Bentonite Clays from Southeastern Spain as Sustainable Natural Materials for the Improvement of Cements, Mortars and Concretes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Thin-Section Petrographic Study Using (TSP)
3.2. Mineralogical Phase Study Using XRD
3.3. Chemical Composition Study Using XRF
3.4. Scanning Electron Microscopy
3.5. Qualitative Chemical Analysis
3.6. Chemical Analysis of Pozzolanicity
3.7. Mechanical Compressive Strength Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moosavi, M. Bentonite clay as a natural remedy: A brief review. Iran. J. Public Health 2017, 46, 1176–1183. [Google Scholar]
- Maxim, L.D.; Niebo, R.; McConnell, E.E. Bentonite Toxicology and Epidemiology—A review. Inhal. Toxicol. 2016, 28, 591–617. [Google Scholar] [CrossRef]
- Askari, M.; Afshar, M.; Naghizadeh, A.; Khorashadizadeh, M.; Zardast, M. Bentonite Nanoparticles and Honey Co-Administration Effects on Skin Wound Healing: Experimental Study in the BALB/c MICE. Int. J. Low. Extrem. Wounds 2022. [Google Scholar] [CrossRef]
- Stojiljković, S.T.; Stojiljković, M.S. Application of Bentonite Clay for Human Use. In Chapter Proceeding of the Advanced Ceramics and Applications Conference; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-94-6239-212-0. [Google Scholar]
- Addullahi, A.; Ighalo, J.; Ajala, O.; Ayika, S. Physicochemical Analysis and Heavy Metals Remediation of Pharmaceutical Industry Effluent Using Bentonite Clay Modified by H2SO4 and HCL. J. Turk. Chem. Soc. Sect. A Chem. 2020, 7, 727–744. [Google Scholar] [CrossRef]
- Elshater, A.; Elhsddad, A.; Elattaar, A.; Abugharbia, M.; Soliman, W. Characterisation of the Egyptian Pliocene Bentonite from the Sohag Region form Pharmaceutical Use. Arab. J. Geosci. 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Di Prima, G.; Belfiore, E.; Magliore, E.; Scarpaci, A.G.; Angellotti, G.; Restivo, I.; Allegra, M.; Arizza, V.; De Caro, V. Green Extraction of Polyphenols from Waste Bentonite to Produce Functional Antioxidants Excipients for Cosmetic and Pharmaceutical Purposes: A Waste-to-Market Approach. Antioxidants 2022, 11, 2493. [Google Scholar] [CrossRef]
- Wargala, E.; Slawska, A.; Zalewska, A.; Toporowska, M. Effects of Dyes, Minerals, and Vitamins Used in Cosmetics. Women 2022, 1, 223–237. [Google Scholar] [CrossRef]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; Gropp, J.; et al. Safety and Efficacy of Bentonite as a Feed Additive for all Animal Species. Eur. Food Saf. Auth. 2017, 15, 5096. [Google Scholar] [CrossRef]
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A.J. New Mycotoxin Adsorbents Based on Tri-Octahedral Bentonites for Animal Feed. Anim. Feed. Sci. Technol. 2019, 255, 114228. [Google Scholar] [CrossRef]
- Montayeva, N.S.; Montayev, S.A.; Montayeva, A.S. Studies of Montmorillonite (Bentonite) Clay of Western Kazakhstan as a Therapeutic Mineral Feed Additive for Animals and Poultry. Agric. Res. 2022, 12, 226–231. [Google Scholar] [CrossRef]
- Murray, H.H. Chapter 6 Bentonite Application. Dev. Clay Sci. 2006, 2, 111–130. [Google Scholar] [CrossRef]
- Emam, E.A. Clay Adsorption Perspective on Petroleum Refining Industry. Ind. Eng. 2018, 2, 19. [Google Scholar] [CrossRef]
- Ullah, S.; Hussain, S.; Ahmad, W.; Khan, K.I.; Khan, S.V.; Khan, S. Desulfurization of Model Oil through Adsorption over Activated Charcoal and Bentonite Clay Composites. Chem. Eng. Technol. 2020, 43, 564–573. [Google Scholar] [CrossRef]
- Khan, K.; Khan, S.A.; Saleem, M.U.; Ashraf, M. Improvement of Locally Available Raw Bentonite for Use as Drilling Mud. Open Constr. Build. Technol. J. 2017, 11, 274–284. [Google Scholar] [CrossRef]
- Njobuenwu, D.O.; Wobo, C.A. Effect of Drilled Solids on Drilling Rate and Performance. J. Pet. Sci. Eng. 2007, 55, 271–276. [Google Scholar] [CrossRef]
- Dutta, D.; Das, B.M. Development of Smart Bentonite Drilling Fluid Introducing Iron Oxide Nanoparticles Compatible to the Reservoirs of Upper Assam. Upstream Oil Gas Technol. 2021, 7, 100058. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, S.; Zhou, F.; Wei, Z. Gel Stability of Calcium Bentonite Suspension in Brine and its Application in Water-Based Drilling Fluids. Gels 2022, 8, 643. [Google Scholar] [CrossRef]
- Kurihara, O.; Tsuchida, T.; Takahashi, G.; Kang, G.; Murakami, H. Cesium-Adsorption Capacity and Hydraulic Conductivity of Sealing Geomaterial Made With Marine Clay, Bentonite, and Zeolite. Soils Found. 2018, 58, 1173–1186. [Google Scholar] [CrossRef]
- Viglašová, E.; Daňo, M.; Galamboš, M.; Krajňák, A.; Rosskopfová, O.; Rajec, P. Investigation of Cu (II) Adsorption on Slovak Bentonites and Illite/Smectite for Agricultural Applications. J. Radioanal. Nucl. Chem. 2017, 314, 2425–2435. [Google Scholar] [CrossRef]
- Umair, M.; Mehmood, A.; Rukh, S.; Khan, A.; Ahmad, Z.; Rafique, M.; Malik, K.M.; Gurmani, A.R. Controlling Arsenic Contamination through Bentonite Clays: A Batch Sorption Study. J. Soil Sci. Plant Nutr. 2023, 23, 2381–2391. [Google Scholar] [CrossRef]
- Falamaki, A.; Eskandari, M.; Homaee, M.; Gerashi, M. An Improved Multilayer Compacted Clay Liner by Adding Bentonite and Phosphate Compound to Sandy Soil. KSCE J. Civ. Eng. 2018, 22, 3852–3859. [Google Scholar] [CrossRef]
- Datta, R.; Holatko, J.; Latal, O.; Mammerschmiedt, T.; Elbl, J.; Pecina, V.; Kintl, A.; Balakova, L.; Radziemska, M.; Baltazar, T.; et al. Bentonite Based Organic Amendment Enriches Microbial Activity in Agricultural Soils. Land 2020, 9, 258. [Google Scholar] [CrossRef]
- Ubeda, C.; Lambert-Royo, M.I.; Gil i Cortiella, M.; Del Barrio-Galán, R.; Peña-Neira, Á. Chemical, Physical, and Sensory Effects of the Use of Bentonite at Different Stages of the Production of Traditional Sparkling Wines. Foods 2021, 10, 390. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Watrelot, A.A. Effects of Saignée and Bentonite Treatment on Phenolic Compounds of Marquette Red Wines. Molecules 2022, 27, 3482. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, M.; Bish, D.; Cappelletti, P.; De Gennaro, B.; De Gennaro, M.; Grifa, C.; Izzo, F.; Mercurio, V.; Morra, V.; Langella, A. The combined use of steam-treated bentonites and natural zeolites in the oenological refining process. Mineral. Mag. 2016, 80, 347–362. [Google Scholar] [CrossRef]
- Laidani, Z.E.A.; Benabed, B.; Abousnina, R.; Gueddouda, M.K.; Kadri, E.H. Experimental investigation on effects of calcined bentonite on fresh, strength and durability properties of sustainable self-compacting concrete. Constr. Build. Mater. 2019, 230, 117062. [Google Scholar] [CrossRef]
- Gedik, E.; Atmaca, A. An experimental study investigating the effects of bentonite clay on mechanical and thermal properties of concrete. Constr. Build. Mater. 2023, 383, 131279. [Google Scholar] [CrossRef]
- Memon, S.A.; Arsalan, R.; Khan, S.; Lo, T.Y. Utilization of Pakistani bentonite as partial replacement of cement in concrete. Constr. Build. Mater. 2012, 30, 237–242. [Google Scholar] [CrossRef]
- Ahmad, J.; Kontoleon, K.J.; Al-Mulali, M.Z.; Shaik, S.; Hechmi El Ouni, M.; El-Shorbagy, M.A. Partial Substitution of Binding Material by Bentonite Clay (BC) in Concrete: A Review. Buildings 2022, 12, 634. [Google Scholar] [CrossRef]
- Lima-Guerra, D.J.; Mello, I.; Resende, R.; Silva, R. Use of Bentonite and Organobentonite as Alternatives of Partial Substitution of Cement in Concrete Manufacturing. Int. J. Concr. Struct. Mater. 2014, 8, 15–26. [Google Scholar] [CrossRef]
- Li, B.; Hou, P.; Cheng, H.; Zhao, P.; Du, P.; Wang, S.; Cheng, X. GGBS hydration acceleration evidence in supersulfated cement by nanoSiO2. Cem. Concr. Compos. 2022, 132, 104609. [Google Scholar] [CrossRef]
- Liao, Y.; Yao, J.; Deng, F.; Li, H.; Wang, K.; Tang, S. Hydration behavior and strength development of supersulfated cement pre-pared by calcined phosphogypsum and slaked lime. J. Build. Eng. 2023, 80, 108075. [Google Scholar] [CrossRef]
- Google Earth. Available online: https://earth.google.com/web/@36.77603524,-.07360627,108.03846841a,1252.24517896d,35y,357.35587755h,0t,0r/data=OgMKATA (accessed on 28 October 2023).
- UNE-EN 197-1:2011; Cemento. Parte 1: Composición, Especificaciones y Criterios de Conformidad de Los Cementos Comunes. AENOR: Madrid, Spain, 2011.
- Standard UNE-EN 196-2:2014; Métodos de Ensayo de Cementos. Parte 2: Análisis Químico de Cementos. AENOR: Madrid, Spain, 2014.
- Standard UNE-EN 196-5:2006; Métodos de Ensayo de Cementos. Parte 5: Ensayo de Puzolanicidad Para Cementos Puzolánicos. AENOR: Madrid, Spain, 2006.
- Standard UNE-EN 196-1:2005; Métodos de Ensayo de Cementos. Parte 1: Determinación de Resistencias Mecánicas. AENOR: Madrid, Spain, 2005.
- Costafreda, J.L. Geología, Caracterización y Aplicaciones de las Rocas Zeolíticas del Complejo Volcánico de Cabo de Gata (Almería). Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2008; 515p. [Google Scholar]
- Fernández-Soler, J.M. El Volcanismo Calco-Alcalino de Cabo de Gata (Almería). Ph.D. Thesis, Universidad de Granada, Granada, Spain, 1992; 243p. [Google Scholar]
- Linares, J. Chemical evolutions related to the genesis of hydrothermal smectites, Almería, SE Spain. In Geochemistry and Mineral Formation in the Earth Surface; Rodríguez-Clemente, R., Tardy, Y., Eds.; CSIC-CNRS: Madrid, Spain, 1987; pp. 567–584. [Google Scholar]
- Costafreda, J.L.; Martín, D.A. Bentonites in Southern Spain. Characterization and Applications. Crystals 2021, 11, 706. [Google Scholar] [CrossRef]
- Pérez del Villar, L.; Delgado, A.; Pelayo, M.; Fernández Soler, J.M.; Tsige, A.M.; Cózar, J.S.; Reyes, A. Natural thermal effects induced on the bentonite from de Cala del Tomate deposit (Cabo de Gata, Almería); BARRA II Project, Termal Effect; CIEMAT/DIAE/54450/1/04. Report No. 82; CIEMAT: Madrid, Spain, 2004. [Google Scholar]
- Martínez, J.A.; Caballero, E.; Jiménez, C.; Linares, J. The effect of a volcanic dome over the Cala del Tomate bentonite (Almería). Cad. Lab. Xeolóxico De Laxe 2000, 25, 67–69. [Google Scholar]
- Reyes, E. Mineralogía y Geoquímica de las Bentonitas de la Zona Norte de Cabo de Gata (Almería). Ph.D. Thesis, Universidad de Granada, Granada, Spain, 1977; 650p. [Google Scholar]
- Pelayo, M. Estudio del Yacimiento de Bentonita de Morrón de Mateo (Cabo de Gata, Almería) como Análogo Natural del Comportamiento de la Barrera de Arcilla de un Almacenamiento de Residuos Radiactivos. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2013; 311p. [Google Scholar]
- Pelayo, M.; García-Romero, E.; Labajo, M.A.; Pérez del Villar, L. Occurrence of Fe-Mg-rich smectites and corrensite in the Morrón de Mateo bentonite deposit (Cabo de Gata region, Spain): A natural analogue of the bentonite barrier in a radwaste repository. Appl. Geochem. 2011, 26, 1153–1168. [Google Scholar] [CrossRef]
- Rosell-Lam, M.; Villar-Cociña, E.; Frías, M. Study on the pozzolanic properties of a natural Cuban zeolitic rock by conductometric method: Kinetic parameters. Constr. Build. Mater. 2011, 25, 644–650. [Google Scholar] [CrossRef]
- Turanli, L.; Uzal, B.; Bektas, F. Effect of large amounts of natural pozzolan addition on properties of blended cements. Cem. Concr. Res. 2005, 35, 1106–1111. [Google Scholar] [CrossRef]
- Turanli, L.; Uzal, B.; Bektas, F. Effect of material characteristics on the properties of blended cements containing high volumes of natural pozzolans. Cem. Concr. Res. 2004, 34, 2277–2282. [Google Scholar] [CrossRef]
- Habert, G.; Choupay, N.; Montel, J.M.; Guillaume, D.; Escadeillas, G. Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity. Cem. Concr. Res. 2008, 38, 963–975. [Google Scholar] [CrossRef]
- Costafreda, J.L.; Martín, D.A.; Presa, L.; Parra, J.L. Altered Volcanic Tuffs from Los Frailes Caldera. A Study of Their Pozzolanic Properties. Molecules 2021, 26, 5348. [Google Scholar] [CrossRef]
- Baek, W.; Ha, S.; Hong, S.; Kim, S.; Kim, Y. Cation exchange of cesium and cation selectivity of natural zeolites: Chabazite, stil-bite, and heulandite. Microporous Mesoporous Mater. 2018, 264, 159–166. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
Sample | Component Ratios | ||||
---|---|---|---|---|---|
BENT 1:PC Formulations I (%) | BENT:PC Formulation II (%) | PC 2 Formulation III (%) | Natural Sand (g) | Distilled Water (g) | |
RMS 3 | - | - | 100 | ||
BENT 1/PC-01 4 | 75:25 | 70:30 | - | ||
BENT/PC-02 | |||||
BENT/PC-03 | 1350 | 225 | |||
BENT/PC-04 | |||||
BENT/PC-05 |
Sample | SiO2 | Al2O3 | CaO | Na2O | K2O | MgO | Fe2O3 | TiO2 | LOI * | Si/Al |
---|---|---|---|---|---|---|---|---|---|---|
BENT-01 | 64.83 | 13.91 | 1.07 | 2.21 | 2.13 | 2.40 | 1.77 | 0.115 | 9.22 | 4.60 |
BENT-02 | 52.14 | 13.15 | 1.13 | 1.41 | 0.291 | 7.63 | 2.69 | 0.121 | 19.3 | 3.90 |
BENT-03 | 52.92 | 13.63 | 1.15 | 1.23 | 0.678 | 7.65 | 2.77 | 0.122 | 20.6 | 3.88 |
BENT-04 | 64.32 | 13.71 | 1.08 | 3.12 | 2.21 | 2.41 | 1.41 | 0.134 | 11.6 | 4.69 |
BENT-05 | 63.01 | 13.59 | 1.11 | 2.77 | 3.13 | 2.12 | 1.75 | 0.119 | 9.4 | 4.63 |
% | Samples | Maximum Allowed Content (%) | ||||
---|---|---|---|---|---|---|
BENT-01 | BENT-02 | BENT-03 | BENT-04 | BENT-05 | ||
Total SiO2 | 64.90 | 52.47 | 50.98 | 64.65 | 63.34 | - |
Reactive SiO2 | 60.70 | 48.27 | 46.7 | 60.45 | 59.14 | >25 |
Total CaO | 1.27 | 1.18 | 1.40 | 1.13 | 1.16 | - |
Reactive CaO | 1.22 | 1.15 | 1.37 | 1.10 | 1.13 | - |
Al2O3 | 13.87 | 13.17 | 13.15 | 13.67 | 13.55 | <16 |
MgO | 1.37 | 2.15 | 1.41 | 1.68 | 1.39 | <5 |
Fe2O3 | 2.01 | 2.61 | 2.80 | 2.33 | 2.27 | - |
SO3 | 0.02 | 0.02 | 0.01 | 0.03 | 0.01 | <4 |
I.R. | 4.2 | 3.7 | 3.78 | 4.41 | 3.73 | <5 |
SiO2/(CaO + MgO) | 24.58 | 15.75 | 18.14 | 23.0 | 24.83 | >3.5 |
SiO2 + Al2O3 + Fe2O3 | 79.78 | 72.05 | 71.57 | 80.65 | 79.16 | >70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costafreda, J.L.; Martín, D.A.; Sanjuán, M.Á.; Costafreda-Velázquez, J.L. Bentonite Clays from Southeastern Spain as Sustainable Natural Materials for the Improvement of Cements, Mortars and Concretes. Sustainability 2023, 15, 16710. https://doi.org/10.3390/su152416710
Costafreda JL, Martín DA, Sanjuán MÁ, Costafreda-Velázquez JL. Bentonite Clays from Southeastern Spain as Sustainable Natural Materials for the Improvement of Cements, Mortars and Concretes. Sustainability. 2023; 15(24):16710. https://doi.org/10.3390/su152416710
Chicago/Turabian StyleCostafreda, Jorge L., Domingo A. Martín, Miguel Ángel Sanjuán, and Jorge L. Costafreda-Velázquez. 2023. "Bentonite Clays from Southeastern Spain as Sustainable Natural Materials for the Improvement of Cements, Mortars and Concretes" Sustainability 15, no. 24: 16710. https://doi.org/10.3390/su152416710
APA StyleCostafreda, J. L., Martín, D. A., Sanjuán, M. Á., & Costafreda-Velázquez, J. L. (2023). Bentonite Clays from Southeastern Spain as Sustainable Natural Materials for the Improvement of Cements, Mortars and Concretes. Sustainability, 15(24), 16710. https://doi.org/10.3390/su152416710