Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Period and Type of Data
2.2. Hydrogeology of Punjab
2.3. Model Specification and Description
2.4. Estimation Procedure
3. Results and Discussion
3.1. Pre-Monsoon, Post-Monsoon and Overall Scenario of Groundwater in Punjab
Years | Kandi Zone (31°53′ N, 75°90′ E) | Central Zone (30°84′ N, 75°59′ E) | South West Zone (30°34′ N, 74°76′ E) | Punjab (30°84′ N, 75°41′ E) | ||||
---|---|---|---|---|---|---|---|---|
June | October | June | October | June | October | June | October | |
1996 | 8.34 | 6.83 | 8.84 | 8.96 | 5.23 | 5.10 | 7.57 | 6.96 |
2000 | 8.05 | 7.57 | 8.95 | 9.87 | 5.03 | 5.26 | 7.34 | 7.57 |
2005 | 10.76 | 9.51 | 12.67 | 14.06 | 6.71 | 6.39 | 10.05 | 9.98 |
2010 | 10.68 | 9.91 | 16.57 | 17.09 | 8.26 | 7.78 | 11.84 | 11.59 |
2011 | 11.344 | 9.12 | 16.47 | 18.52 | 8.03 | 7.84 | 11.95 | 11.26 |
2012 | 11.86 | 10.04 | 17.59 | 19.20 | 7.29 | 8.82 | 11.02 | 13.68 |
2013 | 12.73 | 11.80 | 18.78 | 20.61 | 8.47 | 8.55 | 13.33 | 13.32 |
2014 | 12.21 | 12.05 | 18.24 | 21.42 | 8.57 | 9.12 | 12.67 | 14.19 |
2015 | 11.91 | 11.97 | 19.02 | 22.31 | 8.91 | 9.05 | 13.28 | 14.44 |
2016 | 12.73 | 14.24 | 19.86 | 23.30 | 8.73 | 9.96 | 13.44 | 15.83 |
2017 | 13.57 | 13.36 | 21.37 | 24.13 | 9.69 | 10.26 | 14.87 | 15.92 |
2018 | 14.72 | 14.36 | 21.89 | 24.86 | 10.36 | 11.09 | 15.66 | 16.77 |
Average depth (mbgl) | 10.93 A | 10.53 A | 16.00 B | 16.15 B | 7.41 C | 7.48 C | 11.45 D | 11.39 D |
Zone average depth | 10.73 a | 16.08 b | 7.44 c |
3.2. Estimates of Groundwater Depletion in Punjab
Districts | 1996 | 2018 | ||||
---|---|---|---|---|---|---|
Water Level (m) | Paddy Area | Water Level (m) | Paddy Area | |||
Area Million Hectares | % to Net Sown Area (NSA) | Area Million Hectares | % to Net Sown Area (NSA) | |||
Gurdaspur (32°03′ N, 75°27′ E) | 4.43 | 0.191 | 65.41 | 7.13 | 0.204 | 79.68 |
Hoshiarpur (31°32′ N, 75°57′ E) | 8.85 | 0.057 | 26.51 | 17.33 | 0.075 | 36.76 |
SAS Nagar (30°70′ N, 76°72′) | 6.35 | 0.029 | 61.70 | 22.80 | 0.031 | 40.26 |
Rupnagar (30°57′ N, 76°32′ E) | 5.51 | 0.037 | 48.05 | 13.99 | 0.040 | 49.38 |
SBS Nagar (31°09′ N, 76°04′ E) | 10.05 | 0.042 | 41.58 | 19.93 | 0.060 | 62.50 |
Kandi Zone (31°53′ N, 75°90′ E) | 6.83 | 0.356 | 48.63 | 14.36 | 0.410 | 57.42 |
Ludhiana (30°55′ N, 75°54′ E) | 10.08 | 0.230 | 76.67 | 21.06 | 0.258 | 86.28 |
Sangrur (30°12′ N, 75°53′ E) | 7.75 | 0.228 | 70.59 | 34.03 | 0.284 | 90.15 |
Jalandhar (31°19′ N, 35°18′ E) | 9.92 | 0.112 | 49.12 | 25.54 | 0.171 | 70.37 |
Patiala (30°2′ N, 76°25′ E) | 10.24 | 0.209 | 73.34 | 30.28 | 0.233 | 90.66 |
F. Sahib (30°64′ N, 76°39′ E) | 9.46 | 0.080 | 77.67 | 23.24 | 0.086 | 84.31 |
Amritsar (31°37′ N, 74°55′ E) | 5.57 | 0.154 | 67.84 | 14.74 | 0.180 | 82.19 |
Tarn Taran (31°28′ N, 74°58′ E) | 8.06 | 0.150 | 68.49 | 18.95 | 0.182 | 83.48 |
Moga (30°82′ N, 75°17′ E | 9.60 | 0.108 | 55.67 | 25.80 | 0.181 | 93.29 |
Kapurthala (31°23′ N, 75°25′ E) | 9.03 | 0.102 | 75.55 | 18.76 | 0.118 | 88.72 |
Barnala (30°38′ N, 75°55′ E) | 10.87 | 0.093 | 73.23 | 34.19 | 0.113 | 91.12 |
Central Zone (30°84′ N, 75°59′ E) | 8.96 | 1.466 | 68.47 | 24.86 | 1.806 | 85.84 |
Bathinda (30°11′ N, 75°00′ E) | 7.82 | 0.039 | 13.08 | 16.73 | 0.160 | 54.6 |
Mansa (29°99′ N, 75°39′ E) | 3.72 | 0.050 | 24.51 | 14.85 | 0.107 | 57.83 |
Faridkot (30°59′ N, 74°83′ E) | 4.32 | 0.038 | 28.78 | 9.14 | 0.115 | 90.55 |
Ferozepur (30°55′ N, 74°40′ E) | 4.72 | 0.233 | 50.43 | 10.15 | 0.294 | 62.42 |
Muktsar (30°30′ N, 74°43′ E) | 3.96 | 0.006 | 2.56 | 3.71 | 0.173 | 77.23 |
Southwest Zone (30°34′ N, 74°76′ E) | 5.10 | 0.366 | 27.52 | 11.09 | 0.849 | 65.31 |
Punjab (30°84′ N, 75°41′ E) | 8.06 | 2.188 | 52.06 | 19.11 | 3.065 | 74.43 |
3.3. Decreasing Groundwater Balance of Punjab
3.4. Impact of Sub Soil Water Act, 2009
Particular | Coefficient Value | |
---|---|---|
without Co-Variates | with Co-Variates | |
Act×treatment | 1.72 *** (0.44) | 1.53 *** (0.45) |
Pre-monsoon rain | No | Yes |
Ratio of canal irrigated area to total irrigated area | No | Yes |
Ratio of tube well irrigated area to total irrigated area | No | Yes |
Crop diversification index | No | Yes |
Population density | No | Yes |
District fixed effects | Yes | Yes |
Year fixed effects | Yes | Yes |
Observations | 400 | 400 |
R2 | 0.69 | 0.70 |
Particular | Coefficient Value | |
---|---|---|
without Co-Variates | with Co-Variates | |
Act×treatment | 1.55 *** (0.44) | 1.39 *** (0.45) |
Post monsoon rain | No | Yes |
Ratio of canal irrigated area to total irrigated area | No | Yes |
Ratio of tube well irrigated area to total irrigated area | No | Yes |
Crop diversification index | No | Yes |
Population density | No | Yes |
District fixed effects | Yes | Yes |
Year fixed effects | Yes | Yes |
Observations | 400 | 400 |
R2 | 0.71 | 0.72 |
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giordano, M. Global groundwater? Issues and solutions. Annu. Rev. Environ. Resour. 2009, 34, 153–178. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Global warming increases California drought risk. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Lei, H.; Zhao, W.; Shen, Y.; Xiao, D. Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain. Agric. Water Manag. 2018, 198, 53–64. [Google Scholar] [CrossRef]
- Tian, F.; Yang, Y.; Han, S. Using runoff slope-break to determine dominate factors of runoff decline in Hutuo River Basin, North China. Water Sci. Technol. 2009, 60, 2135–2144. [Google Scholar] [CrossRef]
- Sun, H.Y.; Zhang, X.Y.; Wang, E.L.; Chen, S.Y.; Shao, L.W. Quantifying the impact of irrigation on groundwater reserve and crop production—A case study in the North China Plain. Eur. J. Agron. 2015, 70, 48–56. [Google Scholar] [CrossRef]
- Jamshidzadeh, Z.; Mirbagheri, S.A. Evaluation of groundwater quantity and quality in the Kashan Basin, Central Iran. Desalination 2011, 270, 23–30. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, Y.; Gong, H.; Yeh, P.J.; Li, X.; Zhou, D.; Zhao, W. Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys. Res. Lett. 2015, 42, 1791–1799. [Google Scholar] [CrossRef]
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Erban, L.E.; Gorelick, S.M.; Zebker, H.A.; Fendorf, S. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proc. Natl. Acad. Sci. USA 2013, 110, 13751–13756. [Google Scholar] [CrossRef] [Green Version]
- Lei, S.; Jiao, J.J. Seawater intrusion and coastal aquifer management in China: A review. Environ. Earth Sci. 2014, 72, 2811–2819. [Google Scholar]
- Chinnasamy, P.; Muthuwatta, L.; Eriyagama, N.; Pavelic, P.; Lagudu, S. Modeling the potential for floodwater recharge to offset groundwater depletion: A case study from the Ramganga basin, India. Sustain. Water Resour. Manag. 2018, 4, 331–344. [Google Scholar] [CrossRef]
- O′Connor, D.; Hou, D. More haste, less speed in replenishing China′s groundwater. Nature 2019, 569, 487–488. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.F.; Rulli, M.C.; Seveso, A.; D′Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 2017, 10, 919–924. [Google Scholar] [CrossRef]
- Briscoe, J. Water Resources Management in Yemen—Results of a Consultation; Office Memorandum; World Bank: Washington, DC, USA, 1999. [Google Scholar]
- Postel, S. The Pillar of Sand: Can the Irrigation Miracle Last? Norton: New York, NY, USA, 1999. [Google Scholar]
- Kaur, B.; Sidhu, R.S.; Vatta, K. Optimal Crop Plans for Sustainable Water Use in Punjab. Agric. Econ. Res. Rev. 2010, 23, 273–284. [Google Scholar]
- Pahuja, S.; Catherine, T.; Stephen, F.; Hector, G. Deep Wells and Prudence: Towards Pragmatic Action for Addressing Groundwater Overexploitation in India; Study and Technical Assistance Initiative Report; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Shah, T.; Giordano, M.; Mukherji, A. Political Economy of the Energy-Groundwater Nexus in India: Exploring Issues and Assessing Policy Options. Hydrogeol. J. 2012, 20, 995–1006. [Google Scholar] [CrossRef]
- Badiani, R.; Jessoe, K.K.; Plant, S. Development and the Environment: The Implications of Agricultural Electricity Subsidies in India. J. Environ. Develop. 2012, 21, 44–262. [Google Scholar] [CrossRef]
- Kishore, P.; Singh, D.R.; Srivastava, S.; Kumar, P.; Jha, G.K. Impact of Subsoil Water Preservation Act, 2009 on Burgeoning Trend of Groundwater Depletion in Punjab, India. In Proceedings of the International Conference of Agricultural Economists, Virtual, 17–37 August 2021. [Google Scholar]
- Mukherji, A. Sustainable Groundwater Management in India Needs a Water-Energy-Food Nexus Approach. App. Econ. Perspect. Policy 2020, 44, 394–410. [Google Scholar] [CrossRef]
- Food Corporation of India. Procurement Data for Current Marketing Season, Government of India. 2020. Available online: https://fci.gov.in/procurements.php?view=87 (accessed on 20 December 2022).
- Kaur, B. Impact of Climate Change and Cropping Pattern on Ground Water Resources of Punjab. Ind. J. Agric. Econ. 2011, 66, 373–387. [Google Scholar]
- Kaur, S.; Vatta, K. Groundwater Depletion in Central Punjab: Pattern, Access and Adaptations. Curr. Sci. 2015, 108, 485–490. [Google Scholar]
- Kaur, B.; Vatta, K.; Sidhu, R.S. Optimising Irrigation Water Use in Punjab Agriculture: Role of Crop Diversification and Technology. Ind. J. Agric. Econ. 2015, 70, 307–318. [Google Scholar]
- Kumar, S.; Sidana, B.K. Farmers′ perceptions and adaptation strategies to climate change in Punjab agriculture. Ind. J. Agric. Sci. 2018, 88, 1573–1581. [Google Scholar]
- Bhardwaj, S.; Kaur, B. Groundwater Depletion and Role of Direct Seeded Rice in Water Saving: A Move Towards Sustainable Agriculture of Punjab. Econ. Aff. 2019, 64, 25–33. [Google Scholar] [CrossRef]
- Kumar, S.; Kaur, B. Impact of Climate Change on the Productivity of Rice and Wheat Crops in Punjab. Econ. Pol. Wkly. 2019, 54, 38–44. [Google Scholar]
- Sharma, Y.; Sidana, B.K.; Kaur, S.; Kumar, S. Role of public policy in sustaining groundwater: Impact of ′The Punjab Preservation of Sub Soil Water Act, 2009′. Agric. Econ. Res. Rev. 2021, 34, 121–131. [Google Scholar] [CrossRef]
- Sidana, B.K.; Kumar, S. Climate adaptation strategies: Optimizing farm-level water use and profitability in Punjab. Agric. Econ. Res. Rev. 2021, 34, 91–102. [Google Scholar] [CrossRef]
- Ranguwal, S.; Sidana, B.K.; Kumar, S. Carbon footprints of rice-wheat cultivation across farm size categories: Evidence from Punjab in India. J. Cereal Res. 2022, 14, 8–17. [Google Scholar] [CrossRef]
- Central Groundwater Board. Groundwater Yearbook—India 2017–2018; Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India: New Delhi, India, 2017. [Google Scholar]
- Tajarudin, H.A.; Makhtar, M.M.; Azmi, M.S.; Zainuddin, N.I.; Ali, D.H. Introduction to water and wastewater treatment. In Advanced Oxidation Processes (AOPs) in Water and Wastewater Treatment; IGI Global: Hershey, PA, USA, 2019; pp. 1–29. [Google Scholar]
- Sarkar, A. Groundwater Irrigation and Farm Power Policies in Punjab and West Bengal: Challenges and Opportunities. Energy Policy 2020, 140, 111437. [Google Scholar] [CrossRef]
- Singh, K. Act to Save Groundwater in Punjab: Its Impact on the water Table, Electricity Subsidy and Environment. Agric. Econ. Res. Rev. 2009, 22, 365–386. [Google Scholar]
- Bhagyashri, C.M.; Bhavana, N.U. Influence of Various Factors on the Fluctuation of Groundwater Level in Hard Rock Terrain and its Importance in the Assessment of Groundwater. J. Geol. Min. Res. 2011, 3, 305–317. [Google Scholar]
- Central Groundwater Board. Groundwater Resources of Punjab State; Water Resources & Environment Directorate, Water Resources Department, Mohali and Central Ground Water Board, North Western Region: Chandigarh, India, 2018. [Google Scholar]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Shah, T.; Scott, C.; Berkoff, J.; Kishore, A.; Sharma, A. The Energy–Irrigation Nexus in South Asia: Groundwater Conservation and Power Sector Viability. In Irrigation Water Pricing: The Gap Between Theory and Practice; CABI Publishing: Wallingford, UK, 2007; pp. 208–232. [Google Scholar]
- Department of Soil and Water Engineering. Optimization of Ground Water Utilization. A Compilation of Research Conducted under AICRP Optimization of Ground Water Utilization through Wells and Pumps During 1982–1992; Punjab Agricultural University: Ludhiana, India, 1993. [Google Scholar]
- Hira, G.S.; Jalota, S.K.; Arora, V.K. Efficient management of water resources for sustainable cropping in Punjab. Res. Bull. 2004, 20. [Google Scholar]
- Central Ground Water Board (CGWB). Water Quality Issues and Challenges in Punjab. Ministry of Water Resources. Government of India. 2014. Available online: http://www.cgwb.gov.in/WQ/Punjab%20Book%20Final%20for%20Printing.pdf (accessed on 22 November 2014).
- Central Statistical Organisation. EnviStats-India 2018: Supplement on Environmental Accounts; Central Statistics Office, Ministry of Statistics & Programme Implementation, Government of India: New Delhi, India, 2018. [Google Scholar]
- Statistical Abstract of Punjab, Area under rice in Punjab, Economic and Statistical Organization of Punjab, Chandigarh. Available online: Esopb.gov.in (accessed on 20 December 2022).
- Kaur, R.; Sharma, M. Agricultural subsidies in India: Case study of electricity subsidy in Punjab State—An analysis. Int. J. Sci. Res. Publ. 2012, 2, 1–7. [Google Scholar]
- Baweja, S.; Aggarwal, R.; Brar, M.; Lal, R. Groundwater Depletion in Punjab, India. Encycl. Soil Sci. 2017, 3, 1–5. [Google Scholar]
- Perveen, S.; Krishnamurthy, C.K.; Sidhu, R.S.; Vatta, K.; Kaur, B.; Modi, V.; Fishman, R.; Polycarpou, L.; Lall, U. Restoring Groundwater in Punjab, India′s Breadbasket: Finding Agricultural Solutions for Water Sustainability; Columbia Water Center–White Paper; Columbia Water Center: New York, NY, USA, 2012. [Google Scholar]
- Panigrahy, S.; Ray, S.S.; Manjunath, K.R.; Pandey, P.S.; Sharma, S.K.; Sood, A.; Yadav, M.; Gupta, P.C.; Kundu, N.; Parihar, J.S. A Spatial Database of Cropping System and its Characteristics to Aid Climate Change Impact Assessment Studies. Ind. Soc. Remote Sens. 2011, 39, 355–364. [Google Scholar] [CrossRef]
- Tripathi, A.; Mishra, A.; Verma, G. Impact of Preservation of Subsoil Water Act on Groundwater Depletion: The Case of Punjab, India. Environ. Manag. 2016, 58, 48–59. [Google Scholar] [CrossRef]
- Vatta, K.; Sidhu, R.S.; Lall, U.; Birthal, P.S.; Taneja, G.; Kaur, B.; Devineni, N.; MacAlister, C. Assessing the Economic Impact of a Low-Cost Water-Saving Irrigation Technology in Indian Punjab: The Tensiometer. Water Int. 2018, 43, 305–321. [Google Scholar] [CrossRef] [Green Version]
- Sekhri, S. Sustaining Ground Water: Role of Policy Reforms in Promoting Conservation in India. In India Policy Forum; IIC: New Delhi, India, 2012. [Google Scholar]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q. Strategies for developing green super rice. Proc. Natl. Acad. Sci. USA 2007, 104, 16402–16409. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.; Halweil, B. China′s water shortage could shake world food security. World Watch Mag. 1998, 11, 10–21. [Google Scholar]
- Cai, H.; Chen, Q. Rice research in China in the early 21st century. Chin. Rice Res. Newsl. 2000, 8, 14–16. [Google Scholar]
- Bouman, B.A.M.; Humphreys, E.; Tuong, T.P.; Barker, R. Rice and water. Adv. Agron. 2007, 92, 187–237. [Google Scholar]
- Seckler, D.; Barker, R.; Amarasinghe, U.A. Water scarcity in the twenty-first century. Int. J. Water Resour. Dev. 1999, 15, 29–42. [Google Scholar] [CrossRef]
- Morris, B.L.; Lawrence, A.R.L.; Chilton, P.J.C.; Adams, B.; Calow, R.C.; Klinck, B.A. Groundwater and Its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management; UN Environment Programme: Nairobi, Kenya, 2003. [Google Scholar]
- Brown, L. Water tables falling and rivers running dry: International situation. Int. J. Environ. Consum. 2007, 3, 1–5. [Google Scholar]
- Singh, D.K.; Singh, A.K. Groundwater situation in India: Problems and perspectives. Int. J. Water Resour. Dev. 2002, 18, 563–580. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Barreteau, O.; Hunt, R.J.; Rinaudo, J.D.; Ross, A. Integrated Groundwater Management Concepts, Approaches and Challenges; National Centre for Groundwater Research and Training; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–749. [Google Scholar]
- Berven, C.G. The Sustainable Groundwater Management Act′s Impact on Groundwater Withdrawal in the Sacramento Hydrologic Region; University of California: Berkeley, CA, USA, 2020. [Google Scholar]
High Rice Growing Districts (Treated) | Low Rice Growing Districts (Control) | ||
---|---|---|---|
Gurdaspur | Patiala | Jalandhar | Ferozepur |
Amritsar | Sangrur | SBS Nagar | Muktsar |
Tarn Taran | Barnala | Hoshiarpur | Moga |
Kapurthala | Faridkot | Rupnagar | Bathinda |
Ludhiana | F. Sahib | SAS Nagar | Mansa |
Zone | 1996–2007 | 2007–2018 | 1996–2018 | |||
---|---|---|---|---|---|---|
Total | Average/Year | Total | Average/Year | Total | Average/Year | |
Kandi Zone | 5.009 | 0.455 | 8.590 | 0.780 | 13.590 | 0.617 |
Central Zone | 30.604 | 2.782 | 34.021 | 3.092 | 64.626 | 2.937 |
South West Zone | 6.903 | 0.627 | 8.427 | 0.766 | 15.331 | 0.696 |
Punjab | 42.516 | 1.288 | 51.038 | 1.546 | 93.547 | 1.416 |
Particulars | High Rice Growing Districts | Low Rice Growing Districts | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Act (1999–2008) | Post-Act (2009–2018) | Pre-Act (1999–2008) | Post-Act (2009–2018) | |||||||||
1999 | 2008 | % Increase | 2009 | 2018 | % Increase | 1999 | 2008 | % Increase | 2009 | 2018 | % Increase | |
Rice area (million hectares) | 1.59 | 1.67 | 4.95 | 1.72 | 1.78 | 3.84 | 0.95 | 0.96 | 1.79 | 1.04 | 1.31 | 25.55 |
No. of electricity-operated tube wells (millions) | 0.48 | 0.61 | 25.82 | 0.63 | 0.81 | 26.93 | 0.276 | 0.37 | 34.78 | 0.39 | 0.56 | 40.70 |
Electric tube well density (million per ha of net sown area) | 0.23 | 0.29 | 28.82 | 0.30 | 0.39 | 29.41 | 0.13 | 0.18 | 34.42 | 0.19 | 0.27 | 40.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, Y.; Sidana, B.K.; Kumar, S.; Kaur, S.; Sekhon, M.K.; Mahal, A.K.; Mehan, S. Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach. Sustainability 2023, 15, 2426. https://doi.org/10.3390/su15032426
Sharma Y, Sidana BK, Kumar S, Kaur S, Sekhon MK, Mahal AK, Mehan S. Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach. Sustainability. 2023; 15(3):2426. https://doi.org/10.3390/su15032426
Chicago/Turabian StyleSharma, Yogita, Baljinder Kaur Sidana, Sunny Kumar, Samanpreet Kaur, Milkho Kaur Sekhon, Amrit Kaur Mahal, and Sushant Mehan. 2023. "Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach" Sustainability 15, no. 3: 2426. https://doi.org/10.3390/su15032426
APA StyleSharma, Y., Sidana, B. K., Kumar, S., Kaur, S., Sekhon, M. K., Mahal, A. K., & Mehan, S. (2023). Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach. Sustainability, 15(3), 2426. https://doi.org/10.3390/su15032426