Improved End-to-End Data Security Approach for Cloud Computing
Abstract
:1. Introduction
- We propose an end-to-end data security approach from the sender side to the receiver side.
- On the sender side, data security is provided by the proposed algorithm, which combines random salting and hashing with data encryption.
- On the receiver side, the encrypted message is decrypted and eventually accepted or rejected after verification.
- Despite its lower throughput, the algorithm produces a larger random ciphertext that is almost impossible to decipher.
2. Related Works
3. The Proposed Methodology
3.1. System Architecture
3.2. Sender Side Module
3.3. Receiver Side Module
4. Results and Comparison
- The server ran on a PowerEdge R420 PC Server, whose settings are listed below: CPU: Intel®, Xeon®, Processor E5-2400 and E5-2400 v2 product families with a physical memory: 8GB DDR3 1600MH, which uses Ubuntu 13.04 Linux 3.8.0-19-generic SMP i686.
- The client systems were PC laptops with the settings of CPU I PDC E6700 with a 3.2 GHz DDR3 2 G 1600 MHz RAM, which runs Windows 7.
4.1. Cipher Text Size
4.2. Encryption Time
4.3. Encryption Throughput
4.4. Decryption Time
4.5. Decryption Throughput
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Attaran, M.; Woods, J. Cloud computing technology: Improving small business performance using the Internet. J. Small Bus. Entrep. 2019, 31, 495–519. [Google Scholar] [CrossRef]
- Malik, M.I.; Wani, S.H.; Rashid, A. Cloud computing-technologies. Int. J. Adv. Res. Comput. Sci. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Biswas, N.K.; Banerjee, S.; Biswas, U.; Ghosh, U. An approach towards the development of new linear regression prediction model for reduced energy consumption and SLA violation in the domain of green cloud computing. Sustain. Energy Technol. Assess. 2021, 45, 101087. [Google Scholar] [CrossRef]
- Krutz, R.L.; Krutz, R.L.; Russell Dean Vines, R.D.V. Cloud Security a Comprehensive Guide to Secure Cloud Computing; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Rashid, A.; Chaturvedi, A. Cloud computing characteristics and services: A brief review. Int. J. Comput. Sci. Eng. 2019, 7, 421–426. [Google Scholar] [CrossRef]
- Dillon, T.; Wu, C.; Chang, E. Cloud computing: Issues and challenges. In Proceedings of the 2010 24th IEEE International Conference on Advanced Information Networking and Applications, Perth, Australia, 20–23 April 2010; IEEE: New York, NY, USA, 2010; pp. 27–33. [Google Scholar]
- Mustafa, S.; Nazir, B.; Hayat, A.; Madani, S.A. Resource management in cloud computing: Taxonomy, prospects, and challenges. Comput. Electr. Eng. 2015, 47, 186–203. [Google Scholar] [CrossRef]
- Voorsluys, W.; Broberg, J.; Buyya, R. Introduction to cloud computing. In Cloud Computing: Principles and Paradigms; Wiley: Hoboken, NJ, USA, 2011; pp. 1–41. [Google Scholar]
- Guan, S.; Niu, S. Stability-Based Controller Design of Cloud Control System With Uncertainties. IEEE Access 2021, 9, 29056–29070. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, H. Data security and privacy protection issues in cloud computing. In Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; IEEE: New York, NY, USA, 2012; Volume 1, pp. 647–651. [Google Scholar]
- Mozumder, D.P.; Mahi, J.N.; Whaiduzzaman, M.; Mahi, M.J.N. Cloud computing security breaches and threats analysis. Int. J. Sci. Eng. Res. 2017, 8, 1287–1297. [Google Scholar]
- Zhang, Q. An overview and analysis of hybrid encryption: The combination of symmetric encryption and asymmetric encryption. In Proceedings of the 2021 2nd International Conference on Computing and Data Science (CDS), Stanford, CA, USA, 28–29 January 2021; IEEE: New York, NY, USA, 2021; pp. 616–622. [Google Scholar]
- He, Y.; Zhang, Y.Q.; Wang, X.Y. A new image encryption algorithm based on two-dimensional spatiotemporal chaotic system. Neural Comput. Appl. 2020, 32, 247–260. [Google Scholar] [CrossRef]
- Rong, C.; Nguyen, S.T.; Jaatun, M.G. Beyond lightning: A survey on security challenges in cloud computing. Comput. Electr. Eng. 2013, 39, 47–54. [Google Scholar] [CrossRef]
- Modi, C.; Patel, D.; Borisaniya, B.; Patel, A.; Rajarajan, M. A survey on security issues and solutions at different layers of Cloud computing. J. Supercomput. 2013, 63, 561–592. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S.U. A review on the state-of-the-art privacy-preserving approaches in the e-health clouds. IEEE J. Biomed. Health Inform. 2014, 18, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Xiao, Y. Security and privacy in cloud computing. IEEE Commun. Surv. Tutor. 2012, 15, 843–859. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, H.; Cao, Z.; Dong, X.; Jia, W.; Chen, Y.; Vasilakos, A.V. Security and privacy for storage and computation in cloud computing. Inf. Sci. 2014, 258, 371–386. [Google Scholar] [CrossRef]
- Roy, S.; Chatterjee, S.; Das, A.K.; Chattopadhyay, S.; Kumar, N.; Vasilakos, A.V. On the design of provably secure lightweight remote user authentication scheme for mobile cloud computing services. IEEE Access 2017, 5, 25808–25825. [Google Scholar] [CrossRef]
- Al Hamid, H.A.; Rahman, S.M.M.; Hossain, M.S.; Almogren, A.; Alamri, A. A security model for preserving the privacy of medical big data in a healthcare cloud using a fog computing facility with pairing-based cryptography. IEEE Access 2017, 5, 22313–22328. [Google Scholar] [CrossRef]
- Xu, P.; He, S.; Wang, W.; Susilo, W.; Jin, H. Lightweight searchable public-key encryption for cloud-assisted wireless sensor networks. IEEE Trans. Ind. Inform. 2017, 14, 3712–3723. [Google Scholar] [CrossRef]
- Sharma, N.; Sultana, H.P.; Singh, R.; Patil, S. Secure hash authentication in IoT-based applications. Procedia Comput. Sci. 2019, 165, 328–335. [Google Scholar] [CrossRef]
- Dworkin, M.J. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015.
- Al Farawn, A.; Rjeib, H.D.; Ali, N.S.; Al-Sadawi, B. Secured e-payment system based on automated authentication data and iterated salted hash algorithm. TELKOMNIKA Telecommun. Comput. Electron. Control. 2020, 18, 538–544. [Google Scholar] [CrossRef]
- Ghosh, U.; Chatterjee, P.; Tosh, D.; Shetty, S.; Xiong, K.; Kamhoua, C. An SDN-based framework for guaranteeing security and performance in information-centric cloud networks. In Proceedings of the 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), Honolulu, HI, USA, 25–30 June 2017; IEEE: New York, NY, USA, 2017; pp. 749–752. [Google Scholar]
- Makkar, A.; Ghosh, U.; Rawat, D.B.; Abawajy, J.H. FedLearnSP: Preserving privacy and security using federated learning and edge computing. IEEE Consum. Electron. Mag. 2021, 11, 21–27. [Google Scholar] [CrossRef]
- Gupta, S.; Garg, R.; Gupta, N.; Alnumay, W.S.; Ghosh, U.; Sharma, P.K. Energy-efficient dynamic homomorphic security scheme for fog computing in IoT networks. J. Inf. Secur. Appl. 2021, 58, 102768. [Google Scholar] [CrossRef]
- Sun, P. Security and privacy protection in cloud computing: Discussions and challenges. J. Netw. Comput. Appl. 2020, 160, 102642. [Google Scholar] [CrossRef]
- Sandhu, A.K. Big data with cloud computing: Discussions and challenges. Big Data Min. Anal. 2021, 5, 32–40. [Google Scholar] [CrossRef]
- Batra, I.; Verma, S.; Malik, A.; Kavita; Ghosh, U.; Rodrigues, J.J.; Nguyen, G.N.; Hosen, A.S.; Mariappan, V. Hybrid logical security framework for privacy preservation in the green internet of things. Sustainability 2020, 12, 5542. [Google Scholar] [CrossRef]
- Razaque, A.; Shaldanbayeva, N.; Alotaibi, B.; Alotaibi, M.; Murat, A.; Alotaibi, A. Big data handling approach for unauthorized cloud computing access. Electronics 2022, 11, 137. [Google Scholar] [CrossRef]
- Almiani, M.; Abughazleh, A.; Jararweh, Y.; Razaque, A. Resilient back propagation neural network security model for containerized cloud computing. Simul. Model. Pract. Theory 2022, 118, 102544. [Google Scholar] [CrossRef]
- Raza, M.; Iqbal, M.; Sharif, M.; Haider, W. A survey of password attacks and comparative analysis on methods for secure authentication. World Appl. Sci. J. 2012, 19, 439–444. [Google Scholar]
- Hankerson, D.; Menezes, A.J.; Vanstone, S. Guide to Elliptic Curve Cryptography; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- The GNU Multiple Precision Arithmetic Library (GMP). Available online: http://gmplib.org (accessed on 30 September 2023).
- Multiprecision Integer and Rational Arithmetic C/C++ Library (MIR- ACL). Available online: http://certivox.com (accessed on 2 October 2023).
- The Pairing-Based Cryptography Library (PBC). Available online: http://crypto.stanford.edu/pbc/howto.html (accessed on 6 October 2023).
- Al Hasib, A.; Haque, A.A.M.M. A comparative study of the performance and security issues of AES and RSA cryptography. In Proceedings of the 2008 Third International Conference on Convergence and Hybrid Information Technology, Busan, Republic of Korea, 11–13 November 2008; IEEE: New York, NY, USA, 2008; Volume 2, pp. 505–510. [Google Scholar]
Data Length | Padding Size | Salt Size | Hashed Message Size | Encrypted Message Size |
---|---|---|---|---|
20 | 10 | 6 | 512 | 2055 |
50 | 10 | 11 | 512 | 2059 |
570 | 10 | 22 | 512 | 2062 |
Data Length | Encrypted Message Size | ||
---|---|---|---|
Proposed Algorithm |
AES Algorithm |
DES Algorithm | |
20 | 2055 | 48 | 48 |
50 | 2059 | 92 | 190 |
570 | 2062 | 840 | 1068 |
Data Length | Total Encryption Time | ||
---|---|---|---|
Proposed Algorithm |
AES Algorithm |
DES Algorithm | |
20 | 196 | 116 | 84 |
50 | 202 | 129 | 102 |
570 | 209 | 176 | 123 |
Data Length in Bites | Encryption Throughput | ||
---|---|---|---|
Proposed Algorithm |
AES Algorithm |
DES Algorithm | |
20 | 0.1020 | 0.1724 | 0.2380 |
50 | 0.2475 | 0.3875 | 0.4901 |
570 | 2.7272 | 3.2386 | 4.6341 |
1.0255 | 1.6394 | 2.2728 |
Total Decryption Time * | |||||
---|---|---|---|---|---|
Text Size | Proposed | Text Size | AES | Text Size | DES |
Algo | Algo | Algo | |||
2055 | 379 | 48 | 32 | 48 | 23 |
2059 | 382 | 92 | 45 | 190 | 42 |
2062 | 386 | 840 | 119 | 1068 | 96 |
Decryption Throughput | |||||
---|---|---|---|---|---|
Text | Proposed * | Text | AES | Text | DES |
Size ** | Algo | Size | Algo | Size | Algo |
2055 | 5.4221 | 48 | 1.5 | 48 | 2.0869 |
2059 | 5.390 | 92 | 2.04 | 190 | 4.5238 |
2062 | 5.3419 | 840 | 7.0588 | 1068 | 11.0833 |
5.384 | 3.5329 | 5.898 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Verma, S.K.; Ghosh, U.; Al-Numay, M. Improved End-to-End Data Security Approach for Cloud Computing. Sustainability 2023, 15, 16010. https://doi.org/10.3390/su152216010
Ghosh S, Verma SK, Ghosh U, Al-Numay M. Improved End-to-End Data Security Approach for Cloud Computing. Sustainability. 2023; 15(22):16010. https://doi.org/10.3390/su152216010
Chicago/Turabian StyleGhosh, Soumalya, Shiv Kumar Verma, Uttam Ghosh, and Mohammed Al-Numay. 2023. "Improved End-to-End Data Security Approach for Cloud Computing" Sustainability 15, no. 22: 16010. https://doi.org/10.3390/su152216010
APA StyleGhosh, S., Verma, S. K., Ghosh, U., & Al-Numay, M. (2023). Improved End-to-End Data Security Approach for Cloud Computing. Sustainability, 15(22), 16010. https://doi.org/10.3390/su152216010