duda, M.M. Evaluation of Agronomic Performance of Maize (Zea mays L.) under a Fertilization Gradient in Transylvanian Plain. Agriculture 2021, 11, 896. [Google Scholar] [CrossRef]
- Adhikary, B.; Baral, B.; Shrestha, J. Productivity of Winter Maize as Affected by Varieties and Fertilizer Levels. Int. J. Appl. Biol. 2020, 4, 85–93. [Google Scholar] [CrossRef]
- Suba, D.; Suba, T.; NEGRUȚ, G. Analysis of Some Perspective Maize Hybrids in Western Romania. Life Sci. Sustain. Dev. 2020, 1, 31–36. [Google Scholar] [CrossRef]
- Dragomir, V.; Brumă, I.; Butu, A.; Tanasa, L.; Petcu, V.; Horhocea, D. An Overview of Global Maize Market Compared to Romanian Production. Romanian Agric. Res. 2022, 39, 535–544. [Google Scholar] [CrossRef]
- Guță, B.-A.; Marin, D. Grain Yield and Yield Components on an Assortment of Winter Wheat (Triticum aestivum L.) Genotypes Cultivated under Conditions of A.R.D.S. Teleorman. AAB Bioflux 2020, 12, 45–51. [Google Scholar]
- Kuneva, V.; Stoyanova, A.; Cojocaru, J.; Sturzu, R.; Meluca, C. Productive Capabilities of Promising Varieties of Wheat (Triticum aestivum L.). Romanian Agric. Res. 2023, 40, 209–214. [Google Scholar] [CrossRef]
- Asseng, S.; Foster, I.; Turner, N.C. The Impact of Temperature Variability on Wheat Yields. Glob. Change Biol. 2011, 17, 997–1012. [Google Scholar]
- Boiu-Sicuia, O.A.; Constantinescu, F.; Ursan, M.; Cornea, C.P. Microbial Inoculants Applied as Seed Treatments and Their Effect on Common Wheat Triticum aestivum L. Ann. Univ. Craiova 2019, 49, 38–43. [Google Scholar]
- Golea, C.M.; Galan, P.-M.; Leti, L.-I.; Codină, G.G. Genetic Diversity and Physicochemical Characteristics of Different Wheat Species (Triticum aestivum L., Triticum monococcum L., Triticum spelta L.) Cultivated in Romania. Appl. Sci. 2023, 13, 4992. [Google Scholar] [CrossRef]
- Cappelli, A.; Cini, E. Challenges and Opportunities in Wheat Flour, Pasta, Bread, and Bakery Product Production Chains: A Systematic Review of Innovations and Improvement Strategies to Increase Sustainability, Productivity, and Product Quality. Sustainability 2021, 13, 2608. [Google Scholar] [CrossRef]
- Ahmad, A.; Aslam, Z.; Javed, T.; Hussain, S.; Raza, A.; Shabbir, R.; Mora-Poblete, F.; Saeed, T.; Zulfiqar, F.; Ali, M.M.; et al. Screening of Wheat (Triticum aestivum L.) Genotypes for Drought Tolerance through Agronomic and Physiological Response. Agronomy 2022, 12, 287. [Google Scholar] [CrossRef]
- Abdi, N.; van Biljon, A.; Steyn, C.; Labuschagne, M.T. Bread Wheat (Triticum aestivum) Responses to Arbuscular mycorrhizae Inoculation under Drought Stress Conditions. Plants 2021, 10, 1756. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, M.S.; Ali, H.H.; Soufan, W.; Iqbal, R.; Habib-ur-Rahman, M.; Iqbal, J.; Israr, M.; El Sabagh, A. Potential Effects of Biochar Application for Improving Wheat (Triticum aestivum L.) Growth and Soil Biochemical Properties under Drought Stress Conditions. Land 2021, 10, 1125. [Google Scholar] [CrossRef]
- Kadar, R.; Muntean, L.; Racz, I.; Ona, A.; Ceclan, A.; Hirişcău, D. The Effect of Genotype, Climatic Conditions and Nitrogen Fertilization on Yield and Grain Protein Content of Spring Wheat (Triticum aestivum L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 515–521. [Google Scholar] [CrossRef]
- Manole, D.; Jinga, V.; Marga, G.; Radu, I.; Ștefan, I.; Soare, S. New Edition on Sunflower Crop -Romanian Technology under Climate Change Conditions in Dobrogea. Sci. Pap. 2019, 62, 348–354. [Google Scholar]
- Samoggia, A.; Perazzolo, C.; Kocsis, P.; Del Prete, M. Community Supported Agriculture Farmers’ Perceptions of Management Benefits and Drawbacks. Sustainability 2019, 11, 3262. [Google Scholar] [CrossRef]
- Stoicea, P.; Chiurciu, I.A.; Soare, E.; Iorga, A.M.; Dinu, T.A.; Tudor, V.C.; Gîdea, M.; David, L. Impact of Reducing Fertilizers and Pesticides on Sunflower Production in Romania versus EU Countries. Sustainability 2022, 14, 8334. [Google Scholar] [CrossRef]
- Brumă, I.; Rodino, S.; Petcu, V.; Micu, M. An Overview of Organic Sunflower Production in Romania. Romanian Agric. Res. 2021, 38, 495–504. [Google Scholar] [CrossRef]
- Popescu, A. Oilseeds Crops: Sunflower, Rape and Soybean Cultivated Surface and Production in Romania in the Period 2010–2019 and Forecast for 2020–2024 Horizon. Sci. Pap. 2020, 20, 467–478. [Google Scholar]
Alternative | Species | |||
---|---|---|---|---|
1 | Q.r. | H.a. | F.e. | A.a. |
2 | Q.r. | Z.m. | A.p. | R.c. |
3 | Q.r. | T.a. | F.e. | P.s. |
4 | Q.r. | H.a. | A.p. | A.a. |
5 | R.p. | Z.m. | G.t. | P.s. |
6 | R.p. | T.a. | G.t. | R.c. |
7 | R.p. | H.a. | F.e. | A.a. |
8 | R.p. | P.s. | F.e. | R.c. |
Species | Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
Yield/hectare [kg/ha] | ||||||||||
Triticum aestivum | 3985 | 3763 | 3783 | 2935 | 4110 | 4176 | 4361 | 4072 | 4173 | 3833 |
Zea mays | 4781 | 4276 | 3106 | 4217 | 6117 | 7503 | 7519 | 6582 | 6300 | 2934 |
Helianthus annuus | 1822 | 2003 | 1567 | 1978 | 2505 | 2069 | 2887 | 2369 | 2132 | 1620 |
Cost/kilogram [Euro/Kg] | ||||||||||
Triticum aestivum | 0.16 | 0.14 | 0.15 | 0.12 | 0.12 | 0.13 | 0.14 | 0.15 | 0.20 | 0.30 |
Zea mays | 0.15 | 0.11 | 0.11 | 0.12 | 0.11 | 0.12 | 0.12 | 0.13 | 0.20 | 0.28 |
Helianthus annuus | 0.23 | 0.21 | 0.29 | 0.26 | 0.25 | 0.24 | 0.24 | 0.31 | 0.52 | 0.56 |
Cost/hectare [Euro/ha] | ||||||||||
Triticum aestivum | 654 | 542 | 552 | 340 | 493 | 551 | 628 | 627 | 826 | 1150 |
Zea mays | 698 | 479 | 342 | 506 | 697 | 900 | 887 | 882 | 1247 | 810 |
Helianthus annuus | 419 | 421 | 454 | 522 | 636 | 492 | 699 | 739 | 1104 | 901 |
Criterion No. | Alternative | |||||||
---|---|---|---|---|---|---|---|---|
Q.r.H.a. F.e.A.a. | Q.r.Z.m. A.p.R.c. | Q.r.T.a. F.e P.s. | Q.r.H.a. A.p.A.a. | R.p.Z.m. G.t.P.s. | R.p.T.a. G.t.R.c. | R.p.H.a. F.e.A.a. | R.p.P.s. F.e.R.c. | |
1 | 2 | 3 | 4 | 1 | 7 | 8 | 5 | 6 |
2 | 2 | 3 | 4 | 1 | 6 | 5 | 7 | 8 |
3 | 4 | 1 | 3 | 2 | 6 | 5 | 8 | 7 |
4 | 6 | 2 | 7 | 4 | 3 | 8 | 5 | 1 |
5 | 4 | 1 | 2 | 3 | 8 | 7 | 6 | 5 |
6 | 2 | 6 | 8 | 3 | 7 | 5 | 1 | 4 |
7 | 1 | 4 | 2 | 3 | 8 | 7 | 5 | 6 |
8 | 6 | 8 | 7 | 5 | 1 | 2 | 3 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budău, R.; Apăfăian, A.; Caradaică, M.; Bratu, I.A.; Timofte, C.S.C.; Enescu, C.M. Expert-Based Assessment of the Potential of Agroforestry Systems in Plain Regions across Bihor County, Western Romania. Sustainability 2023, 15, 15724. https://doi.org/10.3390/su152215724
Budău R, Apăfăian A, Caradaică M, Bratu IA, Timofte CSC, Enescu CM. Expert-Based Assessment of the Potential of Agroforestry Systems in Plain Regions across Bihor County, Western Romania. Sustainability. 2023; 15(22):15724. https://doi.org/10.3390/su152215724
Chicago/Turabian StyleBudău, Ruben, Andrei Apăfăian, Mihail Caradaică, Iulian A. Bratu, Claudia S. C. Timofte, and Cristian M. Enescu. 2023. "Expert-Based Assessment of the Potential of Agroforestry Systems in Plain Regions across Bihor County, Western Romania" Sustainability 15, no. 22: 15724. https://doi.org/10.3390/su152215724
APA StyleBudău, R., Apăfăian, A., Caradaică, M., Bratu, I. A., Timofte, C. S. C., & Enescu, C. M. (2023). Expert-Based Assessment of the Potential of Agroforestry Systems in Plain Regions across Bihor County, Western Romania. Sustainability, 15(22), 15724. https://doi.org/10.3390/su152215724