Biological Nitrogen Fixation of Cowpea in a No-Till Intercrop under Contrasting Rainfed Agro-Ecological Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Experimental Design and Management
2.3. Sampling Details
2.3.1. 15N Natural Abundance
2.3.2. Biological Nitrogen Fixation (BNF)
2.3.3. NDFA Is Nitrogen Derived from the Air
2.4. Statistical Analysis
3. Results
3.1. Soil Sampling Results Collected after Physiological Maturity
3.2. Biomass Accumulation
3.3. Land Equivalent Ratio
3.4. N Fixed and N Accumulated
3.5. δ15N and %Ndfa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez, P.A. Tripling crop yields in tropical Africa. Nat. Geosci. 2010, 3, 299–300. [Google Scholar] [CrossRef]
- van Ittersum, M.K. Crop Yields and Global Food Security. Will Yield Increase Continue to Feed the World? Eur. Rev. Agric. Econ. 2016, 43, 191–192. [Google Scholar] [CrossRef] [Green Version]
- Derpsch, R.; Franzluebbers, A.; Duiker, S.W.; Reicosky, D.C.; Koeller, K.; Friedrich, T.; Sturny, W.; Sá, J.C.; Weiss, K. Why do we need to standardize no-tillage research? Soil Tillage Res. 2014, 137, 16–22. [Google Scholar] [CrossRef]
- Salgado, G.C.; Ambrosano, E.J.; Rossi, F.; Otsuk, I.P.; Ambrosano, G.M.B.; Santana, C.A.; Muraoka, T.; Trivelin, P.C.O. Biological n fixation and n transfer in an intercropping system between legumes and organic cherry tomatoes in succession to green corn. Agriculture 2021, 11, 690. [Google Scholar] [CrossRef]
- de Freitas, A.D.S.; Fernandes Silva, A.; Valadares de Sá Barretto Sampaio, E. Yield and biological nitrogen fixation of cowpea varieties in the semi-arid region of Brazil. Biomass Bioenergy 2012, 45, 109–114. [Google Scholar] [CrossRef]
- Bado, B.V.; Sedogo, M.; Lompo, F.; Maman Laminou, S.M. Biological Nitrogen Fixation by Local and Improved Genotypes of Cowpea in Burkina Faso (West Africa): Total Nitrogen Accumulated can be used for Quick Estimation. Adv. Agric. 2018, 2018, 9641923. [Google Scholar] [CrossRef]
- Rahman, K.M.A.; Zhang, D. Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 2018, 10, 759. [Google Scholar] [CrossRef] [Green Version]
- Khashi u Rahman, M.; Hussain, Z.; Zhou, X.; Ali, I.; Wu, F. Intercropping: A Substitute but Identical of Biofertilizers. Microbiota Biofertil. 2021, 2, 293–309. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Dordas, C.A.; Damalas, C.A.; Vlachostergios, D.N.V. Annual intercrops: An alternative pathway for sustainable agriculture. AJCS 2011, 5, 396–410. [Google Scholar]
- Keston, O.W.N.; Ernest, S.; Jerome, P.M.; Patson, C.N. Biological nitrogen fixation by pigeon pea and cowpea in the doubled-up and other cropping systems on the Luvisols of Central Malawi. Afr. J. Agric. Res. 2017, 12, 1341–1352. [Google Scholar] [CrossRef] [Green Version]
- Bado, B.V.; Bationo, A.; Cescas, M.P. Assessment of cowpea and groundnut contributions to soil fertility and succeeding sorghum yields in the Guinean savannah zone of Burkina Faso (West Africa). Biol. Fertil. Soils 2006, 43, 171–176. [Google Scholar] [CrossRef]
- Nezomba, H.; Mtambanengwe, F.; Tittonell, P.; Mapfumo, P. Point of no return? Rehabilitating degraded soils for increased crop productivity on smallholder farms in eastern Zimbabwe. Geode 2015, 239, 143–155. [Google Scholar] [CrossRef]
- Rapholo, E.; Odhiambo, J.J.O.; Nelson, W.C.D.; Rötter, R.P.; Ayisi, K.; Koch, M.; Hoffmann, M.P. Maize-lablab intercropping is promising in supporting the sustainable intensification of smallholder cropping systems under high climate risk in southern Africa. Exp. Agric. 2019, 56, 104–117. [Google Scholar] [CrossRef]
- Moriri, S.; Owoeye, L.G.; Mariga, I.K. Influence of component crop densities and planting patterns on maize production in dry land maize/cowpea intercropping systems. Afr. J. Agric. Res. 2010, 5, 1200–1207. [Google Scholar] [CrossRef]
- Makoi, J.H.J.R.; Chimphango, S.B.M.; Dakora, F.D. Effect of legume plant density and mixed culture on symbiotic N 2 fixation in five cowpea (Vigna unguiculata L. Walp.) genotypes in South Africa. SYMBIO 2009, 48, 57–67. [Google Scholar] [CrossRef]
- Phefadu, K.C.; Kutu, F.R. Evaluation of Spatial Variability of Soil Physico-Chemical Characteristics on Rhodic Ferralsol at the Syferkuil Experimental Farm of University of Limpopo, South Africa. J. Agric. Sci. 2016, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Mogale, T.E.; Ayisi, K.K.; Munjonji, L.; Kifle, Y.G. Yield Responses of Grain Sorghum and Cowpea in Binary and Sole Cultures under No-Tillage Conditions in Limpopo Province. Agriculture 2022, 12, 733. [Google Scholar] [CrossRef]
- Kamara, A.Y.; Tofa, A.I.; Kyei-Boahen, S.; Solomon, R.; Ajeigbe, H.A.; Kamai, N. Effects of plant density on the performance of cowpea in Nigerian Savannas. Exp. Agric. 2018, 54, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, A.J.; West, C.P.; Allen, F.L.; Keyser, P.D.; Weiss, S.A.; Tyler, D.D.; Taylor, A.M.; Warwick, K.L.; Beamer, K.P. Biologically fixed nitrogen in legume intercropped systems: Comparison of nitrogen-difference and nitrogen-15 enrichment techniques. Agron. J. 2015, 107, 2419–2430. [Google Scholar] [CrossRef] [Green Version]
- Sichone, R.; Mweetwa, A.M. Soil Nutrient Status and Cowpea Biological Nitrogen Fixation in a Maize-Cowpea Rotation Under Conservation Farming. J. Agric. Sci. 2018, 10, 136. [Google Scholar] [CrossRef]
- Isaac, M.E.; Harmand, J.M.; Drevon, J.J. Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions. J. Plant Physiol. 2011, 168, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, K.; Sohrabi, Y.; Heidari, G.; Khalesro, S.; Majidi, M. Effective factors on biological nitrogen fixation. Afr. J. Agric. Res. 2012, 7, 1782–1788. [Google Scholar] [CrossRef] [Green Version]
- Namatsheve, T.; Cardinael, R.; Corbeels, M.; Chikowo, R. Productivity and biological N2-fixation in cereal-cowpea intercropping systems in sub-Saharan Africa. A review. Agron. Sustain. Dev. 2020, 40, 30. [Google Scholar] [CrossRef]
- Cowden, R.J.; Shah, A.N.; Lehmann, L.M.; Kiær, L.P.; Henriksen, C.B.; Ghaley, B.B. Nitrogen fertilizer effects on pea–barley intercrop productivity compared to sole crops in Denmark. Sustainability 2020, 12, 9335. [Google Scholar] [CrossRef]
- Munjonji, L.; Ayisi, K.K.; Haesaert, G.; Boeckx, P. Screening cowpea genotypes for high biological nitrogen fixation and grain yield under drought conditions. Agron. J. 2018, 110, 1925–1935. [Google Scholar] [CrossRef]
- Kombiok, J.M.; Safo, E.Y.; Quansah, C. Effects of tillage and cropping systems on yield and nitrogen fixation of cowpea intercropped with maize in northern Guinea savanna zone of Ghana. Ghana J. Agric. Sci. 2006, 39, 61–75. [Google Scholar] [CrossRef]
- Kermah, M.; Franke, A.C.; Adjei-Nsiah, S.; Ahiabor, B.D.K.; Abaidoo, R.C.; Giller, K.E. N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of northern Ghana. Agric. Ecosyst. Environ. 2018, 261, 201–210. [Google Scholar] [CrossRef]
- Sarr, P.S.; Khouma, M.; Sene, M.; Guisse, A.; Niane Badiane, A.; Yamakawa, T. Soil Science and Plant Nutrition Effect of pearl millet-cowpea cropping systems on nitrogen recovery, nitrogen use efficiency and biological fixation using the 15 N tracer technique. Soil Sci. Plant Nutr. 2008, 54, 142–147. [Google Scholar] [CrossRef]
- Chu, G.X.; Shen, Q.R.; Cao, J.L. Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility. Plant Soil 2004, 263, 17–27. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, F.; Song, Y.; Sun, J.; Bao, X.; Guo, T.; Li, L. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant Soil 2006, 283, 275–286. [Google Scholar] [CrossRef]
- Omae, H.; Kiari, S.A.; Satoshi, T. Improving Millet-Cowpea Productivity and Soil Fertility with Crop Rotation, Row Arrangement and Cowpea Density in the Sahel, West Africa Recherche Developpement pour la Securité Alimentaire et l’Adaptation au Changement Climatique View project CRSP-Legume Lab Innovation View project. Am. Eurasian J. Agric. Environ. Sci 2014, 14, 110–115. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, F.; Zou, Z.; Zhang, Z.; Li, Y. Nitrogen uptake and transfer in a soybean/maize intercropping system in the karst region of southwest China. Ecol. Evol. 2017, 7, 8419–8426. [Google Scholar] [CrossRef]
- Razafintsalama, H.; Sauvadet, M.; Trap, J.; Autfray, P.; Ripoche, A.; Becquer, T. Legume nitrogen fixation and symbioses in low-inputs rainfed rice rotations. Sustainability 2021, 13, 12349. [Google Scholar] [CrossRef]
- Wu, L.; Misselbrook, T.H.; Feng, L.; Wu, L. Assessment of nitrogen uptake and biological nitrogen fixation responses of soybean to nitrogen fertiliser with SPACSYS. Sustainability 2020, 12, 5921. [Google Scholar] [CrossRef]
- Tang, Q.; Tewolde, H.; Liu, H.; Ren, T.; Jiang, P.; Zhai, L.; Lei, B.; Lin, T.; Liu, E. Nitrogen uptake and transfer in broad bean and garlic strip intercropping systems. J. Integr. Agric. 2018, 17, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Peoples, M.; Herridge, D.; Alves, R.; Urquiaga, S.; Boddey, R.; Dakora, F.; Bhattarai, S.; Maskey, S.; Sampet, C.; Rerkasem, B.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Q.; Chen, F.; Yuan, L.; Mi, G. A RNA-seq analysis of the response of photosynthetic system to low nitrogen supply in maize leaf. Int. J. Mol. Sci. 2017, 18, 2624. [Google Scholar] [CrossRef] [Green Version]
- Tian, G.; Gao, L.; Kong, Y.; Hu, X.; Xie, K.; Zhang, R.; Ling, N.; Shen, Q.; Guo, S. Improving rice population productivity by reducing nitrogen rate and increasing plant density. PLoS ONE 2017, 12, e0182310. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Zhu, J.; Ma, L.; Guo, Z.; Dong, K.; Dong, Y. Effects of nitrogen regulation and strip intercropping on faba bean biomass, nitrogen accumulation and distribution, and interspecific interactions. Crop. Sci. 2021, 61, 4325–4343. [Google Scholar] [CrossRef]
- Sibhatu, B.; Belete, K.; Tessema, T. Effect of Cowpea Density and Nitrogen Fertilizer on a Sorghum-Cowpea Intercropping System in Kobo, Northern Ethiopia. Int. J. Agric. For. 2015, 5, 305–317. [Google Scholar] [CrossRef]
Treatments Code | Description |
---|---|
BW2-NSS | High density cowpea intercrop with NS5511 |
BW1-TIT | Low density cowpea intercrop with Titan |
BW1-NS | Low density cowpea intercrop with NS5511 |
BW1-Sole | Low density cowpea sole |
BW2-AVE | High density cowpea intercrop with Avenger |
BW2-TIT | High density cowpea intercrop with Titan |
BW2-Sole | High density cowpea sole |
BW1-AVE | Low density cowpea intercrop with Avenger |
BW2-ENF | High density cowpea intercrop with Enforcer |
BW1-ENF | Low density cowpea intercrop with Enforcer |
Ofcolaco | ||||||||
---|---|---|---|---|---|---|---|---|
2018/19 | 2020/21 | |||||||
Treatment | Org.C | C:N | P | K | Org.C | C:N | P | K |
BW2-Sole | 1.69a | 38.50b | 35.97d | 213.13a | 1.52a | 52.23b | 42.35 | 160.82 |
BW1-AVE | 1.60ab | 61.86b | 115.85a | 203.95ab | 1.39a–c | 70.78ab | 65.06 | 137.01 |
BW1-TIT | 1.58ab | 75.03ab | 80.9a–c | 113.61d | 1.34b–d | 48.11b | 67.47 | 161.08 |
BW1-NS | 1.55ab | 77.20ab | 80.95a–c | 150.32b–d | 1.40a–c | 46.33b | 48.58 | 105.15 |
BW1-Sole | 1.54ab | 44.50b | 34.61d | 174.73a–c | 1.32cd | 79.18ab | 46.23 | 129.60 |
BW2-NS | 1.53ab | 61.21b | 43.89cd | 160.49a-d | 1.29cd | 99.10ab | 48.69 | 100.62 |
BW1-ENF | 1.52ab | 44.83b | 57.12b–d | 137.35cd | 1.51ab | 45.75b | 37.05 | 120.58 |
BW2-AVE | 1.46b | 59.58b | 49.56b–d | 121.51cd | 1.49ab | 39.99b | 61.36 | 130.91 |
BW2-ENF | 1.44b | 74.11ab | 85.07ab | 168.51a–c | 1.20d | 77.15ab | 33.78 | 94.41 |
BW2-TIT | 1.40b | 110.20a | 60.49b–d | 156.23b–d | 1.41a–c | 130.20a | 43.29 | 84.45 |
p ≤ 0.05 | * | * | * | * | * | * | ns | ns |
Syferkuil | ||||||||
BW2-Sole | 0.52 | 8.99b | 22.179 | 297.65ab | 0.89 | 11.07bc | 27.13c | 310.64ab |
BW1-AVE | 0.59 | 12.39b | 17.967 | 285.29a–c | 0.80 | 16.48a | 54.31a | 281.39a–c |
BW1-TIT | 0.76 | 11.09b | 21.428 | 246.50a–c | 0.84 | 13.08a–c | 52.53ab | 274.36a–c |
BW1-NS | 0.79 | 11.54b | 14.754 | 247.57a–c | 0.68 | 10.35c | 32.84a–c | 246.92bc |
BW1-Sole | 0.57 | 11.94b | 35.936 | 310.66a | 0.91 | 14.57ab | 28.63bc | 335.3a |
BW2-NS | 0.56 | 27.06a | 26.109 | 261.89a–c | 0.80 | 11.79a–c | 42.71a–c | 264.32bc |
BW1-ENF | 0.50 | 14.54b | 32.409 | 260.24a–c | 0.67 | 9.26c | 54.86a | 220.49c |
BW2-AVE | 0.72 | 12.21b | 31.442 | 225.09bc | 0.73 | 15.23ab | 31.58a–c | 264.34bc |
BW2-ENF | 0.60 | 11.58b | 20.9 | 280.53a–c | 0.78 | 13.17a–c | 40.09a–c | 269.35a–c |
BW2-TIT | 0.66 | 11.07b | 37.318 | 199.81c | 0.68 | 12.09a–c | 52.71ab | 223.61c |
p ≤ 0.05 | ns | * | ns | * | ns | * | * | * |
Ofcolaco | Syferkuil | |||
---|---|---|---|---|
2018/19 | 2020/21 | 2018/19 | 2020/21 | |
Treatment | Biomass | |||
BW2-NS | 3145.7ab | 1314.2d | 2217.3a | 2166.0bc |
BW1-TIT | 1459.3e | 1714.8b–d | 903.7de | 2034.6bc |
BW1-NS | 1932.9de | 1584.0cd | 888.9de | 1503.7cd |
BW1-Sole | 1974.1c–e | 2496.3ab | 1006.8c–e | 2042.6bc |
BW2-AVE | 3022.2a–c | 1870.4b–d | 1506.2bc | 1867.3cd |
BW2-TIT | 2621.4b–d | 2464.2a–c | 1454.3b–d | 2877.8ab |
BW2-Sole | 3701.2a | 2850.6a | 1924.7ab | 3566.0a |
BW1-AVE | 1387.7e | 2468.3a–c | 615.4e | 1166.7d |
BW2-ENF | 3392.6ab | 2050.0a–d | 1516.0bc | 2204.3bc |
BW1-ENF | 2004.9c–e | 1582.1cd | 785.8e | 1597.7cd |
p < 0.001 | *** | *** | *** | *** |
Ofcolaco | Syferkuil | |||||||
---|---|---|---|---|---|---|---|---|
2018/19 | 2020/21 | 2018/19 | 2020/21 | |||||
Treatment | δ15N‰ | %Ndfa | δ 15N‰ | %Ndfa | δ 15N‰ | %Ndfa | δ 15N‰ | %Ndfa |
BW2-NS | 4.22a | 35.59c | 0.25a | 92.96a | 7.10a | 41.68b | 4.24a–c | 30.28a–c |
BW1-TIT | 4.19a | 36.14c | 0.29a | 91.69a | 4.65ab | 61.88ab | 3.60bc | 40.92ab |
BW1-NS | 4.15ab | 36.75bc | 0.71a | 77.60a | 5.92ab | 51.38ab | 3.25bc | 46.75ab |
BW1-Sole | 3.94a–c | 39.86a–c | 0.45a | 86.20a | 6.27ab | 48.55ab | 3.72bc | 38.88ab |
BW2-AVE | 3.84a–c | 41.39a–c | 0.51a | 84.35a | 4.28ab | 64.95ab | 4.29a–c | 29.41a–c |
BW2-TIT | 3.28a–c | 50.02a–c | 0.67a | 78.74a | 6.74ab | 44.64ab | 3.04bc | 50.21ab |
BW2-Sole | 3.22a–c | 51.01a–c | 0.63a | 80.09a | 6.61ab | 45.71ab | 4.85ab | 20.10bc |
BW1-AVE | 2.99a–c | 54.57a–c | 0.38a | 88.68a | 4.19ab | 65.69ab | 5.78a | 4.61c |
BW2-ENF | 2.32bc | 64.84ab | 0.64a | 79.72a | 3.58b | 70.76a | 2.57c | 57.90a |
BW1-ENF | 2.30c | 65.23a | 0.73a | 76.97a | 6.05ab | 50.34ab | 2.69c | 55.98a |
p ≤ 0.05 | * | * | ns | ns | * | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogale, E.T.; Ayisi, K.K.; Munjonji, L.; Kifle, Y.G. Biological Nitrogen Fixation of Cowpea in a No-Till Intercrop under Contrasting Rainfed Agro-Ecological Environments. Sustainability 2023, 15, 2244. https://doi.org/10.3390/su15032244
Mogale ET, Ayisi KK, Munjonji L, Kifle YG. Biological Nitrogen Fixation of Cowpea in a No-Till Intercrop under Contrasting Rainfed Agro-Ecological Environments. Sustainability. 2023; 15(3):2244. https://doi.org/10.3390/su15032244
Chicago/Turabian StyleMogale, Elizabeth Tlou, Kwabena Kingsley Ayisi, Lawrence Munjonji, and Yehenew Getachew Kifle. 2023. "Biological Nitrogen Fixation of Cowpea in a No-Till Intercrop under Contrasting Rainfed Agro-Ecological Environments" Sustainability 15, no. 3: 2244. https://doi.org/10.3390/su15032244
APA StyleMogale, E. T., Ayisi, K. K., Munjonji, L., & Kifle, Y. G. (2023). Biological Nitrogen Fixation of Cowpea in a No-Till Intercrop under Contrasting Rainfed Agro-Ecological Environments. Sustainability, 15(3), 2244. https://doi.org/10.3390/su15032244