Cold-Tolerant and Short-Duration Rice (Oryza sativa L.) for Sustainable Food Security of the Flash Flood-Prone Haor Wetlands of Bangladesh
Abstract
:1. Introduction
2. Flash Floods and Cold Risks of Damage to Boro Rice in the Haor Regions
3. Temperature Requirements for Rice Plant
3.1. Influence of Cold Temperature on the Vegetative Growth of Rice
3.2. Influence of Cold Temperature on the Reproductive Growth of Rice
3.2.1. Floral Organs Development
3.2.2. Grain Formation and Development
4. Global Scenario of Cold Damage in Rice
5. Rice Cold-Stress Problem in Bangladesh
6. Alleviation of Flash Flood and Cold Injury Damage of Boro Rice in the Haor Areas
6.1. Cultivation of Appropriate Boro Rice Varieties
6.2. Breeding of Cold-Tolerant Rice
6.2.1. Physiological Basis of Cold Tolerance
6.2.2. Assessment of Cold Tolerance in Rice
- Assessment of Cold Tolerance at the Germination Stage
- Assessment of the Cold Tolerance at Seedlings Phase
- Assessment of the Cold Tolerance at Reproductive Phase
6.2.3. Molecular Basis of Cold Tolerance
6.3. Emphasis on Cultural Techniques to Reduce the Risk of Flash Flooding and Cold Injury
6.3.1. Early Planting and Seedbed Covering
6.3.2. Direct Seeding
6.3.3. Double Transplanting
6.3.4. Transplanting of Young Seedlings
6.3.5. Water Management
6.3.6. Judicious Nutrient Management
6.3.7. Applications of Plant Growth Regulators and Stimulants
7. Conclusions and Future Directions
- Currently available moderately cold-tolerant varieties, such as BRRI dhan67, and short-duration early maturing varieties viz. Bangabandhu dhan100, BRRI dhan96, BRRI dhan88, BRRI dhan84, BRRI dhan74, BRRI hybrid dhan5, and BINA Dhan 25 could be cultivated to reduce crop losses due to cold damage and flash floods.
- The collection and utilization of cold-tolerant cultivars grown in the temperate regions/countries in the breeding program might help develop locally adapted cold-tolerant varieties.
- Future physiological mechanistic research on cold tolerance coupled with QTL discovery and introgression will hasten the development of rice for features relevant to cold tolerance.
- Early sowing and seedling growing under polythene shade are recommended to reduce seedling damage and growth time.
- Other agronomic practices, viz., direct seeding, using young seedlings, the manipulation of seedling age, double transplanting, the prudent management of water and nutrients, and applications of plant growth regulators and stimulants could be practiced.
- Also, optimal sowing and transplanting timing must be determined based on the lowest, maximum, and mean air temperatures to reduce rice cold damage. The holistic practice of the above-stated approaches could mitigate the cold injury and flash flood damage of Boro rice in the Hoar areas of Bangladesh.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam, M.; Quayum, M.; Islam, M. Crop Production in the Haor Areas of Bangladesh: Insights from Farm Level Survey. Agriculturists 2010, 8, 88–97. [Google Scholar] [CrossRef]
- Khan, M.N.H.; Mia, M.Y.; Hossain, M.R. Impacts of Flood on Crop Production in Haor Areas of Two Upazillas in Kishoregonj. J. Environ. Sci. Nat. Resour. 2012, 5, 193–198. [Google Scholar] [CrossRef]
- Department of Agricultural Extension (DAE). Annual Report-2016; Field Crops Wing, Ministry of Agriculture, Government of The People’s Republic of Bangladesh; Department of Agricultural Extension: Khamar Bari, Farmgate, Dhaka, Bangladesh, 2017; p. 197.
- Kamruzzaman, M.; Shaw, R. Flood and Sustainable Agriculture in the Haor Basin of Bangladesh: A Review Paper. Univers. J. Agric. Res. 2018, 6, 40–49. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics (BBS). YAS—Yearbook of Agricultural Statistics-2021, 33rd ed.; Bangladesh Bureau of Statistics, Statistics & Informatics Division, Ministry of Planning, Government of The People’s Republic of Bangladesh: Dhaka, Bangladesh, 2022.
- Kabir, M.J.; Kabir, M.S.; Salam, M.A.; Islam, M.A.; Omar, M.I.; Sarkar, M.A.R.; Rahman, M.C.; Chowdhury, A.; Rahaman, M.S.; Deb, L.; et al. Harvesting of Boro Paddy in Haor Areas of Bangladesh: Interplay of Local and Migrant Labour, Mechanized Harvesters and Covid-19 Vigilance in 2020; ZBW—Leibniz Information Centre for Economics, Bangladesh Rice Research Institute (BRRI): Gazipur, Bangladesh, 2020; p. 40.
- CEGIS. Master Plan of Haor Area; Center for Environmental and Geographic Information Services, Bangladesh Haor and Wetlands Development Board, Ministry of Water Resources, The People’s Republic of Bangladesh: Dhaka, Bangladesh, 2012; p. 82.
- Rabby, T.G.; Alam, G.M.; Mishra, P.K.; Hoque, K.E.; Nair, S. Different Economic and Policy Perspectives in Micro Population for Sustainable Development: A Study of the Haor Livelihood in Bangladesh. Afr. J. Bus. Manag. 2011, 5, 2475–2492. [Google Scholar] [CrossRef]
- Biswas, J.; Hossain, M.; Mamin, M.; Muttaleb, M. Manipulation of Seeding Date and Seedling Age to Avoid Flash Flood Damage of Boro Rice at the Northeastern Haor Areas in Bangladesh. Bangladesh Rice J. 2008, 13, 57–61. [Google Scholar]
- ReliefWeb. Bangladesh: Floods in Northeast (Haor) Areas (April–May 2017); Government of Bangladesh: Dhaka, Bangladesh, 2017; p. 48.
- NIRAPAD. Flash Flood Situation, March, 2022; Network for Information, Response and Preparedness Activities on Disaster: Dhaka, Bangladesh, 2022. [Google Scholar]
- Kabir, M.S.; Howlader, M.; Biswas, J.K.; Mahbub, M.A.; Elahi, M.N.E. Probability of Low Temperature Stress at Different Growth Stages of Boro Rice. Bangladesh Rice J. 2015, 19, 19–27. [Google Scholar] [CrossRef]
- Rashid, M.M.; Yasmeen, R. Cold Injury and Flash Flood Damage in Boro Rice Cultivation in Bangladesh: A Review. Bangladesh Rice J. 2017, 21, 13–25. [Google Scholar] [CrossRef]
- Rahman, M.S.; Haque, M.M.; Kabir, M.J.; Islam, A.; Sarkar, M.A.R.; Mamun, M.A.A.; Salam, M.U.; Kabir, M.S. Enhancing Rice Productivity in the Unfavourable Ecosystems of Bangladesh. Bangladesh Rice J. 2020, 24, 83–102. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics (BBS). Statistical Year Book of Bangladesh, 41st ed.; Statistics & Informatics Division, Ministry of Planning, Government of The People’s Republic of Bangladesh: Dhaka, Bangladesh, 2021.
- BRRI. Annual Research Review Workshop 2018, Plant Breeding Division 2016–2017; Bangladesh Rice Research Institute (BRRI): Gazipur, Bangladesh, 2018.
- Rahman, H.M.T.; Mia, M.E.; Ford, J.D.; Robinson, B.E.; Hickey, G.M. Livelihood Exposure to Climatic Stresses in the North-Eastern Floodplains of Bangladesh. Land Use Policy 2018, 79, 199–214. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Anne Daniell, K.; Chowdhury, A.; Crimp, S. Facilitating Learning for Innovation in a Climate-Stressed Context: Insights from Flash Flood-Affected Rice Farming in Bangladesh. J. Agric. Educ. Ext. 2023, 29, 463–487. [Google Scholar] [CrossRef]
- Tran, D.D.; Huu, L.H.; Hoang, L.P.; Pham, T.D.; Nguyen, A.H. Sustainability of Rice-Based Livelihoods in the Upper Floodplains of Vietnamese Mekong Delta: Prospects and Challenges. Agric. Water Manag. 2021, 243, 106495. [Google Scholar] [CrossRef]
- World Bank Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/country/bangladesh (accessed on 23 December 2022).
- Zhang, Q.; Chen, Q.; Wang, S.; Hong, Y.; Wang, Z. Rice and Cold Stress: Methods for Its Evaluation and Summary of Cold Tolerance-Related Quantitative Trait Loci. Rice 2014, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Los Baños, Philippines, 1981; ISBN 971-10-4052-2. [Google Scholar]
- Farrell, T.C.; Fox, K.M.; Williams, R.L.; Fukai, S. Genotypic Variation for Cold Tolerance during Reproductive Development in Rice: Screening with Cold Air and Cold Water. Field Crops Res. 2006, 98, 178–194. [Google Scholar] [CrossRef]
- Fujino, K.; Sekiguchi, H.; Sato, T.; Kiuchi, H.; Nonoue, Y.; Takeuchi, Y.; Ando, T.; Lin, S.Y.; Yano, M. Mapping of Quantitative Trait Loci Controlling Low-Temperature Germinability in Rice (Oryza sativa L.). Theor. Appl. Genet. 2004, 108, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Satake, T.; Hayase, H. Male Sterility Caused by Cooling Treatment at the Young Microspore Stage in Rice Plants: V. Estimations of Pollen Developmental Stage and the Most Sensitive Stage to Coolness. Jpn. J. Crop Sci. 1970, 39, 468–473. [Google Scholar] [CrossRef]
- Andaya, V.; Mackill, D. QTLs Conferring Cold Tolerance at the Booting Stage of Rice Using Recombinant Inbred Lines from a Japonica × Indica Cross. Theor. Appl. Genet. 2003, 106, 1084–1090. [Google Scholar] [CrossRef]
- Xu, L.-M.; Zhou, L.; Zeng, Y.-W.; Wang, F.-M.; Zhang, H.-L.; Shen, S.-Q.; Li, Z.-C. Identification and Mapping of Quantitative Trait Loci for Cold Tolerance at the Booting Stage in a Japonica Rice Near-Isogenic Line. Plant Sci. 2008, 174, 340–347. [Google Scholar] [CrossRef]
- Ye, C.; Fukai, S.; Godwin, I.; Reinke, R.; Snell, P.; Schiller, J.; Basnayake, J. Cold Tolerance in Rice Varieties at Different Growth Stages. Pasture Sci. 2009, 60, 328–338. [Google Scholar] [CrossRef]
- Cruz, R.; Milach, S. Cold Tolerance at the Germination Stage of Rice: Methods of Evaluation and Characterization of Genotypes. Sci. Agric. 2004, 61, 1–8. [Google Scholar] [CrossRef]
- Hussain, H.A.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. Front. Plant Sci. 2018, 9, 393. [Google Scholar] [CrossRef]
- Lou, Q.; Chen, L.; Sun, Z.; Xing, Y.; Li, J.; Xu, X.; Mei, H.; Luo, L. A Major QTL Associated with Cold Tolerance at Seedling Stage in Rice (Oryza sativa L.). Euphytica 2007, 158, 87–94. [Google Scholar] [CrossRef]
- Ali, M.G.; Naylor, R.E.L.; Matthews, S. Distinguishing the Effects of Genotype and Seed Physiological Age on Low Temperature Tolerance of Rice (Oryza sativa L.). Exp. Agric. 2006, 42, 337–349. [Google Scholar] [CrossRef]
- Reyes, B.G.; Myers, S.J.; McGrath, J.M. Differential Induction of Glyoxylate Cycle Enzymes by Stress as a Marker for Seedling Vigor in Sugar Beet (Beta vulgaris). Mol. Genet. Genom. 2003, 269, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Shimono, H.; Hasegawa, T.; Iwama, K. Response of Growth and Grain Yield in Paddy Rice to Cool Water at Different Growth Stages. Field Crops Res. 2002, 73, 67–79. [Google Scholar] [CrossRef]
- Baruah, A.R.; Ishigo-Oka, N.; Adachi, M.; Oguma, Y.; Tokizono, Y.; Onishi, K.; Sano, Y. Cold Tolerance at the Early Growth Stage in Wild and Cultivated Rice. Euphytica 2009, 165, 459–470. [Google Scholar] [CrossRef]
- Ghadirnezhad, R.; Fallah, A. Temperature Effect on Yield and Yield Components of Different Rice Cultivars in Flowering Stage. Int. J. Agron. 2014, 2014, e846707. [Google Scholar] [CrossRef]
- Hussain, S.; Khaliq, A.; Ali, B.; Hussain, H.A.; Qadir, T.; Hussain, S. Temperature Extremes: Impact on Rice Growth and Development. In Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches; Hasanuzzaman, M., Hakeem, K.R., Nahar, K., Alharby, H.F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 153–171. ISBN 978-3-030-06118-0. [Google Scholar]
- Da Cruz, R.P.; Milach, S.C.K.; Federizzi, L.C. Rice cold tolerance at the reproductive stage in a controlled environment. Sci. Agric. 2006, 63, 255–261. [Google Scholar] [CrossRef]
- Da Cruz, R.P.; Sperotto, R.A.; Cargnelutti, D.; Adamski, J.M.; de FreitasTerra, T.; Fett, J.P. Avoiding Damage and Achieving Cold Tolerance in Rice Plants. Food Energy Secur. 2013, 2, 96–119. [Google Scholar] [CrossRef]
- Shrestha, S.; Asch, F.; Brueck, H.; Giese, M.; Dusserre, J.; Ramanantsoanirina, A. Phenological Responses of Upland Rice Grown along an Altitudinal Gradient. Environ. Exp. Bot. 2013, 89, 1–10. [Google Scholar] [CrossRef]
- Shimono, H.; Okada, M.; Kanda, E.; Arakawa, I. Low Temperature-Induced Sterility in Rice: Evidence for the Effects of Temperature before Panicle Initiation. Field Crops Res. 2007, 101, 221–231. [Google Scholar] [CrossRef]
- Jacobs, B.C.; Pearson, C.J. Cold Damage and Development of Rice: A Conceptual Model. Aust. J. Exp. Agric. 1994, 34, 917–919. [Google Scholar] [CrossRef]
- Mackill, D.J.; Coffman, W.R.; Garrity, D.P. Rainfed Lowland Rice Improvement.; International Rice Research Institute (IRRI): Los Baños, Manila, Philippines, 1996. [Google Scholar]
- Heenan, D.P. Low-Temperature Induced Floret Sterility in the Rice Cultivars Calrose and Inga as Influenced by Nitrogen Supply. Aust. J. Exp. Agric. 1984, 24, 255–259. [Google Scholar] [CrossRef]
- Ahmed, N.; Maekawa, M.; Tetlow, I.J.; Ahmed, N.; Maekawa, M.; Tetlow, I.J. Effects of Low Temperature on Grain Filling, Amylose Content, and Activity of Starch Biosynthesis Enzymes in Endosperm of Basmati Rice. Aust. J. Agric. Res. 2008, 59, 599–604. [Google Scholar] [CrossRef]
- Oliver, S.N.; Dennis, E.S.; Dolferus, R. ABA Regulates Apoplastic Sugar Transport and Is a Potential Signal for Cold-Induced Pollen Sterility in Rice. Plant Cell Physiol. 2007, 48, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Miura, K.; Nagano, K.; Hayano-Saito, Y.; Araki, H.; Kato, A. Identification of Two Closely Linked Quantitative Trait Loci for Cold Tolerance on Chromosome 4 of Rice and Their Association with Anther Length. Theor. Appl. Genet. 2001, 103, 862–868. [Google Scholar] [CrossRef]
- Oliver, S.N.; Van Dongen, J.T.; Alfred, S.C.; Mamun, E.A.; Zhao, X.; Saini, H.S.; Fernandes, S.F.; Blanchard, C.L.; Sutton, B.G.; Geigenberger, P.; et al. Cold-Induced Repression of the Rice Anther-Specific Cell Wall Invertase Gene OSINV4 Is Correlated with Sucrose Accumulation and Pollen Sterility. Plant Cell Environ. 2005, 28, 1534–1551. [Google Scholar] [CrossRef]
- Somersalo, S.; Krause, G.H. Photoinhibition at Chilling Temperature. Planta 1989, 177, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Jena, K.K.; Kim, S.M.; Suh, K.J.P.; Yang, C.I.; Kim, Y.G. Identification of Cold-Tolerant Breeding Lines by Quantitative Trait Loci Associated with Cold Tolerance in Rice. Crop Sci. 2012, 52, 517–523. [Google Scholar] [CrossRef]
- Ghimiray, M. Temperate Japonica Rice in Bhutan. In Advances in Temperate Rice Research; Jena, K., Hardy, M., Eds.; International Rice Research Institute (IRRI): Los Baños, Philippines, 2012; pp. 15–25. [Google Scholar]
- Feng, D.; Fu, L. Main Meteorological Problems of Rice Production and Protective Measures in China. Int. J. Biometeorol. 1989, 33, 1–6. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, S.; Zhang, Z. Changes in Rice Disasters across China in Recent Decades and the Meteorological and Agronomic Causes. Reg. Environ. Change 2013, 13, 743–759. [Google Scholar] [CrossRef]
- Singh, B.; Sutradhar, M.; Singh, A.; Mandal, M. Cold Stress in Rice at Early Growth Stage—An Overview. Int. J. Pure Appl. Biosci. 2017, 5, 407–419. [Google Scholar] [CrossRef]
- Neelima, P.; Rani, K.; Raju, C.; Keshavulu, K. Evaluation of Rice Genotypes for Cold Tolerance. Agric. Sci. Res. J. 2015, 5, 124–133. [Google Scholar]
- Gautam, A.; Shrestha, N. Temperate Japonica Rice in Nepal. In Advances in Temperate Rice Research; Jena, K., Hardy, M., Eds.; International Rice Research Institute (IRRI): Los Baños, Philippines, 2012; pp. 49–57. [Google Scholar]
- Sthapit, B. Chilling Injury of Rice Crop in Nepal: A Review. J. Inst. Agric. Anim. Sci. 1992, 13, 1–32. [Google Scholar]
- Lee, M.H. Low Temperature Tolerance in Rice: The Korean Experience. In Proceedings of the Increased Lowland Rice Production in the Mekong Region, Vientiane, Laos, 30 October–2 November 2000; pp. 109–117. [Google Scholar]
- Nakagomi, K. Selection of New Check Rice Varieties for Evaluating High Cold Tolerance and the Development of Breeding Lines with High Cold Tolerance in the Tohoku Region of Japan. Jpn. Agric. Res. Q. 2013, 47, 1–7. [Google Scholar] [CrossRef]
- Reinke, R.; Beecher, G.; Dunn, B.; Snell, P. Temperate Rice in Australia. In Advances in Temperate Rice Research; Jena, K., Hardy, M., Eds.; International Rice Research Institute (IRRI): Los Baños, Philippines, 2012; pp. 1–14. [Google Scholar]
- Satake, T.; Lee, S.Y.; Koike, S.; Kariya, K. Male Sterility Caused by Cooling Treatment at the Young Microspore Stage in Rice Plants: XXVIII. Prevention of Cool Injury with the Newly Devised Water Management Practices: Effects of the Temperature and Depth of Water before the Critical Stage. Jpn. J. Crop Sci. 1988, 57, 234–241. [Google Scholar] [CrossRef]
- Polash, M.M.H.; Biswas, J.K.; Mahmud, H.; Khatun, R. Effects of Low Temperature at Various Growth Stages and Yield of Different Rice (Oryza sativa L.) Genotypes. J. Stress Physiol. Biochem. 2020, 16, 57–66. [Google Scholar]
- Biswas, P.; Khatun, H.; Anisuzzaman, M. Molecular and Phenotypic Characterization for Cold Tolerance in Rice (Oryza sativa L.). Bangladesh Rice J. 2020, 23, 1–15. [Google Scholar] [CrossRef]
- Islam, A.; Rasel, M.; Khanam, S.; Hassan, L. Screening of Rice (Oryza sativa L.) Genotypes for Cold Tolerance at the Seedling and Reproductive Stages Based on Morpho-Physiological Markers and Genetic Diversity Analysis *Address for Correspondence. Indian J. Nat. Prod. Resour. 2020, 10, 17964–17985. [Google Scholar]
- Islam, M.S.; Morison, J.I.L. Influence of Solar Radiation and Temperature on Irrigated Rice Grain Yield in Bangladesh. Field Crops Res. 1992, 30, 13–28. [Google Scholar] [CrossRef]
- Nahar, K.; Biswas, J.; Shamsuzzaman, A.; Hasanuzzaman, M.; Barman, H. Screening of Indica Rice (Oryza sativa L.) Genotypes Against Low Temperature Stress. Bot. Res. Int. 2009, 2, 295–303. [Google Scholar]
- Nahar, K.; Hasanuzzaman, M.; Majumder, R. Effect of Low Temperature Stress in Transplanted Aman Rice Varieties Mediated by Different Transplanting Dates. Acad. J. Plant Sci. 2009, 2, 132–138. [Google Scholar]
- Kim, S.-I.; Tai, T.H. Evaluation of Seedling Cold Tolerance in Rice Cultivars: A Comparison of Visual Ratings and Quantitative Indicators of Physiological Changes. Euphytica 2011, 178, 437–447. [Google Scholar] [CrossRef]
- Sharifi, P. Evaluation on Sixty-Eight Rice Germplasms in Cold Tolerance at Germination Stage. Rice Sci. 2010, 17, 77–81. [Google Scholar] [CrossRef]
- Basuchaudhuri, P. Cold Tolerance in Rice Cultivation, 1st ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Ghimiray, M.; Gurung, T.R. Barkat, a Cold-Tolerant Variety for the First Crop in Rice-Rice Rotations in Mid-Altitude Valleys of Bhutan. Int. Rice Res. Notes 1993, 18, 35. [Google Scholar] [CrossRef]
- Endo, T.; Chiba, B.; Wagatsuma, K.; Saeki, K.; Ando, T.; Shomura, A.; Mizubayashi, T.; Ueda, T.; Yamamoto, T.; Nishio, T. Detection of QTLs for Cold Tolerance of Rice Cultivar ‘Kuchum’ and Effect of QTL Pyramiding. Theor. Appl. Genet. 2016, 129, 631–640. [Google Scholar] [CrossRef]
- Jiang, W.; Jin, Y.-M.; Lee, J.; Lee, K.-I.; Piao, R.; Han, L.; Shin, J.-C.; Jin, R.-D.; Cao, T.; Pan, H.-Y.; et al. Quantitative Trait Loci for Cold Tolerance of Rice Recombinant Inbred Lines in Low Temperature Environments. Mol. Cells 2011, 32, 579–587. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Zhang, G.; Lu, H.; Qin, P.; Qi, M.; Yu, Y.; Jiao, B.; Zhao, X.; Gao, Q.; et al. Analysis of Genetic Architecture and Favorable Allele Usage of Agronomic Traits in a Large Collection of Chinese Rice Accessions. Sci. China Life Sci. 2020, 63, 1688–1702. [Google Scholar] [CrossRef]
- Wang, J.; Lin, X.; Sun, Q.; Jena, K.K. Evaluation of Cold Tolerance for Japonica Rice Varieties from Different Country. Adv. J. Food Sci. Technol. 2013, 5, 54–56. [Google Scholar] [CrossRef]
- Karki, T.B.; Koirala, K.B.; Bk, S. Participatory Variety Slection of Cold Tolerant Rice in the Western Hills of Nepal. Agron. J. Nepal 2010, 1, 74–79. [Google Scholar] [CrossRef]
- Shah, K.; Dubey, R.S. Effect of Cadmium on Proline Accumulation and Ribonuclease Activity in Rice Seedlings: Role of Proline as a Possible Enzyme Protectant. Biol. Plant. 1997, 40, 121–130. [Google Scholar] [CrossRef]
- Kandpal, R.P.; Rao, N.A. Alterations in the Biosynthesis of Proteins and Nucleic Acids in Finger Millet (Eleucine coracana) Seedlings during Water Stress and the Effect of Proline on Protein Biosynthesis. Plant Sci. 1985, 40, 73–79. [Google Scholar] [CrossRef]
- Schobert, B.; Tschesche, H. Unusual Solution Properties of Proline and Its Interaction with Proteins. Biochim. Biophys. Acta BBA Gen. Subj. 1978, 541, 270–277. [Google Scholar] [CrossRef]
- Xie, G.; Kato, H.; Imai, R. Biochemical Identification of the OsMKK6-OsMPK3 Signalling Pathway for Chilling Stress Tolerance in Rice. Biochem. J. 2012, 443, 95–102. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Masuta, Y.; Saito, K.; Murayama, S.; Ozawa, K. Enhanced Chilling Tolerance at the Booting Stage in Rice by Transgenic Overexpression of the Ascorbate Peroxidase Gene, OsAPXa. Plant Cell Rep. 2011, 30, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, N.; Deswal, R. The Molecular Biology of the Low-Temperature Response in Plants. BioEssays 2005, 27, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Farzad, P.; Nasri, M.; Tohidi Moghadam, H.R.; Zahedi, H.; Al-Alahmadi, M. Effects of Drought Stress on Chlorophyll Fluorescence Parameters, Chlorophyll Content and Grain Yield of Wheat Cultivars. J. Biol. Sci. 2007, 7, 841–847. [Google Scholar] [CrossRef]
- Bonnecarrère, V.; Borsani, O.; Díaz, P.; Capdevielle, F.; Blanco, P.; Monza, J. Response to Photoxidative Stress Induced by Cold in Japonica Rice Is Genotype Dependent. Plant Sci. 2011, 180, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Los, D.A.; Murata, N. Membrane Fluidity and Its Roles in the Perception of Environmental Signals. Biochim. Biophys. Acta BBA Biomembr. 2004, 1666, 142–157. [Google Scholar] [CrossRef]
- Song, S.-Y.; Chen, Y.; Chen, J.; Dai, X.-Y.; Zhang, W.-H. Physiological Mechanisms Underlying OsNAC5-Dependent Tolerance of Rice Plants to Abiotic Stress. Planta 2011, 234, 331–345. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Lei, C.; Cheng, Z.; Lin, Q.; Wang, J.; Wu, F.; Wang, J.; Wan, J. Overexpression of SlCZFP1, a Novel TFIIIA-Type Zinc Finger Protein from Tomato, Confers Enhanced Cold Tolerance in Transgenic Arabidopsis and Rice. Plant Mol. Biol. Report. 2011, 29, 185–196. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.; Zhu, J.-K. Gene Regulation during Cold Acclimation in Plants. Physiol. Plant. 2006, 126, 52–61. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.; Zhu, J.-K. Cold Stress Regulation of Gene Expression in Plants. Trends Plant Sci. 2007, 12, 444–451. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Mittal, D.; Madhyastha, D.A.; Grover, A. Genome-Wide Transcriptional Profiles during Temperature and Oxidative Stress Reveal Coordinated Expression Patterns and Overlapping Regulons in Rice. PLoS ONE 2012, 7, e40899. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Mittler, R. Reactive Oxygen Species and Temperature Stresses: A Delicate Balance between Signaling and Destruction. Physiol. Plant. 2006, 126, 45–51. [Google Scholar] [CrossRef]
- Pamplona, R. Advanced Lipoxidation End-Products. Chem. Biol. Interact. 2011, 192, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Kato, H.; Sasaki, K.; Imai, R. A Cold-Induced Thioredoxin h of Rice, OsTrx23, Negatively Regulates Kinase Activities of OsMPK3 and OsMPK6 in Vitro. FEBS Lett. 2009, 583, 2734–2738. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.-B.; Guo, Q.-J.; Chu, L.-Y.; Zhao, X.-N.; Su, Z.-L.; Hu, Y.-C.; Cheng, J.-F. Understanding Molecular Mechanism of Higher Plant Plasticity under Abiotic Stress. Colloids Surf. B Biointerfaces 2007, 54, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, Y.; Lu, J.; Shao, H. Roles of Plant Soluble Sugars and Their Responses to Plant Cold Stress. Afr. J. Biotechnol. 2009, 8, 2004–2010. [Google Scholar] [CrossRef]
- Morsy, M.R.; Jouve, L.; Hausman, J.-F.; Hoffmann, L.; Stewart, J. McD. Alteration of Oxidative and Carbohydrate Metabolism under Abiotic Stress in Two Rice (Oryza sativa L.) Genotypes Contrasting in Chilling Tolerance. J. Plant Physiol. 2007, 164, 157–167. [Google Scholar] [CrossRef]
- Krishnasamy, V.; Seshu, D.V. Seed Germination Rate and Associated Characters in Rice. Crop Sci. 1989, 29, 904–908. [Google Scholar] [CrossRef]
- Suh, J.P.; Jeung, J.U.; Lee, J.I.; Choi, Y.H.; Yea, J.D.; Virk, P.S.; Mackill, D.J.; Jena, K.K. Identification and Analysis of QTLs Controlling Cold Tolerance at the Reproductive Stage and Validation of Effective QTLs in Cold-Tolerant Genotypes of Rice (Oryza sativa L.). Theor. Appl. Genet. 2010, 120, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Han, L.-Z.; Zhang, Y.-Y.; Qiao, Y.-L.; Cao, G.-L.; Zhang, S.-Y.; Kim, J.-H.; Koh, H.-J. Genetic and QTL Analysis for Low-Temperature Vigor of Germination in Rice. Acta Genet. Sin. 2006, 33, 998–1006. [Google Scholar] [CrossRef]
- Zhou, L.; Zeng, Y.; Hu, G.; Pan, Y.; Yang, S.; You, A.; Zhang, H.; Li, J.; Li, Z. Characterization and Identification of Cold Tolerant Near-Isogenic Lines in Rice. Breed. Sci. 2012, 62, 196–201. [Google Scholar] [CrossRef]
- IRRI. Standard Evaluation System (SES) for Rice, 5th ed.; International Rice Research Institute: Los Baños, Philippines, 2013. [Google Scholar]
- Andaya, V.C.; Tai, T.H. Fine Mapping of the qCTS12 Locus, a Major QTL for Seedling Cold Tolerance in Rice. Theor. Appl. Genet. 2006, 113, 467–475. [Google Scholar] [CrossRef]
- Suh, J.P.; Lee, C.K.; Lee, J.H.; Kim, J.J.; Kim, S.M.; Cho, Y.C.; Park, S.H.; Shin, J.C.; Kim, Y.G.; Jena, K.K. Identification of Quantitative Trait Loci for Seedling Cold Tolerance Using RILs Derived from a Cross between Japonica and Tropical Japonica Rice Cultivars. Euphytica 2012, 184, 101–108. [Google Scholar] [CrossRef]
- Shirasawa, S.; Endo, T.; Nakagomi, K.; Yamaguchi, M.; Nishio, T. Delimitation of a QTL Region Controlling Cold Tolerance at Booting Stage of a Cultivar, “Lijiangxintuanheigu”, in Rice, Oryza sativa L. Theor. Appl. Genet. 2012, 124, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Sun, S.-J.; Xu, D.-Q.; Yang, X.; Bao, Y.-M.; Wang, Z.-F.; Tang, H.-J.; Zhang, H. Increased Tolerance of Rice to Cold, Drought and Oxidative Stresses Mediated by the Overexpression of a Gene That Encodes the Zinc Finger Protein ZFP245. Biochem. Biophys. Res. Commun. 2009, 389, 556–561. [Google Scholar] [CrossRef]
- Kim, S.-H.; Choi, H.-S.; Cho, Y.-C.; Kim, S.-R. Cold-Responsive Regulation of a Flower-Preferential Class III Peroxidase Gene, OsPOX1, in Rice (Oryza sativa L.). J. Plant Biol. 2012, 55, 123–131. [Google Scholar] [CrossRef]
- Foolad, M.R.; Lin, G.Y.; Chen, F.Q. Comparison of QTLs for Seed Germination under Non-Stress, Cold Stress and Salt Stress in Tomato. Plant Breed. 1999, 118, 167–173. [Google Scholar] [CrossRef]
- Oh, C.-S.; Choi, Y.-H.; Lee, S.-J.; Yoon, D.-B.; Moon, H.-P.; Ahn, S.-N. Mapping of Quantitative Trait Loci for Cold Tolerance in Weedy Rice. Breed. Sci. 2004, 54, 373–380. [Google Scholar] [CrossRef]
- Ham, T.-H.; Kwon, Y.; Lee, Y.; Choi, J.; Lee, J. Genome-Wide Association Study Reveals the Genetic Basis of Cold Tolerance in Rice at the Seedling Stage. Agriculture 2021, 11, 318. [Google Scholar] [CrossRef]
- Lin, J.; Zhu, W.; Zhang, Y.; Zhu, Z.; Zhao, L.; Chen, T.; Zhao, Q.; Zhou, L.; Fang, X.; Wang, Y.; et al. Detection of QTL for Cold Tolerance at Bud Bursting Stage Using Chromosome Segment Substitution Lines in Rice (Oryza sativa). Rice Sci. 2011, 18, 71–74. [Google Scholar] [CrossRef]
- Andaya, V.C.; Mackill, D.J. Mapping of QTLs Associated with Cold Tolerance during the Vegetative Stage in Rice. J. Exp. Bot. 2003, 54, 2579–2585. [Google Scholar] [CrossRef] [PubMed]
- Andaya, V.C.; Tai, T.H. Fine Mapping of the qCTS4 Locus Associated with Seedling Cold Tolerance in Rice (Oryza sativa L.). Mol. Breed. 2007, 20, 349–358. [Google Scholar] [CrossRef]
- Koseki, M.; Kitazawa, N.; Yonebayashi, S.; Maehara, Y.; Wang, Z.-X.; Minobe, Y. Identification and Fine Mapping of a Major Quantitative Trait Locus Originating from Wild Rice, Controlling Cold Tolerance at the Seedling Stage. Mol. Genet. Genom. 2010, 284, 45–54. [Google Scholar] [CrossRef]
- Fujino, K.; Sekiguchi, H.; Matsuda, Y.; Sugimoto, K.; Ono, K.; Yano, M. Molecular Identification of a Major Quantitative Trait Locus, qLTG3–1, Controlling Low-Temperature Germinability in Rice. Proc. Natl. Acad. Sci. USA 2008, 105, 12623–12628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-H.; Qu, X.-S.; Wan, S.; Chen, L.-H.; Zhu, Y.-G. Comparison of QTL Controlling Seedling Vigour under Different Temperature Conditions Using Recombinant Inbred Lines in Rice (Oryza sativa). Ann. Bot. 2005, 95, 423–429. [Google Scholar] [CrossRef]
- Mahbub, M.; Biswas, J.; Yasmeen, R.; Haque, M. Effect of Polyethylene Cover on Quality Rice Seedling Production during Winter Season. Bangladesh Rice J. 2008, 14, 15–26. [Google Scholar]
- Waraich, E.A.; Ahmad, R.; Halim, A.; Aziz, T. Alleviation of Temperature Stress by Nutrient Management in Crop Plants: A Review. J. Soil Sci. Plant Nutr. 2012, 12, 221–244. [Google Scholar] [CrossRef]
- Hou, L.; Chen, W.; Zhao, G.; Ma, W.; Qi, C.; Liu, L.; Sun, H. Effects of Phosphate Fertilizer on Cold Tolerance and Its Related Physiological Parameters in Rice Under Low Temperature Stress. J. Northeast Agric. Univ. Engl. Ed. 2012, 19, 1–10. [Google Scholar] [CrossRef]
- Andrianary, B.H.; Tsujimoto, Y.; Rakotonindrina, H.; Oo, A.Z.; Rabenarivo, M.; Ramifehiarivo, N.; Razakamanarivo, H. Phosphorus Application Affects Lowland Rice Yields by Changing Phenological Development and Cold Stress Degrees in the Central Highlands of Madagascar. Field Crops Res. 2021, 271, 108256. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Huang, S.; Li, W.; Penuelas, J.; Chen, J.; Zhou, F.; Zhang, W.; Li, G.; Liu, Z.; et al. Manure Amendment Can Reduce Rice Yield Loss under Extreme Temperatures. Commun. Earth Environ. 2022, 3, 147. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, H.; Zhao, L.; Gu, C.; Na, Y.; Xie, B.; Cheng, S.; Pan, G. Application of Brassinolide Alleviates Cold Stress at the Booting Stage of Rice. J. Integr. Agric. 2020, 19, 975–987. [Google Scholar] [CrossRef]
- Nakashima, K.; Takasaki, H.; Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. NAC Transcription Factors in Plant Abiotic Stress Responses. Biochim. Biophys. Acta 2012, 1819, 97–103. [Google Scholar] [CrossRef]
- Hossain, M.A.; Cho, J.-I.; Han, M.; Ahn, C.-H.; Jeon, J.-S.; An, G.; Park, P.B. The ABRE-Binding bZIP Transcription Factor OsABF2 Is a Positive Regulator of Abiotic Stress and ABA Signaling in Rice. J. Plant Physiol. 2010, 167, 1512–1520. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Q.; Hussain, S.; Mei, J.; Dong, H.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Pre-Sowing Seed Treatments in Direct-Seeded Early Rice: Consequences for Emergence, Seedling Growth and Associated Metabolic Events under Chilling Stress. Sci. Rep. 2016, 6, 19637. [Google Scholar] [CrossRef]
- Sohag, A.A.M.; Tahjib-Ul-Arif, M.; Afrin, S.; Khan, M.K.; Hannan, M.A.; Skalicky, M.; Mortuza, M.G.; Brestic, M.; Hossain, M.A.; Murata, Y. Insights into Nitric Oxide-Mediated Water Balance, Antioxidant Defence and Mineral Homeostasis in Rice (Oryza sativa L.) under Chilling Stress. Nitric Oxide 2020, 100–101, 7–16. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, F.; Hussain, H.A.; Nie, L. Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars. Front. Plant Sci. 2016, 7, 116. [Google Scholar] [CrossRef]
- Anwar, M.P.; Khalid, M.A.I.; Islam, A.K.M.M.; Yeasmin, S.; Ahmed, S.; Hadifa, A.; Ismail, I.; Hossain, A.; Sabagh, A. Potentiality of Different Seed Priming Agents to Mitigate Cold Stress of Winter Rice Seedling. Phyton 2021, 90, 1491–1506. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, M.; Zhang, H.; Li, R. Zinc Oxide Nanoparticles Alleviate Chilling Stress in Rice (Oryza sativa L.) by Regulating Antioxidative System and Chilling Response Transcription Factors. Molecules 2021, 26, 2196. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Jiang, Y.; Cui, W.; Jin, Q.; Zhang, Y.; Bu, D.; Fu, J.; Wang, R.; Zhou, F.; Shen, W. Hydrogen Enhances Adaptation of Rice Seedlings to Cold Stress via the Reestablishment of Redox Homeostasis Mediated by miRNA Expression. Plant Soil 2017, 414, 53–67. [Google Scholar] [CrossRef]
- Cao, X.; Zhong, C.; Zhu, L.; Zhang, J.; Sajid, H.; Wu, L.; Jin, Q. Glycine Increases Cold Tolerance in Rice via the Regulation of N Uptake, Physiological Characteristics, and Photosynthesis. Plant Physiol. Biochem. 2017, 112, 251–260. [Google Scholar] [CrossRef]
- Takahashi, N.; Sunohara, Y.; Fujiwara, M.; Matsumoto, H. Improved Tolerance to Transplanting Injury and Chilling Stress in Rice Seedlings Treated with Orysastrobin. Plant Physiol. Biochem. 2017, 113, 161–167. [Google Scholar] [CrossRef]
- Yuan, J.; Meng, J.; Liang, X.; Yang, E.; Yang, X.; Chen, W. Organic Molecules from Biochar Leacheates Have a Positive Effect on Rice Seedling Cold Tolerance. Front. Plant Sci. 2017, 8, 1624. [Google Scholar] [CrossRef]
Districts | Upazilas | Total Land Area (M ha) | No. of Haors | Total Haor Area (M ha) |
---|---|---|---|---|
| Nasirnagar and Sadar | 0.19 | 3 | 0.03 |
| Ajmerigonj, Bahubal, and Sadar | 0.26 | 38 | 0.11 |
| Austragram, Bazitpur, Bhairab, Itna, Karimgonj, Kuliarchar, Mithamoin, Nikli, and Tarail | 0.27 | 122 | 0.13 |
| Kulaura, Rajnagar, Sadar, and Sreemangal | 0.28 | 4 | 0.05 |
| Atpara, Barhatta, Kandua, Khaliajuri, Madan, and Mohongonj | 0.27 | 80 | 0.08 |
| Bishambarpur, Chhatak, Derai, Dharmapasha, Jagannathpur, Jamalganj, Sadar, Salla, and Tahirpur | 0.37 | 133 | 0.27 |
| Balagonj, Beanibazar, Biswanath, Fenchuganj, and Jaintiapur | 0.35 | 43 | 0.19 |
Total | 2.00 | 423 | 0.86 |
Districts | Total Cultivated Land (M ha) | Cultivated Land under Haor | |
---|---|---|---|
M ha | % Area | ||
| 0.15 | 0.01 | 33.77 |
| 0.19 | 0.04 | 36.53 |
| 0.17 | 0.12 | 89.59 |
| 0.13 | 0.02 | 42.02 |
| 0.21 | 0.05 | 63.02 |
| 0.20 | 0.14 | 52.14 |
| 0.21 | 0.03 | 15.80 |
Total | 1.26 | 0.41 | 47.76 |
District | Aus (Summer) Rice | T. Aman (Monsoon) Rice | Boro (Winter) Rice | Other Rabi (Winter) Crops | Cropping Intensity (%) |
---|---|---|---|---|---|
| - | - | 0.014 | 0.003 | 189 |
| - | 0.010 | 0.033 | 0.001 | 171 |
| - | - | 0.117 | 0.007 | 215 |
| - | 0.007 | 0.010 | 0.001 | 171 |
| 0.005 | 0.004 | 0.046 | 0.004 | 186 |
| - | - | 0.136 | 0.002 | 143 |
| - | 0.004 | 0.020 | 0.002 | 160 |
Total | 0.005 | 0.025 | 0.376 | 0.02 |
Districts | Boro Area (M ha) in the | |
---|---|---|
District | Haor | |
| 0.111 | 0.032 |
| 0.120 | 0.046 |
| 0.167 | 0.103 |
| 0.055 | 0.027 |
| 0.185 | 0.041 |
| 0.219 | 0.161 |
| 0.081 | 0.035 |
Total | 0.937 | 0.445 |
Districts | Percent (%) Area | Yield (t ha−1) | ||||
---|---|---|---|---|---|---|
BRRI dhan28 | BRRI dhan29 | Hybrid Rice | Other HYV + Local | HYV | Hybrid | |
| 27 | 40 | 15 | 18 | 4.85 | 5.92 |
| 14 | 52 | 24 | 10 | 4.93 | 5.45 |
| 12 | 49 | 20 | 18 | 4.37 | 5.82 |
| 28 | 27 | 20 | 25 | 4.10 | 5.78 |
| 20 | 40 | 18 | 20 | 5.07 | 6.72 |
| 15 | 43 | 22 | 20 | 4.30 | 5.50 |
| 21 | 22 | 31 | 24 | 4.33 | 5.65 |
Average | 19.6 | 39.0 | 21.4 | 19.3 | 4.56 | 5.83 |
Rice Varieties | Seeding by | Transplanting by | Panicle Initiation by | Heading by | Harvesting by | Risks |
---|---|---|---|---|---|---|
| 15 October | 15 November | 15 January | 15 February | 21 March | Spikelet sterility |
1 November | 7 December | 1st week of February | 7 March | 7 April | Spikelet sterility Early flash floods | |
15 November | 15 December | 21 February | 15 March | 15 April | Flash floods | |
| 15 October | 30 November | 15 February | 7 March | 7 April | Early/flash floods |
1 November | 15 December | 28 February | 22 March | 22 April | Early/flash floods | |
15 November | 30 December | 7 March | 7 April | 30 April–7 May | Early/flash floods |
Rice Growth Phases | Optimum | Minimum | Maximum |
---|---|---|---|
| 20–35 | 10 | 45 |
| 25–30 | 12–13 | 35 |
| 25–28 | 16 | 35 |
| 31 | 7–12 | 45 |
| 25–31 | 9–16 | 33 |
| 30–33 | 22 | 35 |
| 20–25 | 12–18 | 30 |
Country | Rice Varieties/Genotypes | References |
---|---|---|
Australia | Sherpa, Quest | Basuchaudhuri [70] Reinke et al. [60] |
Bhutan | Barkat, Chhomrong dhan, Jakar Rey Naab, Khangma Maap, Kuchum, Yusi Rey Kaap1, Yusi Rey Kaap2, Yusi Rey Maap1, Yusi Rey Maap2 | Ghimiray and Gurung [71], Endo et al. [72] |
China | B55, Banjiemang, Daohuaxiang2, KY131, Lijiangheigu, Longgeng31,TR22183, Yunlu 29 | Basuchaudhuri [70], Jiang et al. [73], and Li et al. [74] |
Hungary | HSC55 | Basuchaudhuri [70] |
India | Akshaydhan, Bhadrakali, Himalaya1, Himali, Himdhan, HPU1, JGL 3844, K332, Kalimpong1, Kanchan, Khonorullo, Meghalaya, RNR 17813, RNR 18805, Sheetal, Taramati, Tellahamsa, WGL 44 | Neelima et al. [55] Basuchaudhuri [70] |
Japan | Hitomebore, Iwate 100, Jyoudeki, Ouu 415, Ouu-PL5, Tohoku 207, Tohoku PL3 | Nakagomi [59], |
Korea | IR83222-F8-156, IR83222-F8-14, Jinbubyeo, Junganbyeo, SR30084-F8-156, SR30084-F8-14 | Wang et al. [75] |
Nepal | Chainan-2, Chainung-242, Chandannath-1, Chandannath-3, Chhomrong dhan, Himali, Jumli Marsi, Kanchan, Khumal-2, Khumal-3, Khumal-4, Khumal-5, Khumal-6, Khumal-7, Khumal-8, Khumal-9 Machhapuchre-3, Machhapuchre-3, Manjushree 2, Palung-2, Taichung-176, Tainan-1 | Gautam and Shrestha [56] Karki et al. [76] |
Russia | Kuban-3, Severny | Wang |
USA | M103, M104 | Basuchaudhuri [70] |
Criteria in Different Stages | Indicators | Temperature and Duration | References | |
---|---|---|---|---|
Treatment | Recovery | |||
| ||||
| The ratio of sprouted seeds to the total number of seeds used | 14 °C for 7–17 days | - | Han et al. [102] |
| The ratio of survived seedlings over the total number of sprouted seeds | 2 °C for 72 h | 20 °C for 7 days | Zhou et al. [103] |
| ||||
| Changes in fresh weight of plants after cold treatment | 10 °C for 1–48 h | - | Bonnecarrère [86] |
| The ratio of live plants to the plants treated | 4 °C for 6 days | 26 °C for 6 days | Zhang et al. [89] |
| The emergence of new leaves | 4 °C for 7 days | 25 °C for 10 days | Xie et al. [80] |
| Visual scoring of 1: dark green, 3: light green, 5: yellow, 7: brown, 9: dead | 9 °C for 8–14 days | - | Kim and Tai [68], IRRI [104], Andaya and Tai [105] |
| Visual scoring of 1–3: normal leaf without any injury tolerant, all leaves (tolerant), 4–9: wilted leaf and dead seedling (susceptible) | 10 °C for 7 days | 25 °C for 7 days | Suh et al. [106] |
| ||||
| The ratio of filled grains to the total number of grains | 12 °C for 6 days | Until maturity | Sato et al. [82] |
| The ratio of sterile grains to the total number of grains | 18–19 °C for ~60 days | Until maturity | Shirasawa et al. [107] |
Name of QTL | Trait for Mapping | Chromosome No. | Reference |
---|---|---|---|
Ctb1, Ctb2 | Seed fertility | 4 | Saito et al. [47] |
Dth, cl, fer, pe, dc | Days to flowering, culm length, seed fertility, and panicle exertion | 1, 3, 5, 6, 7, 8, 9, 11 | Oh et al. [111] |
Os01g0357800, Os05g0171300, Os05g0400200 | Seedling vigor | 1, 4, 5 | Ham et al. [112] |
qCTB-1-1, −4-1/2, −5-1/2, −10-1/2, −11-1 | Seed fertility | 1, 4, 5, 10, 11 | Xu et al. [27] |
qCTB2a, qCTB3 | Seed fertility | 2, 3 | Andaya and Mackill [26] |
qCTB-5-1/2/3, −7 | Seed germination | 5, 7 | Lin et al. [113] |
qCTP11, qCTP12 | Seed germination | 11, 12 | Baruah et al. [35] |
qCTS12, qCTS12a | Seedling growth | 12 | Andaya and Tai [105], Andaya and Mackill [114] |
qCTS-2 | Seedling growth | 2 | Lou et al. [31] |
qCTS4, qCTS4a, qCTS4b | Seedling growth | 4 | Andaya and Tai [115], Suh et al. [106] |
qCtss11 | Seedling growth | 11 | Koseki et al. [116] |
qLTB3 | Seed fertility | 3 | Shirasawa et al. [107] |
qLTG3-1 | Seed germination | 3 | Fujino et al. [117] |
qLVG2, qLVG7-2, qCIVG7-2 | Seed germination | 2, 7 | Han et al. [102] |
qPSST-3, −7, −9 | Seed fertility | 3, 7, 8, 9, 11 | Suh et al. [101] |
qSV-3-1/2, −5, −8-1/2 | Seedling growth | 3, 5, 8 | Zhang et al. [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.; Biswas, P.; Islam, M.R. Cold-Tolerant and Short-Duration Rice (Oryza sativa L.) for Sustainable Food Security of the Flash Flood-Prone Haor Wetlands of Bangladesh. Sustainability 2023, 15, 16873. https://doi.org/10.3390/su152416873
Hossain M, Biswas P, Islam MR. Cold-Tolerant and Short-Duration Rice (Oryza sativa L.) for Sustainable Food Security of the Flash Flood-Prone Haor Wetlands of Bangladesh. Sustainability. 2023; 15(24):16873. https://doi.org/10.3390/su152416873
Chicago/Turabian StyleHossain, Mobarak, Partha Biswas, and Mohammad Rafiqul Islam. 2023. "Cold-Tolerant and Short-Duration Rice (Oryza sativa L.) for Sustainable Food Security of the Flash Flood-Prone Haor Wetlands of Bangladesh" Sustainability 15, no. 24: 16873. https://doi.org/10.3390/su152416873
APA StyleHossain, M., Biswas, P., & Islam, M. R. (2023). Cold-Tolerant and Short-Duration Rice (Oryza sativa L.) for Sustainable Food Security of the Flash Flood-Prone Haor Wetlands of Bangladesh. Sustainability, 15(24), 16873. https://doi.org/10.3390/su152416873