One-Dimensional Computational Model of Gyttja Clay for Settlement Prediction
Abstract
:1. Introduction
2. Load Test in Natural Scale
3. Rheological Model of Settlement
3.1. Constitutive Differential Equations in 1D
3.2. Influence of the Width of Foundation on the Value of Settlements
3.3. Influence of the Width of Foundation on the Value of Settlements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myślińska, E. Organic Soils and Laboratory Methods of Research; PWN: Warsaw, Poland, 2001. (In Polish) [Google Scholar]
- Lee, K.I.; White, W.; Ingles, O.G. Geotechnical Engineering; Pitman Publishing Inc.: London, UK, 1983. [Google Scholar]
- Berry, P.L.; Poskitt, T.J. The consolidation of peat. Géotechnique 1972, 22, 27–52. [Google Scholar] [CrossRef]
- Koda, E. The Effect of Vertical Drainage on Accelerating the Consolidation of Organic Soils. Ph.D. Thesis, Warsaw University of Life Sciences, Warsaw, Poland, 1990. In Polish . [Google Scholar]
- Haan, E.J.D. A compression model for non-brittle soft clays and peat. Géotechnique 1996, 46, 1–16. [Google Scholar] [CrossRef]
- Sas, W. Modeling of Organic Soil Deformation Including Changes in the Properties of the Medium. Ph.D. Thesis, Warsaw University of Life Sciences, Warsaw, Poland, 2001. In Polish . [Google Scholar]
- Szymański, A.; Sas, W. Deformation characteristics of organic soils. Ann. Wars. Agric. Univ. Land Reclam. 2001, 32, 117–126. [Google Scholar]
- Edil, T.B.; Dhowian, A.W. Analysis of long term compression of peats. Geotech. Eng. 1979, 10, 153–178. [Google Scholar]
- Wolski, W.; Larsson, R.; Szymański, A.; Lechowicz, Z.; Mirecki, J.; Garbulewski, K.; Hartlen, J.; Bergdahl, U. Two Stage Constructed Embankments on Organic Soils; Technical Report 32; Swedish Geotechnical Institute: Linköping, Sweden, 1988. [Google Scholar]
- Wu, W.; Zong, M.; El Naggar, M.H.; Mei, G.; Liang, R. Analytical solution for one-dimensional consolidation of double-layered soil with exponentially time-growing drainage boundary. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718806716. [Google Scholar] [CrossRef] [Green Version]
- Terzaghi, K. Erdbaumechanik Auf Boden-Physikalischen Grundlagen; Deuticke: Vienna, Austria, 1925. [Google Scholar]
- Liu, Z.; Xia, Y.; Shi, M.; Zhang, J.; Zhu, X. Numerical Simulation and Experiment Study on the Characteristics of Non-Darcian Flow and Rheological Consolidation of Saturated Clay. Water 2019, 11, 1385. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.W.; Merchant, W. A theory of clay consolidation accounting for secondary compression. J. Math. Phys. 1940, 19, 167–185. [Google Scholar] [CrossRef]
- Taylor, D.W. Research on Consolidation of Clays; Technical Report 82; Massachusetts Institute of Technology: Cambridge, MA, USA, 1942. [Google Scholar]
- Gibson, R.E.; Lo, K.Y. A Theory of Consolidation for Soils Exhibiting Secondary Compression. In ACTA Politechnica Scandinavica; Norwegian Geotechnical Institute: Oslo, Norway, 1961. [Google Scholar]
- Schiffman, R.L.; Ladd, C.C.; Chen, A.T. The Secondary Consolidation of Clay. In Symposium on Rheological Soil Mechanics; Springer: Berlin/Heidelberg, Germany, 1964. [Google Scholar]
- Barden, L. Primary and secondary consolidation of clay and peat. Geotechnique 1965, 15, 345–362. [Google Scholar] [CrossRef]
- Olek, B.S. A Consolidation Curve Reproduction Based on Sigmoid Model: Evaluation and Statistical Assessment. Materials 2022, 15, 6188. [Google Scholar] [CrossRef] [PubMed]
- Lubarda, V.A. Elastoplasticity Theory; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar] [CrossRef]
- Nowacki, W. The theory of Creep; Arkady: Warsaw, Poland, 1963; In Polish . [Google Scholar]
- Wiłun, Z. An Outline Geotechnics; WKŁ: Alphen, The Netherlands, 1987; In Polish . [Google Scholar]
- Cernica, N.J. Geotechnical Engineering: Foundation Design; J. Wiley & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Glazer, Z. Soil Mechanics; Wydawnictwa Geologiczne: Warszawa, Poland, 1985; In Polish . [Google Scholar]
- Jeske, T.; Przedecki, T.; Rosiński, B. Soil Mechanics; PWN: Warsaw, Poland, 1966; In Polish . [Google Scholar]
- Puła, O.; Rybak, C.; Sarniak, W. Foundation Design; Dolnoslaskie Wydawnictwo Edukacyjne: Wrocław, Poland, 2009; In Polish . [Google Scholar]
- Meyer, Z. Określenie współczynnika podatności podłoża przy projektowaniu plyt fundamentowych w złożonych warunkach geotechnicznych. In Proceedings of the XXVIII Warsztaty Pracy Projektanta Konstrukcji, Wisła, Poland, 5 March 2013; Volume 1, pp. 343–392. [Google Scholar]
- Wolfram Research, Inc. Mathematica, 10th ed.; Wolfram Research, Inc.: Champaign, IL, USA, 2014. [Google Scholar]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Kacprzak, G. Współpraca Fundamentu Płytowo-Palowego Z Podłozem Gruntowym; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2018; In Polish . [Google Scholar]
- Józefiak, K.; Zbiciak, A. Secondary consolidation modelling by using rheological schemes. MATEC Web Conf. 2017, 117, 00069. [Google Scholar] [CrossRef]
- Zbiciak, A.; Grzesikiewicz, W.; Wakulicz, A. One-dimensional rheological models of asphalt-aggregate mixtures. Logistyka 2010, 6, 3825–3832. [Google Scholar]
- Zbiciak, A. Mathematical description of rheological properties of asphalt-aggregate mixes. Bull. Pol. Acad. Sci. Tech. Sci. 2013, 61, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Brzezinski, K. Zero shear viscosity estimation using a computer simulation of Van der Poel’s nomograph. J. Build. Chem. 2016, 1, 10–17. [Google Scholar] [CrossRef]
- Lamarque, C.H.; Kacprzak, G.; Awrejcewicz, J. Active control for a 2DOF of building including elastoplastic soil-structure coupling terms. In Proceedings of the DETC’01, 2001 ASME Design Engineering Technical Conferences, Pittsburgh, PA, USA, 9–12 September 2001. [Google Scholar]
- Lamarque, C.H.; Awrejcewicz, J.; Kacprzak, G. Active control for a 2DOF mechanical system including elastoplastic terms. In Proceedings of the 10th International Conference on System-Modelling-Control, Zakopane, Poland, 21–25 May 2001; pp. 11–16. [Google Scholar]
- Lamarque, C.H.; Awrejcewicz, J.; Kacprzak, G. Control of structures. Applied Mechanics. In Proceedings of the Americas: Proceedings of the Seventh PAN American Congress of Applied Mechanics, Temuco, Chile, 2–4 January 2002. [Google Scholar]
CPT–S1 | 2.4–8.8 | 0.2 | 45 |
CPT–S2 | 3.0–13.0 | 0.2 | 50 |
CPT–S3 | 2.8–12.8 | 0.2 | 60 |
CPT–S4 | 3.0–13.0 | 0.25 | 55 |
CPT–S5 | 3.4–11.2 | 0.25 | 50 |
CPT–S6 | 3.0–9.6 | 0.22 | 50 |
CPT–S5b | 11.2–13.8 | −0.05 | 200 |
CPT–S6 | 3.0–9.6 | 0.22 | 50 |
CPT–S7 | 4.6–9.2 | 0.22 | 60 |
CPT–S8 | 3.2–14.2 | 0.15 | 70 |
CPT–S9 | 3.4–15.0 | 0.15 | 70 |
CPT–S10 | 3.3–9.0 | 0.18 | 60 |
5495 | 25,145 | 5765 | 4.12 ∙ 106 | 4 ∙ 107 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kacprzak, G.; Zbiciak, A.; Józefiak, K.; Nowak, P.; Frydrych, M. One-Dimensional Computational Model of Gyttja Clay for Settlement Prediction. Sustainability 2023, 15, 1759. https://doi.org/10.3390/su15031759
Kacprzak G, Zbiciak A, Józefiak K, Nowak P, Frydrych M. One-Dimensional Computational Model of Gyttja Clay for Settlement Prediction. Sustainability. 2023; 15(3):1759. https://doi.org/10.3390/su15031759
Chicago/Turabian StyleKacprzak, Grzegorz, Artur Zbiciak, Kazimierz Józefiak, Paweł Nowak, and Mateusz Frydrych. 2023. "One-Dimensional Computational Model of Gyttja Clay for Settlement Prediction" Sustainability 15, no. 3: 1759. https://doi.org/10.3390/su15031759
APA StyleKacprzak, G., Zbiciak, A., Józefiak, K., Nowak, P., & Frydrych, M. (2023). One-Dimensional Computational Model of Gyttja Clay for Settlement Prediction. Sustainability, 15(3), 1759. https://doi.org/10.3390/su15031759