Biomass Energy Potential of Agricultural Residues in the Dominican Republic
Abstract
:1. Introduction
- A meticulous examination of the existing methodologies for estimating the energy potential from agricultural residual biomass, particularly in the Dominican Republic;
- Introduction and elucidation of the Method for Estimation of the Biomass Energy Potential (BEP), a novel approach meticulously designed to address the unique dynamics and characteristics of the Dominican agricultural landscape;
- Comprehensive analysis encompassing both spatial and temporal aspects of residual biomass, providing insights that are particularly relevant for both localized and broader applications;
- In-depth exploration of how biomass complements the broader energy matrix of the Dominican Republic, reinforcing the integral role of renewable energy sources;
- Investigation into residual biomass’s critical routes and logistical aspects, offering tangible recommendations for optimizing resource use and enhancing the feasibility of biomass-to-energy conversion processes.
2. Materials and Methods
2.1. Estimation of the Biomass Energy Potential (BEP)
- BEP is the Biomass Energy Potential, typically expressed in energy units like MegaJoules or GigaJoules;
- n is the total number of agricultural products concerned;
- M is the annual production of the farm product i;
- RRP is the residue ratio for the farm product i;
- HHV is the value of Higher Calorific Value;
- DMC is the dry matter content of the farm residue (%).
2.2. Factors
- Production Volume: Agricultural products with substantial production volumes were given precedence. The abovementioned is due to the direct correlation between production scale and the resultant volume of residual biomass, which subsequently influences energy potential.
- Geographical Distribution: Products cultivated across diverse geographical locales were deemed preferable. This broad cultivation base optimizes the spatial utility of the model by offering a comprehensive substrate for biomass generation.
- Physicochemical Characteristics of Residual Waste: Residues possessing traits conducive to energy conversion took priority. These include higher calorific values and lower moisture content, which are vital parameters for efficient bioenergy generation.
- Economic Relevance: The selection also considered the economic significance of the agricultural products within the Dominican Republic, ensuring that the derived energy potential aligns with the country’s overarching economic and sustainability goals.
2.3. Data Collection
2.4. Data Curation
2.5. Biomass Selection
2.6. Temporal-Spatial Estimation of Biomass Potential
2.7. Analysis of Technologies Relevant to Residual Biomass Valorization
3. Results
3.1. Energy Potential of Residual Biomass in the Dominican Republic
3.2. Analysis of Results by Category and Type of Agricultural Residue
3.3. Spatial and Temporal Analysis of Residual Biomass
3.4. Evaluating the Complementary Role of Biomass in the Dominican Republic’s Energy Matrix
3.5. Critical Routes and Logistics of Residual Biomass
4. Discussion
4.1. Energy Potential and Distribution
4.2. Temporal-Spatial Estimation and Seasonal Variability
4.3. Complementary Role in Energy Matrix
4.4. Logistics and Technology Selection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, J.A.; Sathish, S.; Prabu, D.; Renita, A.A.; Saravanan, A.; Deivayanai, V.C.; Anish, M.; Jayaprabakar, J.; Baigenzhenov, O.; Hosseini-Bandegharaei, A. Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Chemosphere 2023, 331, 138680. [Google Scholar] [CrossRef] [PubMed]
- Phiri, R.; Mavinkere Rangappa, S.; Siengchin, S.; Oladijo, O.P.; Dhakal, H.N. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Adv. Ind. Eng. Polym. Res. 2023, 6, 436–450. [Google Scholar] [CrossRef]
- Sadh, P.K.; Chawla, P.; Kumar, S.; Das, A.; Kumar, R.; Bains, A.; Sridhar, K.; Duhan, J.S.; Sharma, M. Recovery of agricultural waste biomass: A path for circular bioeconomy. Sci. Total Environ. 2023, 870, 161904. [Google Scholar] [CrossRef] [PubMed]
- Chao, Z.; Liu, N.; Zhang, P.; Ying, T.; Song, K. Estimation methods developing with remote sensing information for energy crop biomass: A comparative review. Biomass Bioenergy 2019, 122, 414–425. [Google Scholar] [CrossRef]
- Consultora, E. Atlas Bionergético del Ecuador; ARIAE: Miramar, FL, USA, 2014. [Google Scholar]
- Domínguez-Garabitos, M.A.; Ocaña-Guevara, V.S.; Santos-García, F.; Arango-Manrique, A.; Aybar-Mejía, M. Demand-Shifting Strategies to Optimize the Performance of the Wholesale Electricity Market: A Dominican Republic Study Case. IEEE Access 2022, 10, 44362–44383. [Google Scholar] [CrossRef]
- IRENA. Perspectivas de las Energías Renovables: República Dominicana; IRENA: Masdar City, United Arab Emirates, 2018. [Google Scholar]
- Espinasa, R.; Balza, L.; Hinestrosa, C.; Sucre, C. Dossier Energético: República Dominicana; Inter-American Development Bank: New York, NY, USA, 2013. [Google Scholar]
- Dangprok, B.; Tippayawong, K.Y.; Tippayawong, N. Development of a cost optimization model for power generation from agricultural residual biomass in Thailand. Energy Rep. 2023, 9, 55–62. [Google Scholar] [CrossRef]
- Bryan, B.A.; Ward, J.; Hobbs, T. An assessment of the economic and environmental potential of biomass production in an agricultural region. Land Use Policy 2008, 25, 533–549. [Google Scholar] [CrossRef]
- Jingura, R.M.; Matengaifa, R. The potential for energy production from crop residues in Zimbabwe. Biomass Bioenergy 2008, 32, 1287–1292. [Google Scholar] [CrossRef]
- Shuit, S.H.; Tan, K.T.; Lee, K.T.; Kamaruddin, A.H. Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy 2009, 34, 1225–1235. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Gong, J.; Zhang, X. A study of the development of bio-energy resources and the status of eco-society in China. Energy 2010, 35, 4451–4456. [Google Scholar] [CrossRef]
- Guzmán-Bello, H.; López-Díaz, I.; Aybar-Mejía, M.; de Frias, J.A. A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic. Sustainability 2022, 14, 3868. [Google Scholar] [CrossRef]
- Ronzon, T.; Piotrowski, S.; Carus, M. DataM—Biomass Estimates (v3): A New Database to Quantify Biomass Availability in the European Union; European Commission: Brussels, Belgium, 2015. [Google Scholar] [CrossRef]
- Jölli, D.; Giljum, S. Unused Biomass Extraction in Agriculture, Forestry and Fishery; SERI Studies: Shelburne, MA, USA, 2005. [Google Scholar]
- Dashti, A.; Noushabadi, A.S.; Raji, M.; Razmi, A.; Ceylan, S.; Mohammadi, A.H. Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation. Fuel 2019, 257, 115931. [Google Scholar] [CrossRef]
- Malladi, K.T.; Sowlati, T. Biomass logistics: A review of important features, optimization modeling and the new trends. Renew. Sustain. Energy Rev. 2018, 94, 587–599. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the Dominican Republic. Estadisticas; Ministry of Agriculture of the Dominican Republic: Santo Domingo, Dominican Republic, 2023. [Google Scholar]
- Basu, P. Chapter 2—Economic Issues of Biomass Energy Conversion. In Biomass Gasification, Pyrolysis and Torrefaction, 3rd ed.; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D.-T.; Show, P.-L. Waste to bioenergy: A review on the recent conversion technologies. BMC Energy 2019, 1, 4. [Google Scholar] [CrossRef]
- Batista, R.M.; Converti, A.; Pappalardo, J.; Benachour, M.; Sarubbo, L.A. Tools for Optimization of Biomass-to-Energy Conversion Processes. Processes 2023, 11, 854. [Google Scholar] [CrossRef]
- Caputo, A.C.; Palumbo, M.; Pelagagge, P.M.; Scacchia, F. Economics of biomass energy utilization in combustion and gasification plants: Effects of logistic variables. Biomass Bioenergy 2005, 28, 35–51. [Google Scholar] [CrossRef]
- Ralevic, P.; Ryans, M.; Cormier, D. Assessing forest biomass for bioenergy: Operational challenges and cost considerations. For. Chron. 2010, 86, 43–50. [Google Scholar] [CrossRef]
- O’Mahoney, A.; Thorne, F.; Denny, E. A cost-benefit analysis of generating electricity from biomass. Energy Policy 2013, 57, 347–354. [Google Scholar] [CrossRef]
- Organismo Coordinador del Sistema Eléctrico Nacional Interconectado (OC). Informe Anual de Operaciones y Mercado; Organismo Coordinador del Sistema Eléctrico Nacional Interconectado de la República Dominicana: Santo Domingo, Dominican Republic, 2021. [Google Scholar]
- Lopes Grotto, C.G.; Gomes Colares, C.J.; Lima, D.R.; Pereira, D.H.; Teixeira do Vale, A. Energy potential of biomass from two types of genetically improved rice husks in Brazil: A theoretical-experimental study. Biomass Bioenergy 2020, 142, 105816. [Google Scholar] [CrossRef]
- Lizotte, P.-L.; Savoie, P.; De Champlain, A. Ash Content and Calorific Energy of Corn Stover Components in Eastern Canada. Energies 2015, 8, 4827–4838. [Google Scholar] [CrossRef]
- Güleç, F.; Pekaslan, D.; Williams, O.; Lester, E. Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses—A comprehensive study of artificial neural network applications. Fuel 2022, 320, 123944. [Google Scholar] [CrossRef]
- García-Vargas, M.C.; Contreras, M.d.M.; Castro, E. Avocado-Derived Biomass as a Source of Bioenergy and Bioproducts. Appl. Sci. 2020, 10, 8195. [Google Scholar] [CrossRef]
- Ozyuguran, A.; Akturk, A.; Yaman, S. Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass. Fuel 2018, 214, 640–646. [Google Scholar] [CrossRef]
- Rojas-González, A.F.; Flórez-Montes, C.; López-Rodríguez, D.F. Prospectivas de aprovechamiento de algunos residuos agroindustriales. Rev. Cuba. Química 2018, 39, 31–52. [Google Scholar]
- Hamid, N.A.A.; Zulkifli, N.Z. Papaya peels as source of hydro char via hydrothermal carbonization. IOP Conf. Ser. Earth Environ. Sci. 2021, 765, 012001. [Google Scholar] [CrossRef]
- Md Golam, R.; Touhid, A.; Shamima, Z.; Yesmin, B.; Kazi, K.; Shoeb, A. Characterization of Local Biomass and Municipal Solid Waste to Assess The Potential as Fuels and Chemicals. In Proceedings of the International Conference on Chemical Engineering (ICChE) 2017, Barcelona, Spain, 14–16 July 2017. [Google Scholar]
- Braga, R.M.; Queiroga, T.S.; Calixto, G.Q.; Almeida, H.N.; Melo, D.M.; Melo, M.A.; Freitas, J.C.; Curbelo, F.D. The energetic characterization of pineapple crown leaves. Environ. Sci. Pollut. Res. 2015, 22, 18987–18993. [Google Scholar] [CrossRef]
- Fakayode, O.A.; Wang, Z.; Wahia, H.; Mustapha, A.T.; Zhou, C.; Ma, H. Higher heating value, exergy, pyrolysis kinetics and thermodynamic analysis of ultrasound-assisted deep eutectic solvent pretreated watermelon rind biomass. Bioresour. Technol. 2021, 332, 125040. [Google Scholar] [CrossRef]
- Robaina, B.A.R.; Reyes, Y.G.; Trujillo, L.A.; Montesino, F.M.; Pedroso, D.T.; Machin, E.B.; Machín, A.B.; Pascual, R.; Pérez, J.A.; Callejo, A.G.; et al. Assessment of fluidized bed gasification of grapefruit solid waste. Bioresour. Technol. Rep. 2021, 15, 100782. [Google Scholar] [CrossRef]
- Perea-Moreno, M.-A.; Hernandez-Escobedo, Q.; Rueda-Martinez, F.; Perea-Moreno, A.-J. Zapote Seed (Pouteria mammosa L.) Valorization for Thermal Energy Generation in Tropical Climates. Sustainability 2020, 12, 4284. [Google Scholar] [CrossRef]
- Singh, R.K.; Jena, K.; Chakraborty, J.P.; Sarkar, A. Energy and exergy analysis for torrefaction of pigeon pea stalk (cajanus cajan) and eucalyptus (eucalyptus tereticornis). Int. J. Hydrogen Energy 2020, 45, 18922–18936. [Google Scholar] [CrossRef]
- Cardona, S.; Orozco, L.M.; Gómez, C.L.; Solís, W.A.; Velásquez, J.A.; Rios, L.A. Valorization of banana residues via gasification coupled with electricity generation. Sustain. Energy Technol. Assess. 2021, 44, 101072. [Google Scholar] [CrossRef]
- Inna, S.; Amadou, O.A.; Yvette, J.N.; Cârâc, G.; Mihaela, R.D.; Richard, K. Assessment of Efficient Thermal Conversion Technologies and HHV from Compositional Characteristics of Cassava Peelings, Plantain Peelings and Corn Cobs. Energy Res. J. 2022, 13, 30–41. [Google Scholar] [CrossRef]
- Azeta, O.; Ayeni, A.O.; Agboola, O.; Elehinafe, F.B. A review on the sustainable energy generation from the pyrolysis of coconut biomass. Sci. Afr. 2021, 13, e00909. [Google Scholar] [CrossRef]
- Ugwu, S.N.; Enweremadu, C.C. Ranking of energy potentials of agro-industrial wastes: Bioconversion and thermo-conversion approach. Energy Rep. 2020, 6, 2794–2802. [Google Scholar] [CrossRef]
- Martínez-Ángel, J.D.; Villamizar-Gallardo, R.A.; Ortiz-Rodríguez, O. Caracterización y evaluación de la cáscara de mazorca de cacao (Theobroma cacao L.) como fuente de energía renovable. Agrociencia 2015, 49, 329–345. [Google Scholar]
- Chen, Y.-C.; Jhou, S.-Y. Integrating spent coffee grounds and silver skin as biofuels using torrefaction. Renew. Energy 2020, 148, 275–283. [Google Scholar] [CrossRef]
- Nakashima, G.T.; Martins, M.P.; Hansted, A.L.S.; Yamamoto, H.; Yamaji, F.M. Sugarcane trash for energy purposes: Storage time and particle size can improve the quality of biomass for fuel? Ind. Crops Prod. 2017, 108, 641–648. [Google Scholar] [CrossRef]
- Berbeć, A.K.; Matyka, M. Biomass Characteristics and Energy Yields of Tobacco (Nicotiana tabacum L.) Cultivated in Eastern Poland. Agriculture 2020, 10, 551. [Google Scholar] [CrossRef]
- Chen, X.; Ma, X.; Peng, X.; Lin, Y.; Wang, J.; Zheng, C. Effects of aqueous phase recirculation in hydrothermal carbonization of sweet potato waste. Bioresour. Technol. 2018, 267, 167–174. [Google Scholar] [CrossRef]
- Inna, S.; Yvette, J.; Richard, K. Energy Potential of Waste Derived from Some Food Crop Products in the Northern Part of Cameroon. Int. J. Energy Power Eng. 2015, 4, 342. [Google Scholar] [CrossRef]
- Granado, M.P.P.; Suhogusoff, Y.V.M.; Santos, L.R.O.; Yamaji, F.M.; De Conti, A.C. Effects of pressure densification on strength and properties of cassava waste briquettes. Renew. Energy 2021, 167, 306–312. [Google Scholar] [CrossRef]
- Callejón-Ferre, A.J.; Velázquez-Martí, B.; López-Martínez, J.A.; Manzano-Agugliaro, F. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renew. Sustain. Energy Rev. 2011, 15, 948–955. [Google Scholar] [CrossRef]
- Oleszek, M.; Tys, J.; Wiącek, D.; Król, A.; Kuna, J. The Possibility of Meeting Greenhouse Energy and CO2 Demands Through Utilisation of Cucumber and Tomato Residues. BioEnergy Res. 2016, 9, 624–632. [Google Scholar] [CrossRef]
- Encinar, J.M.; González, J.F.; Martínez, G. Energetic use of the tomato plant waste. Fuel Process. Technol. 2008, 89, 1193–1200. [Google Scholar] [CrossRef]
- La Oficina Nacional de Meteorología (ONAMET). Informe del Tiempo; La Oficina Nacional de Meteorología: Santo Domingo, Dominican Republic, 2021. [Google Scholar]
- Kabeyi, M.J.B.; Olanrewaju, O.A. The levelized cost of energy and modifications for use in electricity generation planning. Energy Rep. 2023, 9, 495–534. [Google Scholar] [CrossRef]
- Speight, J.G. Synthetic Fuels Handbook: Properties, Process, and Performance; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Atilio de Frías, J.; Checo, H.; de Frías Reyes, J.A. Estudio de la Producción Actual Y Potencial de Biomasa Para la Generación de Energía en la República Dominicana; Comisión Nacional de Energia: Santo Domingo, Dominican Republic, 2018. [Google Scholar]
- Gonzales, D.; Searcy, E.M.; Ekşioğlu, S.D. Cost analysis for high-volume and long-haul transportation of densified biomass feedstock. Transp. Res. Part A Policy Pract. 2013, 49, 48–61. [Google Scholar] [CrossRef]
- Saral, J.S.; Ajmal, R.S.; Ranganathan, P. Chapter 13—Bioeconomy of hydrocarbon biorefinery processes. In Hydrocarbon Biorefinery; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Motghare, K.A.; Rathod, A.P.; Wasewar, K.L.; Labhsetwar, N.K. Comparative study of different waste biomass for energy application. Waste Manag. 2016, 47 Pt A, 40–45. [Google Scholar] [CrossRef]
- Amir Javed, M.; Aslam, U.; Aslam, Z.; Ramzan, N.; Hussain, T. Valorization of Agricultural Waste: Comparative Study with Focus on Improving the Heating Value of Biomass. J. Energy Eng. 2020, 146, 0000672. [Google Scholar] [CrossRef]
- Alper, K.; Tekin, K.; Karagöz, S. Pyrolysis of agricultural residues for bio-oil production. Clean Technol. Environ. Policy 2014, 17, 211–223. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Sadeqzadeh, M.; Guo, M.; Borhani, T.N.; Murthy Konda, N.V.S.N.; Garcia, M.C.; Wang, L.; Hallett, J.; Shah, N. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Prog. Energy Combust. Sci. 2019, 71, 1–80. [Google Scholar] [CrossRef]
- Kunatsa, T.; Xia, X. A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresour. Technol. 2022, 344 Pt B, 126311. [Google Scholar] [CrossRef]
- Iram, A.; Cekmecelioglu, D.; Demirci, A. Ideal Feedstock and Fermentation Process Improvements for the Production of Lignocellulolytic Enzymes. Processes 2020, 9, 38. [Google Scholar] [CrossRef]
- Bagherian, M.A.; Mehranzamir, K.; Ahmed, J.; Nafea, M.; Nabipour-Afrouzi, H.; Wooi, C.l.; Beiranvand Pour, A.; Rezania, S.; Alizadeh, S.M. Techno-economic analysis of direct combustion and gasification systems for off-grid energy supply: A case for organic rankine cycle and dual fluidized-bed. IET Renew. Power Gener. 2021, 15, 2596–2614. [Google Scholar] [CrossRef]
- Beidaghy Dizaji, H.; Zeng, T.; Hölzig, H.; Bauer, J.; Klöß, G.; Enke, D. Ash transformation mechanism during combustion of rice husk and rice straw. Fuel 2022, 307, 121768. [Google Scholar] [CrossRef]
- Mónaco, N.; Rosa, M.J.; Santa, V.; Autrán, V.; Heguiabehere, A. Utilización de estimadores para determinación de biomasa a campo. Eur. Sci. J. 2015, 23, 296–310. [Google Scholar]
- La Picirelli de Souza, L.; Rajabi Hamedani, S.; Silva Lora, E.E.; Escobar Palacio, J.C.; Comodi, G.; Villarini, M.; Colantoni, A. Theoretical and technical assessment of agroforestry residue potential for electricity generation in Brazil towards 2050. Energy Rep. 2021, 7, 2574–2587. [Google Scholar] [CrossRef]
- Pontt, C. Potencial de Biomasa en Chile; Universidad Técnica Federico Santa María: Valparaíso, Chile, 2008. [Google Scholar]
- Pérez-Rodríguez, C.P.; Ríos, L.A.; Duarte González, C.S.; Montaña, A.; García-Marroquín, C. Aprovechamiento de la biomasa residual como fuente de energía renovable en Colombia: Escenario de gasificación potencial. Sustainability 2023, 14, 12537. [Google Scholar] [CrossRef]
- Tauro, R.J.; Caballero, J.L.; Salinas, M.Á.; Álvarez, O.A.; Ghilardi, A.; Arroyo, J.M. Evaluación del Potencial Energético de los Recursos Biomásicos en Costa Rica; Comisión Económica para América Latina y el Caribe (CEPAL): Santiago, Chile, 2022. [Google Scholar]
- Sagastume Gutierrez, A.; Cabello Eras, J.J.; Vandecasteele, C.; Hens, L. Data supporting the assessment of biomass based electricity and reduced GHG emissions in Cuba. Data Brief 2018, 17, 716–723. [Google Scholar] [CrossRef]
- Tauro, R.J.; Caballero, J.L.; Salinas, M.Á.; Ghilardi, A.; Arroyo, J.M. Evaluación del Potencial Energético de los Recursos Biomásicos en El Salvador; Comisión Económica para América Latina y el Caribe (CEPAL): Santiago, Chile, 2023. [Google Scholar]
- Ghilardi, A.; Tauro, R.; Alvarez, O. Sistema Estadístico Y Geográfico Para La Evaluación Del Potencial Energético De Los Recursos Biomásicos En Los Paises Del Sistema De Integración Centroamericana. 2021. Available online: https://www.wegp.unam.mx/sicabioenergy (accessed on 3 November 2023).
- Secretaría de Energía. Atlas Nacional de Biomasa; Secretaría de Energía: Mexico City, Mexico, 2018. [Google Scholar]
- Rivaldi, J.; Shin, H.H.; Colman, F.; Rojas, O.; Smidt Ledezma, M.A.; Velázquez, M.E.; Sauer, C.; González, J.; Martínez, K. Caracterización termoquímica y análisis del potencial energético de biomasas residuales de agroindustrias en Paraguay. In Proceedings of the 60 Congresso Brasileiro de Química-Associação Brasileira de Química Brasil, Rio de Janeiro, Brazil, 19 November 2021. [Google Scholar]
- Assureira, E.A.M. Energy potential of agricultural residues in Peru for use in thermochemical processes. In Proceedings of the Education, Research and Leadership in Post-pandemic Engineering: Resilient, Inclusive and Sustainable Actions, Boca Raton, FL, USA, 18–22 July 2022. [Google Scholar] [CrossRef]
- Curto-Risso, P.; Pena, G.; Mantero, C.; Siri, G.; Tancredi, N.; Amaya, A.; Durante, Á.; Ibañez, A.; Ernst, F.; Braga, L.; et al. Cuantificación y Evaluación del Potencial Energético de Residuos Agrarios y Agroindustriales no Tradicionales; Udelar. FI. IIMPI: Montevideo, Uruguay, 2017. [Google Scholar]
- Tauro, R.J.; Caballero, J.L.; Salinas, M.Á.; Ghilardi, A.; Arroyo, J.M. Evaluación del Potencial Energético de los Recursos Biomásicos en Honduras; Comisión Económica para América Latina y el Caribe (CEPAL): Santiago, Chile, 2021. [Google Scholar]
- Paraschiv, L.S.; Paraschiv, S. Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Rep. 2023, 9, 535–544. [Google Scholar] [CrossRef]
- Ang, Y.Q.; Polly, A.; Kulkarni, A.; Chambi, G.B.; Hernandez, M.; Haji, M.N. Multi-objective optimization of hybrid renewable energy systems with urban building energy modeling for a prototypical coastal community. Renew. Energy 2022, 201, 72–84. [Google Scholar] [CrossRef]
- Bowman, G.; Huber, T.; Burg, V. Linking Solar and Biomass Resources to Generate Renewable Energy: Can We Find Local Complementarities in the Agricultural Setting? Energies 2023, 16, 1486. [Google Scholar] [CrossRef]
- Goldberg, Z.A. Solar energy development on farmland: Three prevalent perspectives of conflict, synergy and compromise in the United States. Energy Res. Soc. Sci. 2023, 101, 103145. [Google Scholar] [CrossRef]
- Allman, A.; Lee, C.; Martín, M.; Zhang, Q. Biomass waste-to-energy supply chain optimization with mobile production modules. Comput. Chem. Eng. 2021, 150, 107326. [Google Scholar] [CrossRef]
- Fodstad, M.; Crespo del Granado, P.; Hellemo, L.; Knudsen, B.R.; Pisciella, P.; Silvast, A.; Bordin, C.; Schmidt, S.; Straus, J. Next frontiers in energy system modelling: A review on challenges and the state of the art. Renew. Sustain. Energy Rev. 2022, 160, 112246. [Google Scholar] [CrossRef]
- Naz, M.Y.; Bou-Rabee, M.; Shukrullah, S.; Ghaffar, A.; Gungor, A.; Sulaiman, S.A. A review of hybrid energy technologies tenets, controls and combinational strategies. Clean. Eng. Technol. 2021, 5, 100340. [Google Scholar] [CrossRef]
Category | Agricultural Product | Agricultural Production 2021 (Tonnes) | RRP | Source | DMC (%) | Source | HHV (MJ/ton) | Source | Energy Potential Estimate 2021 (GJ/year) |
---|---|---|---|---|---|---|---|---|---|
Cereals | Rice | 1,341,839.50 | 1.33 | [15] | 0.88 | [15] | 18,180.00 | [27] | 30,685,922.26 |
Corn | 114,820.60 | 2.24 | [15] | 0.88 | [15] | 16,500.00 | [28] | 3,924,019.55 | |
Sorghum | 465.50 | 3.01 | [15] | 0.88 | [15] | 15,100.00 | [29] | 28,381.79 | |
Fruit | Avocado | 1,319,939.12 | 0.20 | [15] | 0.20 | [15] | 19,100.00 | [30] | 1,068,475.40 |
Cherry | 13,401.94 | 0.20 | [15] | 0.20 | [15] | 21,950.00 | [31] | 10,471.29 | |
Granadille | 1413.41 | 0.20 | AC | 0.20 | AC | 20,000.00 | AC | 35,047.60 | |
Soursop | 33,874.81 | 0.20 | [15] | 0.20 | [15] | 20,000.00 | [32] | 22,308.80 | |
Guava | 24,526.56 | 0.20 | AC | 0.20 | AC | 17,000.00 | AC | 2774.81 | |
Papaya | 2,316,871.41 | 0.20 | [15] | 0.20 | [15] | 17,810.00 | [33] | 1,816,611.52 | |
Sour Lemon | 110,354.13 | 0.20 | [15] | 0.20 | [15] | 15,860.00 | [34] | 65,662.12 | |
Tangerine | 22,930.85 | 0.20 | AC | 0.20 | AC | 17,000.00 | AC | 18,384.03 | |
Mango | 160,627.64 | 0.20 | [15] | 0.20 | [15] | 16,140.00 | [34] | 74,830.20 | |
Melon | 56,835.45 | 0.20 | [15] | 0.20 | [15] | 16,200.00 | [29] | 39,889.58 | |
Orange D. | 184,853.43 | 0.20 | [15] | 0.20 | [15] | 16,310.00 | [29] | 141,385.52 | |
Pineapple | 963,502.09 | 0.20 | [15] | 0.20 | [15] | 18,900.00 | [35] | 738,715.28 | |
Pitaya | 2477.57 | 0.20 | AC | 0.20 | AC | 18,002.80 | AC | 534.68 | |
Watermelon | 1,253,218.58 | 0.20 | [15] | 0.20 | [15] | 19,280.00 | [36] | 750,925.15 | |
Grapefruit | 2743.20 | 0.20 | [15] | 0.20 | [15] | 16,330.00 | [37] | 3589.46 | |
Sapote | 193,213.50 | 0.20 | [15] | 0.20 | [15] | 18,342.00 | [38] | 147,499.79 | |
Legumes | Pigeon Pea | 42,711.58 | 0.20 | [15] | 0.90 | [15] | 11,200.00 | [39] | 98,884.03 |
Guard Beans | 37,441.74 | 0.20 | AC | 0.90 | AC | 16,732.00 | AC | 375,799.76 | |
White bean | 10,683.48 | 0.20 | [15] | 0.90 | [15] | 18,800.00 | [31] | 5374.47 | |
Black bean | 3455.39 | 0.20 | [15] | 0.90 | [15] | 18,800.00 | [31] | 127,759.87 | |
Red bean | 2,607,413.15 | 0.20 | [15] | 0.90 | [15] | 16,860.00 | [31] | 137,087.68 | |
Chinise bean | 5037.85 | 0.20 | AC | 0.10 | AC | 18,000.00 | AC | 2028.53 | |
Musaceae | Banana | 40,532.51 | 0.20 | [15] | 0.20 | [15] | 16,150.00 | [40] | 1,798,492.60 |
Plantain | 2,249,880.14 | 0.20 | [15] | 0.20 | [15] | 16,270.00 | [41] | 1,543,115.65 | |
Oilseeds | Coconut | 871,417.72 | 1.70 | [15] | 0.84 | [15] | 20,000.00 | [42] | 27,379,007.31 |
Peanut | 12,121.23 | 1.38 | [15] | 0.94 | [15] | 27,770.00 | [43] | 500,283.61 | |
Traditional Products | Cocoa (Grain) | 155,712.80 | 0.20 | [15] | 0.90 | [15] | 16,670.00 | [44] | 467,231.83 |
Coffee | 35,684.00 | 0.20 | [15] | 0.90 | [15] | 24,230.00 | [45] | 155,632.20 | |
Sugarcane | 12,137,491.40 | 0.67 | [15] | 0.27 | [15] | 18,300.00 | [46] | 40,180,801.15 | |
Tobacco | 21,685.30 | 0.20 | [15] | 0.90 | [15] | 18,000.00 | [47] | 70,260.37 | |
Roots and Tubers | Sweet potato | 114,056.61 | 1.00 | [15] | 0.29 | [15] | 18,710.00 | [48] | 705,868.60 |
Mapuey | 3056.35 | 0.20 | AC | 0.30 | AC | 18,631.00 | AC | 1956.48 | |
Yam | 69,127.30 | 0.94 | AC | 0.29 | AC | 19,000.00 | AC | 355,161.82 | |
Potato | 170,680.20 | 1.00 | [15] | 0.21 | [15] | 14,120.00 | [43] | 602,058.08 | |
Taro | 87,850.90 | 0.94 | [15] | 0.29 | [15] | 19,694.00 | [49] | 422,170.60 | |
Manioc | 325,666.77 | 0.82 | [15] | 0.35 | [15] | 17,120.00 | [50] | 1,819,146.67 | |
Vegetables | Peppers | 95,248.76 | 0.20 | [15] | 0.10 | [15] | 15,264.44 | [51] | 31,284.78 |
Garlic | 6664.69 | 0.20 | [15] | 0.10 | [15] | 15,830.00 | [43] | 1049.31 | |
Celery | 21,826.00 | 0.25 | AC | 0.19 | AC | 16,000.00 | AC | 14,824.83 | |
Auyama | 98,005.04 | 0.20 | [15] | 0.10 | [15] | 10,210.00 | [34] | 34,507.07 | |
Bangana | 10,790.66 | 1.88 | AC | 0.88 | AC | 19,000.00 | AC | 540,004.10 | |
Eggplant | 48,795.21 | 0.20 | AC | 0.10 | AC | 17,680.00 | AC | 19,174.59 | |
Broccoli | 6761.09 | 0.20 | AC | 0.10 | AC | 16,000.00 | AC | 2398.02 | |
Zucchini | 424.80 | 0.20 | [15] | 0.10 | [15] | 19,000.00 | [34] | 98.99 | |
Onion | 149,121.67 | 0.20 | [15] | 0.10 | [15] | 16,380.00 | [34] | 51,723.14 | |
Cauliflower | 2930.51 | 0.20 | [15] | 0.10 | [15] | 16,100.00 | [34] | 1012.66 | |
Cundeamor | 8361.12 | 0.25 | AC | 0.19 | AC | 17,966.40 | AC | 8980.79 | |
Lettuce | 12,570.14 | 0.20 | AC | 0.10 | AC | 16,000.00 | AC | 4321.74 | |
Molondron | 17,687.93 | 0.20 | AC | 0.10 | AC | 18,000.00 | AC | 5892.27 | |
Chinese Musú | 3342.05 | 0.20 | AC | 0.20 | AC | 17,966.40 | AC | 2715.30 | |
Oregano | 5487.10 | 0.20 | AC | 0.90 | AC | 18,160.00 | AC | 22,321.98 | |
Parvol | 4118.15 | 0.20 | AC | 0.30 | AC | 17,966.40 | AC | 3994.36 | |
Cucumber | 25,015.98 | 0.20 | [15] | 0.10 | [15] | 17,200.00 | [52] | 10,241.45 | |
Radish | 3238.00 | 0.25 | AC | 0.19 | AC | 16,000.00 | AC | 3338.22 | |
Cabbage | 80,034.50 | 0.20 | AC | 0.10 | AC | 21,260.00 | [34] | 39,660.53 | |
Chayote | 1,073,549.55 | 0.20 | AC | 0.10 | AC | 19,000.00 | AC | 165,200.48 | |
Tindora | 27,793.55 | 0.20 | AC | 0.10 | AC | 17,966.40 | AC | 12,928.48 | |
Tomato | 57,774.52 | 0.20 | [15] | 0.10 | [15] | 26,000.00 | [53] | 30,388.33 | |
Carrot | 99,685.35 | 0.20 | [15] | 0.10 | [15] | 13,880.00 | [43] | 30,585.02 |
Country | Number of Inhabitants | Energy Potential per Capita (GJ/Year) | Source: Authors’ Own Calculation Based on |
---|---|---|---|
Argentina | 46,234,830 | 0.06 | [68] |
Brazil | 215,313,500 | 33.37 | [69] |
Chile | 19,603,730 | 0.02 | [70] |
Colombia | 51,874,020 | 4.54 | [71] |
Costa Rica | 5,180,830 | 0.07 | [72] |
Cuba | 11,212,190 | 32.71 | [73] |
Dominican Republic | 11,228,820 | 10.45 | Authors’ calculation |
Ecuador | 18,001,000 | 12.45 | [5] |
El Salvador | 6,336,390 | 52.71 | [74] |
Guatemala | 17,357,890 | 34.80 | [75] |
Mexico | 127,504,130 | 23.37 | [76] |
Paraguay | 6,780,740 | 6.25 | [77] |
Peru | 34,049,590 | 8.95 | [78] |
Uruguay | 3,422,790 | 6.45 | [79] |
Honduras | 10,432,860 | 37.96 | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán-Bello, H.; López-Díaz, I.; Aybar-Mejía, M.; Domínguez-Garabitos, M.; de Frias, J.A. Biomass Energy Potential of Agricultural Residues in the Dominican Republic. Sustainability 2023, 15, 15847. https://doi.org/10.3390/su152215847
Guzmán-Bello H, López-Díaz I, Aybar-Mejía M, Domínguez-Garabitos M, de Frias JA. Biomass Energy Potential of Agricultural Residues in the Dominican Republic. Sustainability. 2023; 15(22):15847. https://doi.org/10.3390/su152215847
Chicago/Turabian StyleGuzmán-Bello, Hugo, Iosvani López-Díaz, Miguel Aybar-Mejía, Máximo Domínguez-Garabitos, and Jose Atilio de Frias. 2023. "Biomass Energy Potential of Agricultural Residues in the Dominican Republic" Sustainability 15, no. 22: 15847. https://doi.org/10.3390/su152215847
APA StyleGuzmán-Bello, H., López-Díaz, I., Aybar-Mejía, M., Domínguez-Garabitos, M., & de Frias, J. A. (2023). Biomass Energy Potential of Agricultural Residues in the Dominican Republic. Sustainability, 15(22), 15847. https://doi.org/10.3390/su152215847