Digital Government Development, Local Governments’ Attention Distribution and Enterprise Total Factor Productivity: Evidence from China
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. The Impact of Digital Government Development on Enterprise TFP
2.2. The Moderating Effect of the Local Governments’ Attention Distribution
3. Research Design
3.1. Sample Selection and Data Sources
3.2. Model Construction
3.3. Variable Description and Descriptive Statistics
3.3.1. Enterprise TFP (TFP)
3.3.2. Digital Government Development (EGovern)
3.3.3. Attention Distribution (Attention)
4. The Impact of Digital Government Development on Enterprise TFP
4.1. Benchmark Regression
4.2. Robustness Test and Endogeneity Discussion
4.3. Heterogeneity Analysis
4.3.1. The Influence of Subdivisions of Digital Government Development
4.3.2. Regional Heterogeneity
4.3.3. Enterprise Heterogeneity
4.4. Mechanism Analysis
5. The Impact of Local Governments’ Attention Distribution
6. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, T.G. Elements, Mechanisms and Approaches towards Digital Transformation of Government: The Dual Drivers from Technical Empowerment to the State and Society. Gov. Stud. 2021, 37, 5–14. [Google Scholar]
- Janowski, T. Digital Government Evolution: From Transformation to Contextualization. Gov. Inf. Q. 2015, 32, 221–236. [Google Scholar] [CrossRef]
- Lee, J.; Kim, B.J.; Park, S.; Park, S.; Oh, K. Proposing A Value-Based Digital Government Model: Toward Broadening Sustainability and Public Participation. Sustainability 2018, 10, 3078. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Gao, A.L. Study on Optimizing Business Environment Driven by Government Digital Transformation -- A Case Study of Dongguan City. E-Government 2021, 3, 83–93. [Google Scholar]
- Xiao, J.Y.; Han, L.X.; Zhang, H. Exploring Driving Factors of Digital Transformation among Local Governments: Foundations for Smart City Construction in China. Sustainability 2022, 14, 14980. [Google Scholar] [CrossRef]
- Han, C.H. Optimization of Business Environment and Construction of Government. J. Shanghai Jiaotong Univ. (Philos. Soc. Sci.) 2021, 29, 31–39. [Google Scholar]
- Krishnan, S.; Teo, T.S.H.; Lim, V.K.G. Examining the Relationships among E-government Maturity, Corruption, Economic Prosperity and Environmental Degradation: A Cross-Country Analysis. Inf. Manag. 2013, 50, 638–649. [Google Scholar] [CrossRef]
- Han, Y.; Shao, X.; Tsai, S.; Fan, D.; Liu, W. E-Government and Foreign Direct Investment: Evidence from Chinese Cities. J. Glob. Inf. Manag. 2021, 29, 1–17. [Google Scholar] [CrossRef]
- Ali, M.A.; Hoque, M.R.; Alam, K. An Empirical Investigation of the Relationship between E-Government Development and the Digital Economy: The Case of Asian Countries. J. Knowl. Manag. 2018, 22, 1176–1200. [Google Scholar] [CrossRef]
- Wang, X.X.; Huang, H.G.; Xia, Y.F. E-Governance Construction and Enterprise Innovation. Financ. Econ. 2021, 11, 118–132. [Google Scholar]
- Qu, Y.Y.; Wang, K. Research on China’s Government Service Informatization and Its Impact on Enterprise Innovation. J. Quant. Technol. Econ. 2022, 39, 25–44. [Google Scholar]
- Roland, F.; Julia, K.; Friedrich, B.; Andreas, E. Influential Factors for E-Government Success in the Middle East: Case Study Evidence from Saudi Arabia. Int. J. Electron. Gov. Res. 2015, 11, 39–62. [Google Scholar]
- Zhu, X.F.; Zhang, Y.L. Innovation and Diffusion: The Rise of New Administrative Approval System in Chinese Cities. Manag. World 2015, 10, 91–105. [Google Scholar]
- Fan, Z.T.; Meng, Q.G.; Wei, N.; Wang, H.S. Efficiency, Legitimacy, and Technology Implementation in Government: An Integrative Multi-Method Research on Government Website at the City Level in China. J. Public Adm. 2018, 11, 28–51. [Google Scholar]
- Tan, H.B.; Fan, Z.T.; Du, Y.Z. Technical Management Ability, Attention Allocation and Local Government Website Construction: A Configuration Analysis Based on TOE Framework. Manag. World 2019, 35, 81–94. [Google Scholar]
- Li, F.; Ma, L. Leadership Attention and Responsiveness to Digital Government: An Empirical Analysis Based on the Difference-in-Differences and Synthetic Control Methods. China Public Adm. Rev. 2021, 3, 68–90. [Google Scholar]
- Zhang, S.H.; Zhang, M.A.; Wang, Y.K. Construction of Service-Oriented Government and High-Quality Development of Firms. J. Financ. Econ. 2022, 48, 109–123. [Google Scholar]
- Klitgaard, R. Controlling Corruption [M]; University of California Press: Oakland, CA, USA, 1988. [Google Scholar]
- Li, H.Z.; Shi, Z.G. Transparent Power and Rule System-the Logic and Path of Building the Clean-Government List System. Frontiers 2014, 16, 86–95. [Google Scholar]
- Tian, Y.; Wang, Y.; Xie, X.; Jiao, J.; Jiao, H. The Impact of Business-Government Relations on Firms’ Innovation: Evidence from Chinese Manufacturing Industry. Technol. Forecast. Soc. Change 2019, 143, 1–8. [Google Scholar] [CrossRef]
- Arayankalam, J.; Khan, A.; Krishnan, S. How to Deal with Corruption? Examining the Roles of E-Government Maturity, Government Administrative Effectiveness, and Virtual Social Networks Diffusion. Int. J. Inf. Manag. 2021, 58, 102203. [Google Scholar] [CrossRef]
- Jun, K.-N.; Weare, C. Institutional Motivations in the Adoption of Innovations: The Case of E-Government. J. Public Adm. Res. Theory 2011, 21, 495–519. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Zang, L.Z.; Roth, A.; Wang, P.Q. Does Democracy Cause Innovation? An Empirical Test of the Popper Hypothesis. Res. Policy 2017, 46, 1272–1283. [Google Scholar] [CrossRef]
- Jia, J.; Guo, Q.; Zhang, J. Fiscal Decentralization and Local Expenditure Policy in China. China Econ. Rev. 2014, 28, 107–122. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Zhou, L.A. Relative Performance Evaluation and the Turnover of Provincial Leaders in China. Econ. Lett. 2005, 88, 421–425. [Google Scholar] [CrossRef]
- Menzel, D.C. Intergovernmental Support of Technological Innovation in Local Government. Adm. Soc. 1978, 10, 317–334. [Google Scholar] [CrossRef]
- Walker, R.M. Innovation Type and Diffusion: An Empirical Analysis of Local Government. Public Adm. 2006, 84, 311–335. [Google Scholar] [CrossRef]
- Li, H.B.; Zhou, L.A. Political Turnover and Economic Performance: The Incentive Role of Personnel Control in China. J. Public Econ. 2005, 89, 1743–1762. [Google Scholar] [CrossRef]
- Wang, J.; Lei, P. The Tournament of Chinese Environmental Protection: Strong or Weak Competition? Ecol. Econ. 2021, 181, 106888. [Google Scholar] [CrossRef]
- Wang, M. Environmental Governance as a New Runway of Promotion Tournaments: Campaign-Style Governance and Policy Implementation in China’s Environmental Laws. Environ. Sci. Pollut. Res. 2021, 28, 34924–34936. [Google Scholar] [CrossRef]
- Geng, S.; Pang, B.Q.; Zhong, L.N. The Political Economy of Term Factor in China: The Term of Local Cadres and the Behavior of Local Governments. China Econ. Q. 2016, 15, 893–916. [Google Scholar]
- Zhang, Z.Q. Comparison of Different TFP Estimation Methods and Its Application Based on Micro Firm Level Data. J. Quant. Technol. 2015, 32, 107–123. [Google Scholar]
- Dai, P.Y.; Yang, S.G.; Yuan, L. Capital Market Opening up and Corporate Total Factor Productivity. J. World Econ. 2021, 44, 154–178. [Google Scholar]
- Wang, W.L. Performance Evaluation of China Digital Government: Theory and Practice. E-Government 2022, 4, 51–63. [Google Scholar]
- Zhang, Y. The Formation of Public-Private Partnerships in China: An Institutional Perspective. J. Public Policy 2015, 35, 329–354. [Google Scholar] [CrossRef]
- Bennett, B.; Stulz, R.; Wang, Z. Does the Stock Market Make Firms More Productive? J. Financ. Econ. 2020, 136, 281–306. [Google Scholar] [CrossRef] [Green Version]
- Qi, Z.; Yang, S. Can Government Subsidies Promote the TFP of Enterprises? The Mediating Effect of R&D Decisions. Sci. Technol. Soc. 2021, 26, 392–412. [Google Scholar]
- Liu, P.; Huang, W.C.; Chen, H. Can the National Green Industrial Policy Improve Production Efficiency of Enterprises? Evidence from China. Sustainability 2020, 12, 6839. [Google Scholar] [CrossRef]
- Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W. Double/Debiased Machine Learning for Treatment and Structural Parameters. Econom. J. 2018, 21, C1–C68. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.Y.; Cai, Y.Z.; Zhang, C. Research on Whether Digital Construction Can Improve Governance or Not. Acad. Res. 2021, 10, 94–99. [Google Scholar]
- Shen, S.; Li, X.S.; Dang, L. Doing Business and Total Factor Productivity of Enterprises. Res. Econ. Manag. 2021, 42, 124–144. [Google Scholar]
- Zhang, A.; Zhang, Y.; Zhao, R. A Study of the R&D Efficiency and Productivity of Chinese Firms. J. Comp. Econ. 2003, 31, 444–464. [Google Scholar]
- Jiang, X.; Kong, D.; Xiao, C. Policy Certainty and Heterogeneous Firm Innovation: Evidence from China. China Econ. Rev. 2020, 63, 101500. [Google Scholar] [CrossRef]
- Lu, T.; Dang, Y. Corporate Governance and Innovation: Differences among Industry Categories. Econ. Res. J. 2014, 49, 115–128. [Google Scholar]
- Dechow, P.M.; Sloan, R.G.; Sweeney, A.P. Detecting Earnings Management. Account. Rev. 1995, 2, 193–225. [Google Scholar]
- Chen, J.; Xv, H.J.; Lin, J.H. How Enterprise Rent-seeking Affect Audit Opinion Shopping? Account. Res. 2021, 7, 180–192. [Google Scholar]
Variable Name | Calculation Method | Data Sources | Reference | N | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|---|---|
Total factor productivity (TFP_OP, TFP_LP) | OP | CSMAR and Wind databases | Dai et al. (2021) [33] | 9937 | 7.877 | 0.942 | 4.928 | 12.553 |
LP | 9937 | 8.801 | 1.050 | 5.568 | 13.533 | |||
Digital government development (EGovern) | Comprehensive score of government portal website performance/100 | Guomai e-government website | Wang et al. (2022) [10]; Qu and Wang (2022) [11] | 9937 | 0.700 | 0.133 | 0 | 0.895 |
Official tenure (Attention-Tenure) | The tenure of party secretary | People’s Daily Online and Baidu Baike | Geng et al. (2016) [31] | 9865 | 3.299 | 1.844 | 0 | 11 |
Superior pressure (Attention-Finance) | The difference between general public budget revenue and general public budget expenditure divided by general public budget revenue | China City Statistical Yearbook and EPS data platform | Zhang (2015) [35]; Fan et al. [15] (2018) | 9879 | −0.583 | 0.972 | −18.740 | 0.351 |
Enterprise growth ability (Tobin Q) | Tobin Q value | CSMAR and Wind databases | Bennett et al. (2020) [36]; Qi and Yang (2021) [37]; Liu et al. (2020) [38] | 9937 | 2.768 | 1.884 | 0.930 | 11.440 |
Return on assets (ROA) | Net profit at end of period / total assets at end of period | 9937 | 0.043 | 0.054 | −0.148 | 0.210 | ||
Asset-liability ratio(Lev) | Ending liabilities / ending total assets | 9937 | 0.407 | 0.205 | 0.0509 | 0.886 | ||
Ownership concentration (Top5) | The shareholding ratio of the top five shareholders | 9937 | 0.523 | 0.148 | 0.191 | 0.845 | ||
Enterprise age(Age) | Years of establishment | 9937 | 14.916 | 5.360 | 4 | 28 | ||
Enterprise scale (Size) | The logarithmic of total ending assets | 9937 | 21.894 | 1.116 | 19.740 | 25.263 |
Variable Name | (1) | (2) | (3) | (4) |
---|---|---|---|---|
TFP_OP | TFP_LP | TFP_OP | TFP_LP | |
EGovern | 0.470 *** | 0.503 ** | 0.516 *** | 0.558 *** |
(0.165) | (0.197) | (0.112) | (0.105) | |
Tobin Q | −0.014 *** | −0.013 ** | ||
(0.005) | (0.005) | |||
ROA | 3.119 *** | 3.788 *** | ||
(0.214) | (0.192) | |||
Lev | 0.754 *** | 0.864 *** | ||
(0.076) | (0.095) | |||
Top5 | 0.209 *** | 0.254 *** | ||
(0.073) | (0.088) | |||
Age | −0.001 | 0.000 | ||
(0.002) | (0.002) | |||
Size | 0.542 *** | 0.656 *** | ||
(0.013) | (0.013) | |||
Constant | 7.548 *** | 8.449 *** | −4.852 *** | −6.568 *** |
(0.116) | (0.135) | (0.302) | (0.292) | |
Industry fixed effect | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes |
N | 9937 | 9937 | 9937 | 9937 |
R2 adjusted | 0.275 | 0.231 | 0.736 | 0.764 |
Variable Name | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
TFP_LP | TFP_GMM | TFP_ACF | TFP_LP | TFP_LP | TFP_LP | TFP_LP | |
EGovern | 0.902 *** | 0.631 *** | 0.514 *** | 0.561 *** | 0.581 *** | 0.691 *** | 0.475 *** |
(0.085) | (0.113) | (0.109) | (0.113) | (0.045) | (0.083) | (0.071) | |
Constant | −0.980 *** | −8.387 *** | −6.528 *** | −6.502 *** | −6.333 *** | ||
(0.375) | (0.280) | (0.297) | (0.144) | (0.230) | |||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Industry fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 9845 | 9937 | 9937 | 7860 | 9937 | 8791 | 2578 |
R2 adjusted | 0.696 | 0.413 | 0.835 | 0.766 | 0.763 | 0.754 | |
Kleibergen–Paap rk LM | 1568.036 [0.000] | ||||||
Kleibergen–Paap rk Wald F | 3084.050 [0.000] | ||||||
165.110 |
Variable Name | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
TFP_OP | TFP_LP | |||||||
Information disclosure | 1.314 *** | 1.367 *** | ||||||
(0.277) | (0.287) | |||||||
Online services | 0.869 *** | 1.011 *** | ||||||
(0.229) | (0.208) | |||||||
Public participation | 1.090 *** | 0.933 *** | ||||||
(0.285) | (0.246) | |||||||
User experience | 0.305 | 0.544 | ||||||
(0.416) | (0.366) | |||||||
Constant | −4.790 *** | −4.684 *** | −4.628 *** | −4.592 *** | −6.488 *** | −6.405 *** | −6.289 *** | −6.301 *** |
(0.297) | (0.289) | (0.281) | (0.285) | (0.292) | (0.281) | (0.278) | (0.287) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Industry fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 9937 | 9937 | 9937 | 9937 | 9937 | 9937 | 9937 | 9937 |
R2 adjusted | 0.735 | 0.735 | 0.734 | 0.734 | 0.763 | 0.763 | 0.761 | 0.762 |
Variable Name | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
TFP_OP | TFP_LP | |||||
The Eastern Region | The Central Region | The Western Region | The Eastern Region | The Central Region | The Western Region | |
EGovern | 0.330 * | 0.524 *** | 0.776 *** | 0.418 *** | 0.667 *** | 0.874 *** |
(0.169) | (0.175) | (0.202) | (0.151) | (0.218) | (0.174) | |
Constant | −4.865 *** | −4.201 *** | −5.053 *** | −6.798 *** | −6.073 *** | −6.345 *** |
(0.391) | (0.732) | (0.973) | (0.372) | (0.780) | (0.958) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Industry fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
N | 6503 | 1995 | 1439 | 6503 | 1995 | 1439 |
R2 adjusted | 0.753 | 0.735 | 0.731 | 0.778 | 0.766 | 0.752 |
SUEST test chi2 | 3.09 * | 4.47 ** | 2.71 * | 5.09 ** |
Variable Name | (1) | (2) | (3) | (4) |
---|---|---|---|---|
TFP_OP | TFP_LP | |||
SOEs | Non-SOEs | SOEs | Non-SOEs | |
EGovern | 0.308 * | 0.483 *** | 0.328 * | 0.589 *** |
(0.174) | (0.123) | (0.183) | (0.126) | |
Constant | −4.750 *** | −4.728 *** | −6.188 *** | −6.541 *** |
(0.530) | (0.344) | (0.542) | (0.352) | |
Control variables | Yes | Yes | Yes | Yes |
Industry fixed effect | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes |
N | 3139 | 6793 | 3139 | 6793 |
R2 adjusted | 0.744 | 0.712 | 0.778 | 0.745 |
SUEST test chi2 | 2.99 * | 2.78 * |
Variable Name | (1) | (2) | (3) | (4) |
---|---|---|---|---|
TFP_OP | TFP_LP | |||
Technology Intensive Industry | Non-Technology Intensive Industry | Technology Intensive Industry | Non-Technology Intensive Industry | |
EGovern | 0.702 *** | 0.307 *** | 0.745 *** | 0.391 *** |
(0.162) | (0.117) | (0.156) | (0.116) | |
Constant | −4.562 *** | −4.941 *** | −6.421 *** | −6.608 *** |
(0.477) | (0.446) | (0.598) | (0.428) | |
Control variables | Yes | Yes | Yes | Yes |
Industry fixed effect | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes |
N | 3184 | 6753 | 3184 | 6753 |
R2 adjusted | 0.710 | 0.740 | 0.749 | 0.767 |
SUEST test chi2 | 5.31 ** | 5.25 ** |
Variable Name | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Rent | TFP_LP | Newfirm | TFP_LP | RD | TFP_LP | |
EGovern | −0.031 ** | 0.232 *** | 1.236 *** | |||
(0.014) | (0.023) | (0.259) | ||||
Rent | −0.733 *** | |||||
(0.172) | ||||||
Newfirm | 0.082 *** | |||||
(0.016) | ||||||
RD | 0.124 *** | |||||
(0.011) | ||||||
Constant | −0.023 *** | −6.200 *** | 1.306 *** | −5.920 *** | −1.944 *** | −6.022 *** |
(0.005) | (0.283) | (0.311) | (0.348) | (0.741) | (0.273) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Industry fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
City fixed effect | No | No | Yes | No | No | No |
N | 9818 | 9818 | 7650 | 7650 | 8004 | 8004 |
R2 adjusted | 0.005 | 0.761 | 0.561 | 0.752 | 0.534 | 0.791 |
Variable Name | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
Full Sample | The Eastern Region | The Central Region | The Western Region | |||||
TFP_OP | TFP_LP | TFP_OP | TFP_LP | TFP_OP | TFP_LP | TFP_OP | TFP_LP | |
EGovern | 0.558 *** | 0.621 *** | 0.391 ** | 0.373 ** | 0.640 *** | 0.738 *** | 0.210 | 0.109 |
(0.135) | (0.054) | (0.174) | (0.149) | (0.231) | (0.171) | (0.192) | (0.133) | |
EGovernv×Superior pressure | 0.092 ** | 0.066 * | 0.238 | 0.127 | 0.241 ** | 0.227 ** | 0.145 * | 0.144 ** |
(0.041) | (0.037) | (0.175) | (0.112) | (0.106) | (0.099) | (0.083) | (0.062) | |
Superior pressure | −0.053 | −0.044 ** | −0.102 | −0.098 | −0.078 | −0.121 ** | −0.002 | 0.039 |
(0.043) | (0.020) | (0.116) | (0.075) | (0.062) | (0.061) | (0.045) | (0.031) | |
Constant | −4.867 *** | −6.629 *** | −4.755 *** | −6.414 *** | −4.486 *** | −6.339 *** | −5.283 *** | −6.350 *** |
(0.316) | (0.159) | (0.318) | (0.304) | (0.766) | (0.379) | (0.754) | (0.434) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Industry fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 9879 | 9879 | 6502 | 6502 | 1986 | 1986 | 1391 | 1391 |
R2 adjusted | 0.736 | 0.764 | 0.737 | 0.764 | 0.760 | 0.786 | 0.756 | 0.767 |
Variable Name | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
Full Sample | The Eastern Region | The Central Region | The Western Region | |||||
TFP_OP | TFP_LP | TFP_OP | TFP_LP | TFP_OP | TFP_LP | TFP_OP | TFP_LP | |
EGovern | 0.391 ** | 0.373 ** | 0.284 * | 0.369 *** | 0.259 ** | 0.301 * | 0.097 | 0.040 |
(0.174) | (0.149) | (0.167) | (0.114) | (0.119) | (0.178) | (0.238) | (0.227) | |
EGovern ×Attention-Tenure | 0.051 * | 0.054 * | 0.067 | 0.079 | 0.092 ** | 0.074 * | 0.053 * | 0.042 ** |
(0.029) | (0.030) | (0.051) | (0.056) | (0.044) | (0.039) | (0.028) | (0.021) | |
Attention-Tenure | −0.030 | −0.025 | −0.072 ** | −0.060 ** | −0.042 | −0.053 | −0.016 | −0.028 |
(0.020) | (0.022) | (0.032) | (0.030) | (0.036) | (0.040) | (0.027) | (0.029) | |
Constant | −4.755 *** | −6.414 *** | −4.612 *** | −6.577 *** | −4.365 *** | −6.093 *** | −5.134 *** | −6.195 *** |
(0.318) | (0.304) | (0.435) | (0.388) | (0.730) | (0.835) | (0.761) | (0.740) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Industry fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 9865 | 9865 | 6475 | 6475 | 1964 | 1964 | 1426 | 1426 |
R2 adjusted | 0.737 | 0.764 | 0.754 | 0.778 | 0.752 | 0.778 | 0.744 | 0.755 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, E.; Chen, Q.; Zhang, X.; Zhang, C. Digital Government Development, Local Governments’ Attention Distribution and Enterprise Total Factor Productivity: Evidence from China. Sustainability 2023, 15, 2472. https://doi.org/10.3390/su15032472
Li E, Chen Q, Zhang X, Zhang C. Digital Government Development, Local Governments’ Attention Distribution and Enterprise Total Factor Productivity: Evidence from China. Sustainability. 2023; 15(3):2472. https://doi.org/10.3390/su15032472
Chicago/Turabian StyleLi, Enji, Qing Chen, Xinyan Zhang, and Chen Zhang. 2023. "Digital Government Development, Local Governments’ Attention Distribution and Enterprise Total Factor Productivity: Evidence from China" Sustainability 15, no. 3: 2472. https://doi.org/10.3390/su15032472
APA StyleLi, E., Chen, Q., Zhang, X., & Zhang, C. (2023). Digital Government Development, Local Governments’ Attention Distribution and Enterprise Total Factor Productivity: Evidence from China. Sustainability, 15(3), 2472. https://doi.org/10.3390/su15032472