A Review on Mine Fire Prevention Technology and Theory Based on Bibliometric Analysis
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Articles Issued over the Years
3.2. General Statistics and Co-Citation Analysis
3.2.1. Distribution of Productive Journals
3.2.2. Statistics of Highly Cited Articles and Co-Citation Analysis
No. | Title | First Author | Year | Local Citations | Global Citations | Times Cited Per Year |
---|---|---|---|---|---|---|
1 | “An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties” [25] | Cheng WM | 2017 | 91 | 299 | 42.71 |
2 | “Experimental studies of spontaneous combustion and anaerobic cooling of coal” [38] | Deng J | 2015 | 83 | 237 | 26.33 |
3 | “Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China” [36] | Shao ZL | 2015 | 54 | 83 | 9.22 |
4 | “Effect of longwall face advance rate on spontaneous heating process in the gob area—CFD modelling” [39] | Tarabab | 2011 | 53 | 100 | 7.69 |
5 | “Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs” [40] | Xia TQ | 2016 | 51 | 105 | 13.13 |
6 | “A New Approach to Control a Serious Mine Fire with Using Liquid Nitrogen as Extinguishing Media” [21] | Zhou FB | 2015 | 50 | 75 | 8.33 |
7 | “Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control” [23] | Qin BT | 2014 | 38 | 76 | 7.60 |
8 | “Determination and prediction on “three zones” of coal spontaneous combustion in a gob of fully mechanized caving face” [42] | Deng J | 2018 | 37 | 82 | 13.67 |
9 | “Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal” [37] | Ren XF | 2019 | 36 | 112 | 22.4 |
10 | “Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review” [41] | Liang YT | 2019 | 36 | 89 | 17.80 |
3.3. Analysis of the Cooperative Relationship
3.3.1. Cooperation between Countries
3.3.2. Cooperation between Institutions
3.3.3. Cooperation between Authors
- F(X): the proportion of scientists who write x papers out of all scientists;
- n: frequency;
- C: subject characteristic constant.
3.4. Research Themes and Hotspots Analysis
3.4.1. Keywords Clustering Analysis
3.4.2. Research Hotspot over Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, F.C.; Liang, Y.T.; Zhu, H.Q.; Chen, M.Y.; Wang, J.C. Application of a novel detection approach based on non-dispersive infrared theory to the in-situ analysis on indicator gases from underground coal fire. J. Cent. South Univ. 2022, 29, 1840–1855. [Google Scholar] [CrossRef]
- Wu, X.F.; Li, H.X.; Wang, B.L.; Zhu, M.B. Review on improvements to the safety level of coal mines by applying intelligent coal mining. Sustainability 2022, 14, 16400. [Google Scholar] [CrossRef]
- Li, N.; Li, X.L.; Shu, C.; Shen, W.L.; He, M.; Meng, J.J. Study of the influence of the characteristics of loose residual coal on the spontaneous combustion of coal gob. Energy Sci. Eng. 2020, 8, 689–701. [Google Scholar] [CrossRef]
- Wang, D.M.; Xin, H.H.; Qi, X.Y.; Dou, G.L.; Qi, G.S.; Ma, L.Y. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame 2016, 163, 447–460. [Google Scholar] [CrossRef]
- Qi, G.S.; Wang, D.M.; Zheng, K.M.; Xu, J.; Qi, X.Y.; Zhong, X.X. Kinetics characteristics of coal low-temperature oxidation in oxygen-depleted air. J. Loss Prev. Process Ind. 2015, 35, 224–231. [Google Scholar] [CrossRef]
- Pan, W.; Wu, C.; Li, Z.J.; Yang, Y.P. Self-heating tendency evaluation of sulfide ores based on nonlinear multi-parameters fusion. Trans. Nonferrous Met. Soc. China 2015, 25, 582–589. [Google Scholar] [CrossRef]
- Pan, W.; Wu, C.; Li, Z.J.; Shi, Y.; Yang, Y.P. Nonlinear characteristics of induced spontaneous combustion process of sulfide ores. J. Cent. South Univ. 2016, 23, 3284–3292. [Google Scholar] [CrossRef]
- Pan, W.; Wu, C.; Li, Z.J.; Wu, Z.W.; Yang, Y.P. Evaluation of spontaneous combustion tendency of sulfide ore heap based on nonlinear parameters. J. Cent. South Univ. 2017, 24, 2431–2437. [Google Scholar] [CrossRef]
- Gao, Y.L.; Lin, S.Y.; Hu, W.H.; Yi, S.P. Improved calculation model for the shortest spontaneous combustion period. ACS Omega 2020, 5, 23559–23567. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, X.S.; Deng, J.; Wen, H.; Xiao, Y.; Jia, H. Research on coal spontaneous combustion period based on pure oxygen adiabatic oxidation experiment. Fuel 2021, 288, 119651. [Google Scholar] [CrossRef]
- Wen, H.; Yu, Z.J.; Fan, S.X.; Zhai, X.W.; Liu, W.Y. Prediction of spontaneous combustion potential of coal in the gob area using CO extreme concentration: A case study. Combust. Sci. Technol. 2017, 189, 1713–1727. [Google Scholar] [CrossRef]
- Baris, K.; Aydin, H.; Didari, V. Statistical modeling of the effect of rank, temperature, and particle size on low-temperature oxidation of Turkish coals. Combust. Sci. Technol. 2011, 183, 105–121. [Google Scholar] [CrossRef]
- Ma, L.; Zou, L.; Ren, L.F.; Chung, Y.H.; Zhang, P.Y.; Shu, C.M. Prediction indices and limiting parameters of coal spontaneous combustion in the Huainan mining area in China. Fuel 2020, 264, 116883. [Google Scholar] [CrossRef]
- Hu, X.C.; Yang, S.Q.; Zhou, X.H.; Yu, Z.Y.; Hu, C.Y. Coal spontaneous combustion prediction in gob using chaos analysis on gas indicators from upper tunnel. J. Nat. Gas Sci. Eng. 2015, 26, 461–469. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Roy, P.; Ghosh, S.; Misra, S.; Obaidat, M.S. Wireless sensor network-based fire detection, alarming, monitoring and prevention system for Bord-and-Pillar coal mines. J. Syst. Softw. 2012, 85, 571–581. [Google Scholar] [CrossRef]
- Grychowski, T. Multi sensor fire hazard monitoring in underground coal mine based on fuzzy inference system. J. Intell. Fuzzy Syst. 2014, 26, 345–351. [Google Scholar] [CrossRef]
- Xue, Y.A.; Liu, J.; Li, J.; Shang, C.S.; Zhao, J.L.; Zhang, M.M. Use of Landsat thermal imagery for dynamically monitoring spontaneous combustion of Datong Jurassic coalfields in China. J. Earth Syst. Sci. 2018, 127, 11. [Google Scholar] [CrossRef]
- Du, X.M.; Sun, D.Q.; Li, F.; Tong, J. A study on the propagation trend of underground coal fires based on night-time thermal infrared remote sensing technology. Sustainability 2022, 14, 14741. [Google Scholar] [CrossRef]
- Wang, Z.W.; Li, Y.F.; Zhang, T.T.; Hu, J.; Wang, Y.; Wei, Y.B.; Liu, T.Y.; Sun, T.; Grattan, K.T.V. A sensitive and reliable carbon monoxide monitor for safety-focused applications in coal mine using a 2.33-mu m laser diode. IEEE Sens. J. 2020, 20, 171–177. [Google Scholar] [CrossRef]
- Lu, W.; Cao, H.M.; Sun, X.L.; Hu, X.M.; Li, J.L.; Li, J.H.; Kong, B. A review on the types, performance and environmental protection of filling & plugging materials for prevention and control of coal spontaneous combustion in China. Combust. Sci. Technol. 2022, 37. [Google Scholar] [CrossRef]
- Zhou, F.B.; Shi, B.B.; Cheng, J.W.; Ma, L.J. A new approach to control a serious mine fire with using liquid nitrogen as extinguishing media. Fire Technol. 2015, 51, 325–334. [Google Scholar]
- Pandey, J.; Mohalik, N.K.; Mishra, R.K.; Khalkho, A.; Singh, V.K.; Kumar, D. Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires. Fire Technol. 2015, 51, 227–245. [Google Scholar] [CrossRef]
- Qin, B.T.; Lu, Y.; Li, Y.; Wang, D.M. Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control. Adv. Powder Technol. 2014, 25, 1527–1533. [Google Scholar] [CrossRef]
- Lu, X.X.; Han, Y.; Xue, X.; Wang, D.M. Research on a noble extinguish material for the underground fire prevention. Fire Mater. 2020, 44, 230–241. [Google Scholar] [CrossRef]
- Cheng, W.M.; Hu, X.M.; Xie, J.; Zhao, Y.Y. An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties. Fuel 2017, 210, 826–835. [Google Scholar] [CrossRef]
- Mao, G.Z.; Liu, X.; Du, H.B.; Zuo, J.; Wang, L.Y. Way forward for alternative energy research: A bibliometric analysis during 1994–2013. Renew. Sustain. Energy Rev. 2015, 48, 276–286. [Google Scholar] [CrossRef]
- Luo, J.L.; Han, H.Y.; Jia, F.; Dong, H. Agricultural Co-operatives in the western world: A bibliometric analysis. J. Clean. Prod. 2020, 273, 122945. [Google Scholar] [CrossRef]
- Zhang, L.M.; Zhong, Y.G.; Geng, Y. A bibliometric and visual study on urban mining. J. Clean. Prod. 2019, 239, 118067. [Google Scholar] [CrossRef]
- Guo, Y.M.; Huang, Z.L.; Guo, J.; Li, H.; Guo, X.R.; Nkeli, M.J. Bibliometric analysis on smart cities research. Sustainability 2019, 11, 3606. [Google Scholar] [CrossRef]
- Bamel, U.K.; Pandey, R.; Gupta, A. Safety climate: Systematic literature network analysis of 38 years (1980–2018) of research. Accid. Anal. Prev. 2020, 135, 105387. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Tian, X.; Geng, Y.; Zhong, S.Z.; Wilson, J.; Gao, C.X.; Chen, W.; Yu, Z.J.; Hao, H. A bibliometric analysis on trends and characters of carbon emissions from transport sector. Transp. Res. Part D-Transp. Environ. 2018, 59, 1–10. [Google Scholar] [CrossRef]
- Yu, D.J.; Xu, Z.S.; Fujita, H. Bibliometric analysis on the evolution of applied intelligence. Appl. Intell. 2019, 49, 449–462. [Google Scholar] [CrossRef]
- Luo, J.L.; Ji, C.; Qiu, C.X.; Jia, F. Agri-food supply chain management: Bibliometric and content analyses. Sustainability 2018, 10, 1573. [Google Scholar] [CrossRef]
- Chakraborty, K.; Mukherjee, K.; Mondal, S.; Mitra, S. A systematic literature review and bibliometric analysis based on pricing related decisions in remanufacturing. J. Clean. Prod. 2021, 310, 127265. [Google Scholar] [CrossRef]
- Shao, Z.L.; Wang, D.M.; Wang, Y.M.; Zhong, X.X.; Tang, X.F.; Hu, X.M. Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China. Nat. Hazards 2015, 75, 1833–1852. [Google Scholar] [CrossRef]
- Ren, X.F.; Hu, X.M.; Xue, D.; Li, Y.S.; Shao, Z.; Dong, H.; Cheng, W.M.; Zhao, Y.Y.; Xin, L.; Lu, W. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal. J. Hazard. Mater. 2019, 371, 643–654. [Google Scholar] [CrossRef]
- Deng, J.; Xiao, Y.; Li, Q.W.; Lu, J.H.; Wen, H. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel 2015, 157, 261–269. [Google Scholar] [CrossRef]
- Taraba, B.; Michalec, Z. Effect of longwall face advance rate on spontaneous heating process in the gob area—CFD modelling. Fuel 2011, 90, 2790–2797. [Google Scholar] [CrossRef]
- Xia, T.Q.; Zhou, F.B.; Wang, X.X.; Zhang, Y.F.; Li, Y.M.; Kang, J.H.; Liu, J.S. Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs. Fuel 2016, 182, 886–896. [Google Scholar] [CrossRef]
- Liang, Y.T.; Zhang, J.; Wang, L.C.; Luo, H.Z.; Ren, T. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review. J. Loss Prev. Process Ind. 2019, 57, 208–222. [Google Scholar] [CrossRef]
- Deng, J.; Lei, C.K.; Xiao, Y.; Cao, K.; Ma, L.; Wang, W.F.; Bin, L.W. Determination and prediction on “three zones” of coal spontaneous combustion in a gob of fully mechanized caving face. Fuel 2018, 211, 458–470. [Google Scholar] [CrossRef]
- Nwagwu, W. A bibliometric analysis of productivity patterns of biomedical authors of Nigeria during 1967–2002. Scientometrics 2006, 69, 259–269. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wang, D.M.; Shi, G.Q.; Zhong, X.X. Coverage optimizing of cyber-physical system for coal mine fire detection. Control Eng. Appl. Inform. 2011, 13, 82–86. [Google Scholar]
- Dai, Z.Q.; Xu, S.M.; Wu, X.; Hu, R.X.; Li, H.M.; He, H.Q.; Hu, J.; Liao, X. Knowledge mapping of multicriteria decision analysis in healthcare: A bibliometric analysis. Front. Public Health 2022, 10, 895552. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Hu, X.M.; Liang, Y.T.; Sun, G.Z.; Tang, H.; Wang, W. A study on the characteristics of a novel inorganic solidified foam for the prevention and control of the spontaneous combustion of coal. Constr. Build. Mater. 2022, 347, 128516. [Google Scholar] [CrossRef]
- Tang, X.J.; Liang, Y.T.; Dong, H.Z.; Sun, Y.; Luo, H.Z. Analysis of index gases of coal spontaneous combustion using Fourier transform infrared spectrometer. J. Spectrosc. 2014, 2014, 414391. [Google Scholar] [CrossRef]
- Ma, D.; Qin, B.T.; Li, L.; Gao, A.; Gao, Y. Study on the methane explosion regions induced by spontaneous combustion of coal in longwall gobs using a scaled-down experiment set-up. Fuel 2019, 254, 115547. [Google Scholar] [CrossRef]
- Lei, C.K.; Deng, J.; Cao, K.; Ma, L.; Xiao, Y.; Ren, L.F. A random forest approach for predicting coal spontaneous combustion. Fuel 2018, 223, 63–73. [Google Scholar] [CrossRef]
- Wen, H.; Liu, Y.; Jin, Y.F.; Zhang, D.; Guo, J.; Li, R.K.; Zheng, X.Z. Numerical simulation for mine oblique lane fire based on pdf non-premixed combustion. Combust. Sci. Technol. 2021, 193, 90–109. [Google Scholar] [CrossRef]
- Tao, J.; Qiu, D.Y.; Yang, F.Q.; Duan, Z.P. A bibliometric analysis of human reliability research. J. Clean. Prod. 2020, 260, 121041. [Google Scholar] [CrossRef]
- Liu, H.; Gou, X.Q.; Pan, K.; Huang, R.; Lang, Z.H.; Ye, D.; Wang, X.; Wang, H.N. Thermodynamics and inhibition mechanism of imidazolium-based ionic liquids for inhibiting spontaneous combustion of iron sulfide. Fuel 2023, 338, 127335. [Google Scholar] [CrossRef]
- Lu, Y. Laboratory study on the rising temperature of spontaneous combustion in coal stockpiles and a paste foam suppression technique. Energy Fuels 2017, 31, 7290–7298. [Google Scholar] [CrossRef]
- Xue, D.; Hu, X.M.; Cheng, W.M.; Wei, J.F.; Zhao, Y.Y.; Shen, L. Fire prevention and control using gel-stabilization foam to inhibit spontaneous combustion of coal: Characteristics and engineering applications. Fuel 2020, 264, 116903. [Google Scholar] [CrossRef]
- Han, C.; Nie, S.B.; Liu, Z.G.; Liu, S.; Zhang, H.; Li, J.Y.; Zhang, H.R.; Wang, Z.H. A novel biomass sodium alginate gel foam to inhibit the spontaneous combustion of coal. Fuel 2022, 314, 122779. [Google Scholar] [CrossRef]
- Wang, J.M.; Xue, Y.; Xiao, J.; Shi, D.P. Diffusion characteristics of airflow and CO in the dead-end tunnel with different ventilation parameters after tunneling blasting. Acs Omega 2023, 8, 36269–36283. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.Q.; Zhang, Y.T.; Chen, X.K.; Zhang, Y.B. Effects of thermal boundary conditions on spontaneous combustion of coal under temperature-programmed conditions. Fuel 2021, 295, 120591. [Google Scholar] [CrossRef]
- Kong, B.; Li, Z.H.; Yang, Y.L.; Liu, Z.; Yan, D.C. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environ. Sci. Pollut. Res. 2017, 24, 23453–23470. [Google Scholar] [CrossRef]
- Xie, C.Y.; Chen, Z.W.; Xiong, G.P.; Yang, B.L.; Shen, J.B. Study on the evolutionary mechanisms driving deformation damage of dry tailing stack earth-rock dam under short-term extreme rainfall conditions. Nat. Hazards 2023, 27. [Google Scholar] [CrossRef]
- Xu, K.; Li, S.; Liu, J.; Lu, C.; Xue, G.Z.; Xu, Z.Q.; He, C. Evaluation cloud model of spontaneous combustion fire risk in coal mines by fusing interval Gray number and Dematel. Sustainability 2022, 14, 15585. [Google Scholar] [CrossRef]
- Shi, D.P.; Wang, J.M.; Xiong, L.C. Study on noise correction algorithm of infrared emissivity of rock under uniaxial compression. Sustainability 2022, 14, 12769. [Google Scholar] [CrossRef]
- Ribeiro, J.; Viveiros, D.; Ferreira, J.; Lopez-Gil, A.; Dominguez-Lopez, A.; Martins, H.F.; Perez-Herrera, R.; Lopez-Aldaba, A.; Duarte, L.; Pinto, A.; et al. Ecoal project-delivering solutions for integrated monitoring of coal-related fires supported on optical fiber sensing technology. Appl. Sci. 2017, 7, 956. [Google Scholar] [CrossRef]
- Shao, Z.L.; Jia, X.Y.; Zhong, X.X.; Wang, D.M.; Wei, J.; Wang, Y.M.; Chen, L. Detection, extinguishing, and monitoring of a coal fire in Xinjiang, China. Environ. Sci. Pollut. Res. 2018, 25, 26603–26616. [Google Scholar] [CrossRef] [PubMed]
No. | Journal Title | Articles | H-Index | 1TC | 2IF (2022) | Average Article Citations |
---|---|---|---|---|---|---|
1 | Combustion Science and Technology | 60 | 10 | 322 | 2.133 | 5.37 |
2 | Fuel | 52 | 26 | 1888 | 8.035 | 36.31 |
3 | Process Safety and Environmental Protection | 49 | 22 | 1309 | 7.926 | 26.71 |
4 | Energies | 26 | 7 | 168 | 3.252 | 6.46 |
5 | ACS Omega | 24 | 6 | 82 | 4.132 | 3.42 |
6 | International Journal of Mining Science and Technology | 23 | 15 | 595 | 7.67 | 25.87 |
7 | Environmental Science and Pollution Research | 20 | 10 | 468 | 5.190 | 23.4 |
8 | International Journal of Coal Geology | 20 | 13 | 542 | 6.300 | 27.1 |
9 | Journal of Loss Prevention in the Process Industries | 20 | 15 | 746 | 3.916 | 37.3 |
10 | Mining Metallurgy & Exploration | 18 | 4 | 50 | 1.695 | 2.78 |
No. | Countries | Articles | Times Cited | Citation Frequency | Average Article Citations | H-Index |
---|---|---|---|---|---|---|
1 | China | 650 | 4565 | 9606 | 14.78 | 48 |
2 | USA | 114 | 2130 | 2234 | 19.6 | 26 |
3 | Australia | 96 | 1740 | 2039 | 21.24 | 26 |
4 | India | 65 | 823 | 963 | 14.82 | 17 |
5 | Canada | 43 | 968 | 1001 | 23.28 | 19 |
6 | Poland | 43 | 370 | 402 | 9.35 | 11 |
7 | Russia | 24 | 296 | 309 | 12.88 | 7 |
8 | Britain | 22 | 413 | 413 | 18.77 | 8 |
9 | Spain | 21 | 328 | 339 | 16.14 | 10 |
10 | South Africa | 20 | 348 | 421 | 21.05 | 9 |
11 | Turkey | 20 | 159 | 159 | 7.95 | 8 |
Rank | Institutions | Country | Articles |
---|---|---|---|
1 | China University of Mining and Technology | China | 368 |
2 | Shandong University of Science and Technology | China | 126 |
3 | Xian University of Science and Technology | China | 97 |
4 | Henan Polytech University | China | 75 |
5 | China University of Mining and Technology, Beijing | China | 48 |
6 | Taiyuan University of Technology | China | 47 |
7 | Liaoning Technical University | China | 36 |
8 | Anhui University of Science and Technology | China | 33 |
9 | Hunan University of Science and Technology | China | 26 |
10 | University of Science and Technology Beijing | China | 25 |
11 | Central Mining Institute | Poland | 23 |
12 | Indian School of Mines | India | 21 |
13 | National Yunlin University of Science and Technology | Taiwan, China | 18 |
14 | Shenyang Institute of Engineering | China | 16 |
15 | University of Tasmania | Australia | 16 |
No. | Authors | TC | Articles | H-index | Average Article Citations |
---|---|---|---|---|---|
1 | Hu XM | 738 | 22 | 9 | 33.55 |
2 | Deng J | 725 | 27 | 12 | 26.85 |
3 | Cheng WM | 710 | 10 | 8 | 71.00 |
4 | Wang DM | 709 | 24 | 13 | 29.54 |
5 | Zhao YY | 639 | 9 | 7 | 71.00 |
6 | Zhou FB | 573 | 14 | 13 | 40.93 |
7 | Wen H | 561 | 17 | 9 | 33.00 |
8 | Qin BT | 516 | 24 | 13 | 21.50 |
9 | Li ZH | 495 | 9 | 8 | 55.00 |
10 | Qi GS | 492 | 14 | 8 | 35.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, D.; Liu, X.; He, L. A Review on Mine Fire Prevention Technology and Theory Based on Bibliometric Analysis. Sustainability 2023, 15, 16639. https://doi.org/10.3390/su152416639
Shi D, Liu X, He L. A Review on Mine Fire Prevention Technology and Theory Based on Bibliometric Analysis. Sustainability. 2023; 15(24):16639. https://doi.org/10.3390/su152416639
Chicago/Turabian StyleShi, Dongping, Xun Liu, and Liwen He. 2023. "A Review on Mine Fire Prevention Technology and Theory Based on Bibliometric Analysis" Sustainability 15, no. 24: 16639. https://doi.org/10.3390/su152416639
APA StyleShi, D., Liu, X., & He, L. (2023). A Review on Mine Fire Prevention Technology and Theory Based on Bibliometric Analysis. Sustainability, 15(24), 16639. https://doi.org/10.3390/su152416639