Detection of Arsenic, Chromium, Cadmium, Lead, and Mercury in Fish: Effects on the Sustainable and Healthy Development of Aquatic Life and Human Consumers
Abstract
:1. Introduction
- Arsenic (As): As is released into the aquatic environment from various anthropogenic and agricultural sources, and has two oxidation stages; As(III) (arsenites) is more toxic than As(V) (arsenates) [7]. Arsenic from contaminated water and food is rapidly absorbed into fish tissues through the gills and skin, and can contaminate them. Exposure of freshwater fish to arsenic results in its bioaccumulation, mainly in liver and kidney tissues, showing a histopathological modification in the gills and liver tissues of these fish [4]. In addition, the presence of As affects fish reproduction by inhibiting spermatogenesis and oogenesis, thus reducing the fertilization rate [3].
- Chromium (Cr): Cr appears in water as Cr(III) and Cr(VI,), with the latter being more toxic and more soluble in water [8]. The concentration of Cr in water bodies, such as in rivers and lakes, usually ranges from 1 to 10 mg/L, but in seawater, the values are much lower, i.e., <0.1, and in some cases can reach 5 mg/L. Cr(VI) prevails in well-oxygenated marine waters, while Cr(III) appears mainly in coastal areas [9]. In addition, Cr(III) is an essential metal for humans and animals, and plays an important role in improving glucose tolerance [10], but Cr(VI) causes acute and chronic effects in humans [11].
- Cadmium (Cd): Cd is a non-essential but very toxic metal with a chronic effect on human health due to its accumulation mainly in the liver, but also in the blood, bones, muscles, and kidneys [12]. Numerous studies carried out in several countries have shown that most foods have a Cd content between 0.005–0.1 mg/kg, but some foods like seafood may contain higher concentrations. Industrial waste, some fertilizers, etc., are responsible for about 50% of the Cd that reaches the sea. Mollusks tend to accumulate Cd in a higher amount than other organisms, as it is necessary for the responsiveness of metallothionein and hemocyanin genes [13].
- Lead (Pb): Pb is one of the most highly toxic metals that appears and threatens aquatic environments [14]. Fish are the most sensitive to the toxic effects of Pb exposure, which affects physiological and biochemical functions and is mainly caused by bioaccumulation [15]. Chronic exposure to Pb causes high accumulation of it, mainly in liver and kidney tissues [14]. The relative FAO and WHO limits for Pb are 2 and 0.5 mg/kg, respectively [16].
- Mercury (Hg): Hg belongs to the class of heavy metals that are harmful to all organisms even in extremely low concentrations, and can be found in both freshwater and marine ecosystems [17]. According to the FAO/WHO, the permissible concentration for Hg is 0.5 mg/kg for humans [16]. Hg is present as Hg0, Hg+, Hg2+, and harmful organic mercury, especially MeHg (methyl) [18]. Moreover, the levels of Hg in fish brain are generally higher after MeHg exposure than after the Hg2+ exposure. Thus, MeHg in fish is the main source of mercury contamination, and there is high potential risk for consumers [19].
2. Analytical Methods for the Determination of Heavy Metals and Metalloids
- Digestion of fish tissue with a combination of hydrogen peroxide/hydrochloric acid, coupled with solid-phase purification of the digested solid [26].
- Microwave-assisted digestion and extraction, which showed good recovery and extraction efficiency [27].
- Addition of hydrogen peroxide (30%) and subsequent digestion using a microwave digestion unit [28].
3. Biomarkers of Heavy Metal and Metalloid Toxicity in Fishes
4. Discussion
4.1. Case Studies in Asia
Location | Fish Species | As * (mg/kg) | Cr * (mg/kg) | Cd * (mg/kg) | Pb * (mg/kg) | Hg * (mg/kg) | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
Scientific Name | Common Name | ||||||||
Asia | Dhaleshwari River, Tangail, Bangladesh | Channa punctata | Spotted snakehead | 0.016 | 0.046 | 0.019 | 0.133 | 0.005 | [43] |
Mastacembelus armatus | Zig-zag eel | 0.027 | 0.159 | 0.010 | 0.091 | 0.011 | |||
Mystus vittatus | striped dwarf catfish | 0.033 | 0.116 | 0.012 | 0.234 | 0.005 | |||
Puntius puntio | Puntio barb | 0.061 | 0.124 | 0.002 | 0.174 | 0.006 | |||
Amblyceps mangois | Indian torrent catfish | 0.035 | 0.103 | 0.063 | 0.183 | 0.004 | |||
Metapenaeus tenuipes (syn. Spinulatus) | Shrimp | 0.128 | 0.112 | 0.005 | 0.231 | 0.012 | |||
Southern region, Bangladesh | Oreochromis niloticus | Nile tilapia | 0.042 | 0.590 *** | 0.004 | nd ** | nd ** | [33] | |
Pangasius pangasius | Pangas catfish | 0.045 | 0.577 *** | 0.006 | nd ** | nd ** | |||
Labeo rohita | Rohu | 0.035 | 0.623 *** | 0.004 | nd ** | nd ** | |||
Buriganga River, Dhaka, Bangladesh | Heteropneustes fossilis | Asian stinging catfish | nd ** | 0.330 | 0.040 | 1.040 | nd ** | [44] | |
Shitalakshya River, Dhaka, Bangladesh | Systomus sarana | Olive barb | 0.001 | 0.004 | 0.001 | 0.001 | nd ** | [45] | |
Pethia ticto | Ticto barb | 0.001 | 0.003 | 0.001 | 0.003 | nd ** | |||
Mastacembelus armatus | Zig-zag eel | 0.004 | 0.001 | 0.001 | 0.005 | nd ** | |||
Bay of Bengal, Bangladesh | Coilia dussumieri | Gold-spotted grenadier anchovy | 1.330 | 0.630 | 0.130 | 0.230 | nd ** | [46] | |
Sardinella fimbriata | Fringescale sardinella | 3.930 | 1.570 | 0.060 | 0.930 | nd ** | |||
Coastal Area (Tam Hung and Minh Duc) Hai Phong, N. Vietnam | Channa argus | Northern snakehead | 1.180 | 2.120 | 2.300 | 0.080 | nd ** | [49] | |
Pangasianodon hypophthalmus | Iridescent shark catfish | 1.660 | 2.250 | 1.060 | 0.100 | nd ** | |||
Jeddah, Saudi Arabia | Lethrinus nebulosus | Spangled Emperor | 0.245 | nd ** | 0.000 | 1.510 | nd ** | [50] | |
Scomberomorus commerson | Narrow-barred Spanish mackerel | 0.170 | nd ** | 0.000 | 0.890 | nd ** | |||
Plectropomus pessuliferus | Roving coral grouper | 0.235 | nd ** | 0.000 | 5.050 | nd ** | |||
Pampus argenteus | Silver pomfret | 0.165 | nd ** | 0.000 | 1.690 | nd ** | |||
Epinephelus summana | Summan grouper | 0.220 | nd ** | 0.000 | 2.800 | nd ** | |||
Lhasa, Tibetan Autonomous Region, China | (Mean values of five species) | Tilapia | 0.286 | 0.003 | 0.004 | 0.021 | nd ** | [28] | |
(Mean values of six species) | Big-head carp | 0.034 | 0.018 | 0.000 | 0.004 | nd ** | |||
(Mean values of five species) | Grass carp | 0.033 | 0.005 | 0.003 | 0.024 | nd ** | |||
Hangzhou Bay, China | Coilia nasus | Japanese grenadier anchovy | 0.220 | 0.090 | 0.020 | 0.060 | 0.020 | [48] | |
Collichthys lucidus | Bighead croaker | 0.210 | 0.070 | 0.060 | 0.060 | 0.010 | |||
Cynoglossus joyneri | Red tongue sole | 0.350 | 0.050 | 0.010 | 0.060 | 0.003 | |||
Harpadon nehereus | Bombay duck | 0.150 | 0.070 | 0.060 | 0.070 | 0.010 | |||
Lophiogobius ocellicauda | Lophiogobius | 0.200 | 0.060 | 0.040 | 0.050 | 0.010 | |||
Miichthys miiuy | Brown croaker | 0.190 | 0.090 | 0.040 | 0.030 | 0.010 | |||
Tercan Dam Lake, Erzincan, Turkey | Luciobarbus capito | Bulatmai barbel | 0.124 | 0.398 | nd ** | 0.090 | nd ** | [5] | |
Capoeta umbla | Tigris scraper | 0.186 | 2.455 | nd ** | 2.074 | nd ** | |||
Ctenopharyngodon idella | Grass carp | 0.774 | 0.049 | nd ** | 0.455 | nd ** | |||
Cyprinus carpio | Common carp | 0.383 | 0.918 | nd ** | 0.534 | nd ** | |||
Karachi Coast, Pakistan | Thunnus | Tuna | nd ** | 0.350 | 0.710 | 0.270 | nd ** | [20] | |
Rastrelliger kanagurta | Indian mackerel | nd ** | 0.370 | 0.310 | 0.320 | nd ** |
4.2. Case Studies in Europe
Location | Fish Species | As * (mg/kg) | Cr * (mg/kg) | Cd * (mg/kg) | Pb * (mg/kg) | Hg * (mg/kg) | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
Scientific Name | Common Name | ||||||||
Europe | Andalusia, Southern Spain | Solea solea | Common sole | 0.233 | nd ** | 0.001 | 0.052 | 0.019 | [54] |
Sepia officinalis | Common cuttlefish | 0.172 | nd ** | 0.000 | 0.117 | 0.032 | |||
Scomber scombrus | Atlantic mackerel | 0.190 | nd ** | 0.001 | 0.004 | 0.022 | |||
Lepidorhombus boscii | Four-spotted megrim | 0.066 | nd ** | 0.000 | 0.004 | 0.091 | |||
Mullus surmuletus | Striped red mullet | 0.427 | nd ** | 0.000 | 0.004 | 0.067 | |||
Sardina pilchardus | European pilchard | 0.561 | nd ** | 0.002 | 0.004 | 0.034 | |||
Adriatic Sea coast, Italy | Engraulis encrasicolus | European anchovy | nd ** | 0.083 | 0.020 | 0.046 | nd ** | [9] | |
Lophius piscatorius | European angler | nd ** | 0.007 | 0.001 | 0.011 | nd ** | |||
Merluccius merluccius | European hake, | nd ** | 0.010 | 0.006 | 0.005 | nd ** | |||
Scomber scombrus | Atlantic mackerel | nd ** | 0.028 | 0.008 | 0.012 | nd ** | |||
Mullus barbatus | Red mullet | nd ** | 0.031 | 0.003 | 0.036 | nd ** | |||
Solea solea | Common sole | nd ** | 0.062 | 0.001 | 0.015 | nd ** | |||
Žitava River, Nitra, Slovakia | Cyprinus carpio | Common carp | nd ** | nd ** | 0.060 | 0.140 | 0.020 | [6] | |
Baltic Sea, Gdansk, Poland | Gadus morhua callarias L | Baltic cod | 0.390 | nd ** | nd ** | nd ** | nd ** | [55] | |
Sprattus sprattus | European sprat | 0.636 | nd ** | nd ** | nd ** | nd ** | |||
Clupea harengus membras | Baltic herring | 0.460 | nd ** | nd ** | nd ** | nd ** | |||
Platichthys flesus | European flounder | 0.588 | nd ** | nd ** | nd ** | nd ** |
4.3. Case Studies in Africa
Location | Fish Species | As * (mg/kg) | Cr * (mg/kg) | Cd * (mg/kg) | Pb * (mg/kg) | Hg * (mg/kg) | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
Scientific Name | Common Name | ||||||||
Africa | Gulf of Guinea, West Africa | Sardinella maderensis | Madeiran Sardinella | 1.560 | nd ** | 0.005 | nd ** | 0.021 | [56] |
Dentex angolensis | Angola dentex | 1.870 | nd ** | 0.006 | nd ** | 0.137 | |||
Sphyraena sphyraena | European barracuda | 0.820 | nd ** | 0.002 | nd ** | 0.063 | |||
Penaeus notialis | Southern pink shrimp | 8.480 | nd ** | 0.027 | nd ** | 0.026 |
4.4. Case Studies of Latin America
Location | Fish Species | As * (mg/kg) | Cr * (mg/kg) | Cd * (mg/kg) | Pb * (mg/kg) | Hg * (mg/kg) | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
Scientific Name | Common Name | ||||||||
Latin America | Bahía Blanca estuary, Argentina | Cynoscion guatucupa | Stripped weakfish | nd ** | 0.450 | nd ** | <mdl *** | nd ** | [34] |
Micropogonias furnieri | Whitemouth croaker | nd ** | 0.095 | nd ** | <mdl *** | nd ** | |||
Mustelus schmitti | Narrow-nose smooth-hound | nd ** | 0.047 | nd ** | <mdl *** | nd ** | |||
Brevoortia aurea | Brazilian Menhaden | nd ** | 0.010 | nd ** | <mdl *** | nd ** | |||
Odontesthes argentinensis | - | nd ** | 0.250 | nd ** | <mdl *** | nd ** | |||
Paralichthys orbignyanus | Black flounder | nd ** | 0.030 | nd ** | <mdl *** | nd ** |
4.5. Statistical Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sonone, S.S.; Jadhav, S.; Sankhla, M.S.; Kumar, R. Water Contamination by Heavy Metals and Their Toxic Effect on Aquaculture and Human Health through Food Chain. Lett. Appl. NanoBioSci. 2020, 10, 2148–2166. [Google Scholar] [CrossRef]
- Oancea, S.; Foca, N.; Airinei, A. Effects of Heavy Metals on Fish. Roum. Biotechnol. Lett. 2005, 11, 3–6. [Google Scholar]
- Taslima, K.; Al-Emran, M.; Rahman, M.S.; Hasan, J.; Ferdous, Z.; Rohani, M.F.; Shahjahan, M. Impacts of Heavy Metals on Early Development, Growth and Reproduction of Fish—A Review. Toxicol. Rep. 2022, 9, 858–868. [Google Scholar] [CrossRef]
- Garai, P.; Banerjee, P.; Mondal, P.; Saha, N.C. Effect of Heavy Metals on Fishes: Toxicity and Bioaccumulation. J. Clin. Toxicol. 2021, 11, 1. [Google Scholar]
- Güneş, M.; Sökmen, T.; Kirici, M. Determination of Some Metal Levels in Water, Sediment and Fish Species of Tercan Dam Lake, Turkey. Appl. Ecol. Environ. Res. 2019, 17, 14961–14972. [Google Scholar] [CrossRef]
- Tóth, T.; Andreji, J.; Tóth, J.; Slávik, M.; Árvay, J.; Stanovič, R. Cadmium, Lead and Mercury Contents in Fishes–Case Study. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 837–847. [Google Scholar]
- Tolkou, A.K.; Kyzas, G.Z.; Katsoyiannis, I.A. Arsenic(III) and Arsenic(V) Removal from Water Sources by Molecularly Imprinted Polymers (MIPs): A Mini Review of Recent Developments. Sustainability 2022, 14, 5222. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Vaclavikova, M.; Gallios, G.P. Impregnated Activated Carbons with Binary Oxides of Iron-Manganese for Efficient Cr(VI) Removal from Water. Water. Air. Soil Pollut. 2022, 233, 343. [Google Scholar] [CrossRef]
- Sepe, A.; Ciaralli, L.; Ciprotti, M.; Giordano, R.; Funari, E.; Costantini, S. Determination of Cadmium, Chromium, Lead and Vanadium in Six Fish Species from the Adriatic Sea. Food Addit. Contam. 2003, 20, 543–552. [Google Scholar] [CrossRef]
- Lipko, M.; Debski, B. Mechanism of Insulin-like Effect of Chromium(III) Ions on Glucose Uptake in C2C12 Mouse Myotubes Involves ROS Formation. J. Trace Elem. Med. Biol. 2018, 45, 171–175. [Google Scholar] [CrossRef]
- OMS Chromium in Drinking-Water. In WHO Guidelines for Drinking-Water Quality; WHO/HEP/ECH/WSH/2020.3; WHO: Geneva, Switzerland, 1996.
- Järup, L.; Berglund, M.; Elinder, C.G.; Nordberg, G.; Vahter, M. Health Effects of Cadmium Exposure—A Review of the Literature and a Risk Estimate. Scand. J. Work. Environ. Health 1998, 24, 1–51. [Google Scholar]
- Pedrini-Martha, V.; Schnegg, R.; Schäfer, G.G.; Lieb, B.; Salvenmoser, W.; Dallinger, R. Responsiveness of Metallothionein and Hemocyanin Genes to Cadmium and Copper Exposure in the Garden Snail Cornu Aspersum. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2021, 335, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Choi, H.; Hwang, U.K.; Kang, J.C.; Kang, Y.J.; Il Kim, K.; Kim, J.H. Toxic Effects of Lead Exposure on Bioaccumulation, Oxidative Stress, Neurotoxicity, and Immune Responses in Fish: A Review. Environ. Toxicol. Pharmacol. 2019, 68, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of Lead (Pb) and Its Effects on Human: A Review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Hossain, M.B.; Tanjin, F.; Rahman, M.S.; Yu, J.; Akhter, S.; Noman, M.A.; Sun, J. Metals Bioaccumulation in 15 Commonly Consumed Fishes from the Lower Meghna River and Adjacent Areas of Bangladesh and Associated Human Health Hazards. Toxics 2022, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Zulkipli, S.Z.; Liew, H.J.; Ando, M.; Lim, L.S.; Wang, M.; Sung, Y.Y.; Mok, W.J. A Review of Mercury Pathological Effects on Organs Specific of Fishes. Environ. Pollut. Bioavailab. 2021, 33, 76–87. [Google Scholar] [CrossRef]
- Zheng, N.; Wang, S.; Dong, W.; Hua, X.; Li, Y.; Song, X.; Chu, Q.; Hou, S.; Li, Y. The Toxicological Effects of Mercury Exposure in Marine Fish. Bull. Environ. Contam. Toxicol. 2019, 102, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Korbas, M.; Pereira, V.; Cappello, T.; Maisano, M.; Canário, J.; Almeida, A.; Pacheco, M. A Multidimensional Concept for Mercury Neuronal and Sensory Toxicity in Fish—From Toxicokinetics and Biochemistry to Morphometry and Behavior. Biochim. Biophys. Acta—Gen. Subj. 2019, 1863, 129298. [Google Scholar] [CrossRef]
- Yousif, R.; CHOUDHARY, M.I.; AHMED, S.; AHMED, Q. Review: Bioaccumulation of Heavy Metals in Fish and Other Aquatic Organisms from Karachi Coast, Pakistan. Nusant. Biosci. 2021, 13, 73–84. [Google Scholar] [CrossRef]
- De Francisco, P.; Martín-González, A.; Rodriguez-Martín, D.; Díaz, S. Interactions with Arsenic: Mechanisms of Toxicity and Cellular Resistance in Eukaryotic Microorganisms. Int. J. Environ. Res. Public Health 2021, 18, 12226. [Google Scholar] [CrossRef]
- Cheema, A.I.; Liu, G.; Yousaf, B.; Abbas, Q.; Zhou, H. A Comprehensive Review of Biogeochemical Distribution and Fractionation of Lead Isotopes for Source Tracing in Distinct Interactive Environmental Compartments. Sci. Total Environ. 2020, 719, 135658. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.T.; Tanwir, K.; Akram, M.S.; Shahid, M.; Niazi, N.K.; Lindberg, S. Phytoremediation of Cadmium-Polluted Water/Sediment by Aquatic Macrophytes: Role of Plant-Induced PH Changes. In Cadmium Toxicity and Tolerance in Plants; Academic Press: Cambridge, MA, USA, 2019; pp. 495–529. [Google Scholar] [CrossRef]
- Kumar, V.; Umesh, M.; Shanmugam, M.K.; Chakraborty, P.; Duhan, L.; Gummadi, S.N.; Pasrija, R.; Jayaraj, I.; Dasarahally Huligowda, L.K. A Retrospection on Mercury Contamination, Bioaccumulation, and Toxicity in Diverse Environments: Current Insights and Future Prospects. Sustainability 2023, 15, 13292. [Google Scholar] [CrossRef]
- Mehana, E.S.E.; Khafaga, A.F.; Elblehi, S.S.; Abd El-Hack, M.E.; Naiel, M.A.E.; Bin-Jumah, M.; Othman, S.I.; Allam, A.A. Biomonitoring of Heavy Metal Pollution Using Acanthocephalans Parasite in Ecosystem: An Updated Overview. Animals 2020, 10, 811. [Google Scholar] [CrossRef]
- Meucci, V.; Laschi, S.; Minunni, M.; Pretti, C.; Intorre, L.; Soldani, G.; Mascini, M. An Optimized Digestion Method Coupled to Electrochemical Sensor for the Determination of Cd, Cu, Pb and Hg in Fish by Square Wave Anodic Stripping Voltammetry. Talanta 2009, 77, 1143–1148. [Google Scholar] [CrossRef]
- Komorowicz, I.; Sajnóg, A.; Barałkiewicz, D. Total Arsenic and Arsenic Species Determination in Freshwater Fish by ICP-DRC-MS and HPLC/ICP-DRC-MS Techniques. Molecules 2019, 24, 607. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Hu, Z.; Liu, F.; Zhang, R.; Duo, B.; Fu, J.; Cui, Y.; Li, M. Heavy Metals Levels in Fish from Aquaculture Farms and Risk Assessment in Lhasa, Tibetan Autonomous Region of China. Ecotoxicology 2014, 23, 577–583. [Google Scholar] [CrossRef]
- Jin, M.; Yuan, H.; Liu, B.; Peng, J.; Xu, L.; Yang, D. Review of the Distribution and Detection Methods of Heavy Metals in the Environment. Anal. Methods 2020, 12, 5747–5766. [Google Scholar] [CrossRef]
- Arjomandi, M.; Shirkhanloo, H. A Review: Analytical Methods for Heavy Metals Determination in Environment and Human Samples. Anal. Methods Environ. Chem. J. 2019, 2, 97–126. [Google Scholar] [CrossRef]
- Meng, R.; Zhu, Q.; Long, T.; He, X.; Luo, Z.; Gu, R.; Wang, W.; Xiang, P. The Innovative and Accurate Detection of Heavy Metals in Foods: A Critical Review on Electrochemical Sensors. Food Control 2023, 150, 109743. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Carbon-Based Sustainable Nanomaterials for Water Treatment: State-of-Art and Future Perspectives. Chemosphere 2021, 263, 128005. [Google Scholar] [CrossRef]
- Resma, N.S.; Meaze, A.M.H.; Hossain, S.; Khandaker, M.U.; Kamal, M.; Deb, N. The Presence of Toxic Metals in Popular Farmed Fish Species and Estimation of Health Risks through Their Consumption. Phys. Open 2020, 5, 100052. [Google Scholar] [CrossRef]
- La Colla, N.S.; Botté, S.E.; Oliva, A.L.; Marcovecchio, J.E. Tracing Cr, Pb, Fe and Mn Occurrence in the Bahía Blanca Estuary through Commercial Fish Species. Chemosphere 2017, 175, 286–293. [Google Scholar] [CrossRef]
- Mielcarek, K.; Nowakowski, P.; Puścion-Jakubik, A.; Gromkowska-Kępka, K.J.; Soroczyńska, J.; Markiewicz-Żukowska, R.; Naliwajko, S.K.; Grabia, M.; Bielecka, J.; Żmudzińska, A.; et al. Arsenic, Cadmium, Lead and Mercury Content and Health Risk Assessment of Consuming Freshwater Fish with Elements of Chemometric Analysis. Food Chem. 2022, 379, 132167. [Google Scholar] [CrossRef] [PubMed]
- Ishak, A.R.; Zuhdi, M.S.M.; Aziz, M.Y. Determination of Lead and Cadmium in Tilapia Fish (Oreochromis niloticus) from Selected Areas in Kuala Lumpur. Egypt. J. Aquat. Res. 2020, 46, 221–225. [Google Scholar] [CrossRef]
- Kadim, M.K.; Risjani, Y. Biomarker for Monitoring Heavy Metal Pollution in Aquatic Environment: An Overview toward Molecular Perspectives. Emerg. Contam. 2022, 8, 195–205. [Google Scholar] [CrossRef]
- Bakshi, A.; Panigrahi, A.K. A Comprehensive Review on Chromium Induced Alterations in Fresh Water Fishes. Toxicol. Rep. 2018, 5, 440–447. [Google Scholar] [CrossRef]
- El-Agri, A.M.; Emam, M.A.; Gaber, H.S.; Hassan, E.A.; Hamdy, S.M. Integrated Use of Biomarkers to Assess the Impact of Heavy Metal Pollution on Solea Aegyptiaca Fish in Lake Qarun. Environ. Sci. Eur. 2022, 34, 74. [Google Scholar] [CrossRef]
- Farombi, E.O.; Adelowo, O.A.; Ajimoko, Y.R. Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River. Int. J. Environ. Res. Public Health 2007, 4, 158–165. [Google Scholar] [CrossRef]
- Sabullah, M.K.; Ahmad, S.A.; Shukor, M.Y.; Gansau, A.J.; Syed, M.A.; Sulaiman, M.R.; Shamaan, N.A. Heavy Metal Biomarker: Fish Behavior, Cellular Alteration, Enzymatic Reaction and Proteomics Approaches. Int. Food Res. J. 2015, 22, 435–454. [Google Scholar]
- Ullah, S.; Li, Z.; Hassan, S.; Ahmad, S.; Guo, X.; Wanghe, K.; Nabi, G. Heavy Metals Bioaccumulation and Subsequent Multiple Biomarkers Based Appraisal of Toxicity in the Critically Endangered Tor Putitora. Ecotoxicol. Environ. Saf. 2021, 228, 113032. [Google Scholar] [CrossRef]
- Aminul Ahsan, M. Analysis of Physicochemical Parameters, Anions and Major Heavy Metals of the Dhaleshwari River Water, Tangail, Bangladesh. Am. J. Environ. Prot. 2018, 7, 29. [Google Scholar] [CrossRef]
- Real, M.I.H.; Azam, H.M.; Majed, N. Consumption of Heavy Metal Contaminated Foods and Associated Risks in Bangladesh. Environ. Monit. Assess. 2017, 189, 651. [Google Scholar] [CrossRef] [PubMed]
- Anwarul Hasan, G.M.M.; Satter, M.A.; Das, A.K.; Asif, M. Detection of Heavy Metals in Fish Muscles of Selected Local Fish Varieties of the Shitalakshya River and Probabilistic Health Risk Assessment. Meas. Food 2022, 8, 100065. [Google Scholar] [CrossRef]
- Mamun, A.-A.; Bhowmik, S.; Sarwar, M.S.; Akter, S.; Pias, T.; Zakaria, M.A.; Islam, M.M.; Egna, H.; Evans, F.; Wahab, M.A.; et al. Preparation and Quality Characterization of Marine Small Pelagic Fish Powder: A Novel Ready-to-Use Nutritious Food Product for Vulnerable Populations. Meas. Food 2022, 8, 100067. [Google Scholar] [CrossRef]
- FAO/WHO. Expert Committee on Food Additives Evaluation of Certain Food Additives and Contaminants: Eightieth Report. WHO Technical Report Series. 2016. Available online: http://apps.who.int/iris/bitstream/10665/204410/1/9789240695405_eng.pdf?ua=1 (accessed on 28 September 2023).
- Noman, M.A.; Feng, W.; Zhu, G.; Hossain, M.B.; Chen, Y.; Zhang, H.; Sun, J. Bioaccumulation and Potential Human Health Risks of Metals in Commercially Important Fishes and Shellfishes from Hangzhou Bay, China. Sci. Rep. 2022, 12, 4634. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, N.T.M.; Van Chuyen, N.; Thao, N.T.T.; Duc, N.Q.; Trang, N.T.T.; Binh, N.T.T.; Sa, H.C.; Tran, N.B.; Van Ba, N.; Van Khai, N.; et al. Chromium, Cadmium, Lead, and Arsenic Concentrations in Water, Vegetables, and Seafood Consumed in a Coastal Area in Northern Vietnam. Environ. Health Insights 2020, 14, 1178630220921410. [Google Scholar] [CrossRef] [PubMed]
- Aljabryn, D.H. Heavy Metals in Some Commercially Fishery Products Marketed in Saudi Arabia. Food Sci. Technol. 2022, 42, 1–8. [Google Scholar] [CrossRef]
- Dutta, J.; Zaman, S.; Thakur, T.K.; Kaushik, S.; Mitra, A.; Singh, P.; Kumar, R.; Zuan, A.T.K.; Samdani, M.S.; Alharbi, S.A.; et al. Assessment of the Bioaccumulation Pattern of Pb, Cd, Cr and Hg in Edible Fishes of East Kolkata Wetlands, India. Saudi J. Biol. Sci. 2022, 29, 758–766. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization European Standards for Drinking-Water. Am. J. Med. Sci. 1970, 242, 56.
- Liu, Y.; Chen, Q.; Li, Y.; Bi, L.; Jin, L.; Peng, R. Toxic Effects of Cadmium on Fish. Toxics 2022, 10, 622. [Google Scholar] [CrossRef]
- Olmedo, P.; Pla, A.; Hernández, A.F.; Barbier, F.; Ayouni, L.; Gil, F. Determination of Toxic Elements (Mercury, Cadmium, Lead, Tin and Arsenic) in Fish and Shellfish Samples. Risk Assessment for the Consumers. Environ. Int. 2013, 59, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Polak-Juszczak, L.; Szlinder Richert, J. Arsenic Speciation in Fish from Baltic Sea Close to Chemical Munitions Dumpsites. Chemosphere 2021, 284, 131326. [Google Scholar] [CrossRef] [PubMed]
- Nyarko, E.; Boateng, C.M.; Asamoah, O.; Edusei, M.O.; Mahu, E. Potential Human Health Risks Associated with Ingestion of Heavy Metals through Fish Consumption in the Gulf of Guinea. Toxicol. Rep. 2023, 10, 117–123. [Google Scholar] [CrossRef]
Heavy Metal (Loid) | Sources |
---|---|
As | Wood preservatives, mining and smelting, coal power plants, herbicides, volcanoes, petroleum refining, animal feed additives |
Cr | Electroplating industry, sludge, solid waste, tanneries |
Cd | Geogenic sources, metal smelting and refining, fossil fuel burning, sewage sludge |
Pb | Mining and smelting of metalliferous ores, burning of leaded gasoline, municipal sewage, industrial waste enriched with Pb, paints |
Hg | Volcano eruptions, forest fire, emissions from industries producing caustic soda, coal, peat, and wood burning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolkou, A.K.; Toubanaki, D.K.; Kyzas, G.Z. Detection of Arsenic, Chromium, Cadmium, Lead, and Mercury in Fish: Effects on the Sustainable and Healthy Development of Aquatic Life and Human Consumers. Sustainability 2023, 15, 16242. https://doi.org/10.3390/su152316242
Tolkou AK, Toubanaki DK, Kyzas GZ. Detection of Arsenic, Chromium, Cadmium, Lead, and Mercury in Fish: Effects on the Sustainable and Healthy Development of Aquatic Life and Human Consumers. Sustainability. 2023; 15(23):16242. https://doi.org/10.3390/su152316242
Chicago/Turabian StyleTolkou, Athanasia K., Dimitra K. Toubanaki, and George Z. Kyzas. 2023. "Detection of Arsenic, Chromium, Cadmium, Lead, and Mercury in Fish: Effects on the Sustainable and Healthy Development of Aquatic Life and Human Consumers" Sustainability 15, no. 23: 16242. https://doi.org/10.3390/su152316242
APA StyleTolkou, A. K., Toubanaki, D. K., & Kyzas, G. Z. (2023). Detection of Arsenic, Chromium, Cadmium, Lead, and Mercury in Fish: Effects on the Sustainable and Healthy Development of Aquatic Life and Human Consumers. Sustainability, 15(23), 16242. https://doi.org/10.3390/su152316242