Sustainable Path of Food Security in China under the Background of Green Agricultural Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Framework of Assessment Systems
2.2. Data Standardisation and Weight Measure
2.3. Index Calculation and Coupling Coordination Degree Model
2.4. Measurement of the fsQCA Method
3. Results and Analysis
3.1. Quantity Analysis
3.2. Qualitative Analysis
- 1.
- The configuration of high food security index regions
- 2.
- The configuration of non-high regions
- 3.
- Difference between eastern and mid-western areas
4. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
- 1.
- The steps of extreme value method
- (1)
- Data standardisation.
- (2)
- Translation of index
- 2.
- The process of entropy evaluation method
- (1)
- Calculating index proportions
- (2)
- Calculating information entropy
- (3)
- Calculating diversity factor
- (4)
- Calculating weights
- 3.
- The extra tables
- (1)
- The combination weights
Index Layer | AHP Weights | Entropy Weights | Combination Weights |
---|---|---|---|
Multiple cropping index of land (x1) | 0.235 | 0.101 | 0.161 |
Percent of water-saving irrigated area (x2) | 0.235 | 0.152 | 0.197 |
Number of green food labels per unit area (x3) | 0.209 | 0.173 | 0.199 |
Average agricultural labour productivity (x4) | 0.110 | 0.137 | 0.128 |
Emission intensity of agricultural chemical oxygen demand (COD) (x5) | 0.078 | 0.114 | 0.099 |
Fertilizer intensity (x6) | 0.070 | 0.149 | 0.107 |
Forest coverage rate (x7) | 0.037 | 0.086 | 0.059 |
Soil erosion control area (x8) | 0.026 | 0.087 | 0.050 |
Rate of urbanization (x9) | 0.365 | 0.181 | 0.251 |
Added value of agriculture, forestry, animal husbandry and fisher (x10) | 0.231 | 0.125 | 0.166 |
Rural network coverage (x11) | 0.122 | 0.166 | 0.139 |
Agricultural mechanical power per land (x12) | 0.091 | 0.203 | 0.132 |
Proportion of effective irrigated area (x13) | 0.077 | 0.239 | 0.132 |
Percentage of highway mileage (x14) | 0.064 | 0.119 | 0.085 |
Occurrence rate of agricultural natural disasters (x15) | 0.030 | 0.072 | 0.045 |
Annual rainfall in the area (x16) | 0.020 | 0.134 | 0.050 |
- (2)
- The calibration points of conditions and results for 2013–2017 years
Conditions and Results | 2013 | 2015 | 2017 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Full Membership Point | Intersection Point | Full Non-Membership Point | Full Membership Point | Intersection Point | Full Non-Membership Point | Full Membership Point | Intersection Point | Full Non-membership Point | ||
Outcome variable | Food security index | 0.89 | 0.62 | −0.58 | 0.9 | 0.64 | -0.61 | 0.9 | 0.65 | −0.84 |
Quantity security index | Land used per unit grain output | 1 | 0.77 | 0.24 | 0.99 | 0.7 | 0.23 | 0.98 | 0.78 | 0.18 |
Percent of primary industry employment | 58.62 | 37.02 | 6.88 | 53.72 | 36.62 | 6.04 | 49.57 | 32.68 | 5.51 | |
Ecology security index | Fertilizer intensity of unit area | 0.98 | 0.64 | 0.22 | 0.99 | 0.67 | 0.22 | 0.97 | 0.67 | 0.2 |
Agricultural labour productivity | 5.83 | 5.28 | 4.48 | 6.05 | 5.46 | 4.82 | 6.25 | 5.6 | 5.01 | |
Economic security index | Agricultural production price index | 0.91 | 0.63 | 0.3 | 0.9 | 0.55 | 0.2 | 0.98 | 0.48 | 0.09 |
Fiscal expenditures on grain production | 508.98 | 384.81 | 259.52 | 520.72 | 395.62 | 267.66 | 561.09 | 406.68 | 272.59 |
- 4.
- AcronymsAGD for agricultural green development.SD for serious dissonance stage.MD for moderate dissonance stage.BC for basic coordination stage.QCA for the qualitative comparative analysis.The fsQCA for fuzzy-set QCA.AEP for China’s economic potential systemCCD model for the coupling coordination degree model
References
- FAO. Crop Prospects and Food Situation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An evaluation of China’s agricultural green production: 1978–2017. China Agric. Econ. Rev. 2018, 10, 78–92. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, Q.; Jiao, X.; Ying, H.; Wang, H.; Wen, X.; Xu, W.; Li, T.; Cong, W.; Liu, X.; et al. Agriculture Green Development: A model for China and the world. Front. Agr. Sci. Eng. 2020, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- The Global Network Against Food Crises Global Report on Food Crises. 2022. Available online: https://reliefweb.int/report/world/global-report-food-crises-2022 (accessed on 20 January 2023).
- Barrett, C.B. Measuring food insecurity. Science 2010, 327, 825–828. [Google Scholar] [CrossRef] [PubMed]
- Coates, J. Build it back better: Deconstructing food security for improved measurement and action. Glob. Food Secur. 2013, 2, 188–194. [Google Scholar] [CrossRef]
- Norse, D.; Ju, X. Environmental costs of China’s food security. Agric. Ecosyst. Environ. 2015, 209, 5–14. [Google Scholar] [CrossRef]
- Jiao, X.; Lyu, Y.; Wu, X.; Li, H.; Cheng, L.; Zhang, C.; Yuan, L.; Jiang, R.; Jiang, B.; Rengel, Z.; et al. Grain production versus resource and environmental costs: Towards increasing sustainability of nutrient use in China. EXBOTJ 2016, 67, 4935–4949. [Google Scholar] [CrossRef] [Green Version]
- Svensson, J.; Wang, Y.; Garrick, D.; Dai, X. How does hybrid environmental governance work? Examining water rights trading in China (2000–2019). J. Environ. Manag. 2021, 288, 112333. [Google Scholar] [CrossRef]
- Alola, A.A.; Adebayo, T.S.; Onifade, S.T. Examining the dynamics of ecological footprint in China with spectral Granger causality and quantile-on-quantile approaches. Int. J. Sustain. Dev. World Ecol. 2022, 29, 263–276. [Google Scholar] [CrossRef]
- Chi, M.; Guo, Q.; Mi, L.; Wang, G.; Song, W. Spatial Distribution of Agricultural Eco-Efficiency and Agriculture High-Quality Development in China. Land 2022, 11, 722. [Google Scholar] [CrossRef]
- Fan, M.; Shen, J.; Yuan, L.; Jiang, R.; Chen, X.; Davies, W.J.; Zhang, F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar] [CrossRef]
- Schindler, J.; Graef, F.; König, H.J. Methods to assess farming sustainability in developing countries. A review. Agron. Sustain. Dev. 2015, 35, 1043–1057. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Wu, H.; Lin, A.; Shariff, A.R.M.; Hu, Q.; Song, D.; Zhu, W. Optimizing the spatial pattern of land use in a prominent grain-producing area: A sustainable development perspective. Sci. Total Env. 2022, 843, 156971. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dong, C.; Liu, S.; Rahman, S.; Sriboonchitta, S. Sources of Total-Factor Productivity and Efficiency Changes in China’s Agriculture. Agriculture 2020, 10, 279. [Google Scholar] [CrossRef]
- Lu, Y.; Jenkins, A.; Ferrier, R.C.; Bailey, M.; Gordon, I.J.; Song, S.; Huang, J.; Jia, S.; Zhang, F.; Liu, X.; et al. Addressing China’s grand challenge of achieving food security while ensuring environmental sustainability. Sci. Adv. 2015, 1, e1400039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Li, Y.; Huang, J.; Yan, T.; Sun, T. Growing water scarcity, food security and government responses in China. Glob. Food Secur. 2017, 14, 9–17. [Google Scholar] [CrossRef]
- Liu, F.; Xiao, X.; Qin, Y.; Yan, H.; Huang, J.; Wu, X.; Zhang, Y.; Zou, Z.; Doughty, R.B. Large spatial variation and stagnation of cropland gross primary production increases the challenges of sustainable grain production and food security in China. Sci. Total Environ. 2022, 811, 151408. [Google Scholar] [CrossRef] [PubMed]
- Musvoto, C.; Nortje, K.; De Wet, B.; Mahumani, B.K.; Nahman, A. Imperatives for an agricultural green economy in South Africa. S. Afr. J. Sci. 2015, 111, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Florea, N.V.; Duică, M.C.; Ionescu, C.A.; Duică, A.; Ibinceanu, M.C.O.; Stanescu, S.G. An Analysis of the Influencing Factors of the Romanian Agricultural Output within the Context of Green Economy. Sustainability 2021, 13, 9649. [Google Scholar] [CrossRef]
- Guo, C.; Bai, Z.; Shi, X.; Chen, X.; Chadwick, D.; Strokal, M.; Zhang, F.; Ma, L.; Chen, X. Challenges and strategies for agricultural green development in the Yangtze River Basin. J. Integr. Environ. Sci. 2021, 18, 37–54. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 6. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Díaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Rees, W.; Wackernagel, M. Urban ecological footprints: Why cities cannot be sustainable—And why they are a key to sustainability. Environ. Impact Assess. Rev. 1996, 16, 223–248. [Google Scholar] [CrossRef]
- Wackernagel, M.; Kitzes, J.; Moran, D.; Goldfinger, S.; Thomas, M. The Ecological Footprint of cities and regions: Comparing resource availability with resource demand. Environ. Urban. 2006, 18, 103–112. [Google Scholar] [CrossRef]
- Pappas, I.O.; Woodside, A.G. Fuzzy-set Qualitative Comparative Analysis (fsQCA): Guidelines for research practice in Information Systems and marketing. Int. J. Inf. Manag. 2021, 58, 102310. [Google Scholar] [CrossRef]
- Marx, A.; Rihoux, B.; Ragin, C. The origins, development, and application of Qualitative Comparative Analysis: The first 25 years. Eur. Pol. Sci. Rev. 2014, 6, 115–142. [Google Scholar] [CrossRef] [Green Version]
- Ragin, C.C.; Strand, S.I. Using Qualitative Comparative Analysis to Study Causal Order: Comment on Caren and Panofsky (2005). Sociol. Methods Res. 2008, 36, 431–441. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, L.; Trout, T. Special Issue: Improving Agricultural Water Productivity to Ensure Food Security under Changing Environments. Agric. Water Manag. 2017, 179, 1–4. [Google Scholar] [CrossRef]
- Liu, X.; Shi, L.; Qian, H.; Sun, S.; Wu, P.; Zhao, X.; Engel, B.A.; Wang, Y. New problems of food security in Northwest China: A sustainability perspective. Land Degrad. Dev. 2020, 31, 975–989. [Google Scholar] [CrossRef]
- The Xinhua News Agency. China Unveils 5-Year Plan for Agricultural Green Development; The Xinhua News Agency: Beijing, China, 2022. Available online: http://english.www.gov.cn/statecouncil/ministries/202109/08/content_WS61386c3bc6d0df57f98dfddf.html (accessed on 29 November 2022).
- Liu, Y.; Cheng, X.; Li, W. Agricultural chemicals and sustainable development: The agricultural environment Kuznets curve based on spatial panel model. Env. Sci. Pollut. Res. Int. 2021, 28, 51453–51470. [Google Scholar] [CrossRef]
- Fiss, P.C. Building Better Causal Theories: A Fuzzy Set Approach to Typologies in Organization Research. AMJ 2011, 54, 393–420. [Google Scholar] [CrossRef] [Green Version]
- Ge, D.; Long, H.; Ma, L.; Zhang, Y.; Tu, S. Analysis Framework of China’s Grain Production System: A Spatial Resilience Perspective. Sustainability 2017, 9, 2340. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Wei, W.; Cui, Q.; Xie, W. The prospects for China’s food security and imports: Will China starve the world via imports? J. Integr. Agric. 2017, 16, 2933–2944. [Google Scholar] [CrossRef]
- Qi, Y.; Farnoosh, A.; Lin, L.; Liu, H. Coupling coordination analysis of China’s provincial water-energy-food nexus. Environ. Sci. Pollut. Res. 2022, 29, 23303–23313. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, W.; Yang, X. Coupling coordination evaluation and sustainable development pattern of geo-ecological environment and urbanization in Chongqing municipality, China. Sustain. Cities Soc. 2020, 61, 102271. [Google Scholar] [CrossRef]
- Du, Y.; Kim, P.H.; Aldrich, H.E. Configurational Effects of Slack and CEO Narcissism on New Venture Innovation Investment. Proceedings 2016, 2016, 12479. [Google Scholar] [CrossRef]
- Wang, M.; Wang, K. Exploring Water Landscape Adaptability of Urban Spatial Development Base on Coupling Coordination Degree Model A Case of Caidian District, Wuhan. Sustainability 2021, 13, 1475. [Google Scholar] [CrossRef]
- Sigdel, R.; Anand, M.; Bauch, C.T. Convergence of socio-ecological dynamics in disparate ecological systems under strong coupling to human social systems. Theor. Ecol. 2018, 12, 285–296. [Google Scholar] [CrossRef]
Target Layer | Criterion Layer | Index Layer | Property |
---|---|---|---|
Agricultural Green Development (AGD) Layer | Conserving resource | Multiple cropping index of land (x1) | − |
Percent of water-saving irrigated area (x2) | + | ||
High quality and efficiency | Number of green food labels per unit area (x3) | + | |
Average agricultural labour productivity (x4) | + | ||
Eco-friendly | Emission intensity of agricultural chemical oxygen demand (COD) (x5) | − | |
Fertilizer intensity (x6) | − | ||
Conservation ecology | Forest coverage rate (x7) | + | |
Soil erosion control area (x8) | + | ||
Agricultural Economic Potential (AEP) Layer | Urban-rural integration | Rate of urbanization (x9) | + |
Added value of agriculture, forestry, animal husbandry and fisher (x10) | + | ||
R&D input | Rural network coverage (x11) | + | |
Agricultural mechanical power per land (x12) | + | ||
Infrastructure | Proportion of effective irrigated area (x13) | + | |
Percentage of highway mileage (x14) | + | ||
Climate | Occurrence rate of agricultural natural disasters (x15) | − | |
Annual rainfall in the area (x16) | + |
Value Interval of D | Types of Coordination | Meaning |
---|---|---|
0 < D ≤ 0.2 | Serious dissonance | With rapid development of agricultural economy, the ecological environment is overloaded, and ecological pollution occurs frequently. |
0.2 < D ≤ 0.4 | Moderate dissonance | Agricultural economic function occupies absolute superiority, the negative impact of ecological pollution is increasingly serious, which is of concern by the government. |
0.4 < D ≤ 0.5 | Basic coordination | The progress of agricultural economic construction has slowed down, gradually shifting to green production methods that improve quality and efficiency. |
0.5 < D ≤ 0.8 | Moderate coordination | The transformation of AGD has been achieved initially, and with the increase in financial investment in environmental governance, ecological restoration has achieved some results. |
0.8 < D ≤ 1.0 | High coordination. | Agricultural green transformation and economic development are going to adapt with each other, and achieve sustainable and orderly development. |
Conditions and Results | Full Membership Point | Intersection Point | Full Non-Membership Point | |
---|---|---|---|---|
Outcome variable | Food security index | 0.89 | 0.66 | −0.98 |
Quantity security index | Land used per unit grain output | 0.99 | 0.76 | 0.21 |
Percent of primary industry employment | 42.23 | 31.49 | 5.18 | |
Ecology security index | Fertilizer intensity of unit area | 0.97 | 0.63 | 0.03 |
Agricultural labour productivity | 6.41 | 5.71 | 5.19 | |
Economic security index | Agricultural production price index | 0.89 | 0.47 | 0.12 |
Fiscal expenditures on grain production | 570.31 | 408.08 | 262.22 |
Condition Variables | High Food Security Areas | Non-Food Security Ares | ||
---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | |
Land used per unit grain output(P) | 0.470 | 0.801 | 0.784 | 0.795 |
~Land used per unit grain output(~P) | 0.693 | 0.970 | 0.492 | 1.000 |
Percent of primary industry employment(J) | 0.802 | 0.904 | 0.454 | 0.941 |
~Percent of primary industry employment(~J) | 0.382 | 0.923 | 0.811 | 0.815 |
Fertilizer intensity of unit area(C) | 0.775 | 0.906 | 0.684 | 0.889 |
~Fertilizer intensity of unit area(~C) | 0.397 | 0.891 | 0.657 | 0.928 |
Agricultural labour productivity(G) | 0.356 | 0.898 | 0.689 | 0.845 |
~Agricultural labour productivity(~G) | 0.845 | 0.934 | 0.542 | 0.817 |
Agricultural production price index(A) | 0.517 | 0.915 | 0.658 | 0.756 |
~Agricultural production price index(~A) | 0.688 | 0.935 | 0.553 | 0.911 |
Fiscal expenditures on grain production(E) | 0.463 | 0.939 | 0.746 | 0.762 |
~Fiscal expenditures on grain production(~E) | 0.756 | 0.935 | 0.406 | 0.813 |
Configuration | Solutions of High Areas | Solutions of Non-High Areas | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H1 | H2 | H3a | H3b | H4 | N1 | N2a | N2b | N3a | N3b | N4 | |
P | ⊗ | • | ⊗ | ⊗ | • | • | ⨂ | • | • | ⨂ | ⨂ |
J | ● | ● | ● | ● | ⨂ | ⨂ | • | ⨂ | ⨂ | • | |
C | ● | ● | ● | ● | ⨂ | ⨂ | ● | ● | ● | ||
A | • | • | • | ⨂ | ⨂ | ● | ⊗ | ⊗ | ⊗ | ⊗ | ● |
G | ⨂ | ⨂ | ⨂ | ⨂ | • | ● | ● | ⊗ | ● | • | |
E | ⨂ | ⨂ | ⨂ | • | • | ⨂ | • | ⨂ | • | • | |
Consistency | 1 | 1 | 1 | 1 | 1 | 0.991 | 1 | 1 | 1 | 1 | 1 |
Raw coverage | 0.308 | 0.240 | 0.260 | 0.437 | 0.214 | 0.329 | 0.147 | 0.272 | 0.205 | 0.203 | 0.243 |
Unique coverage | 0.048 | 0.044 | 0.007 | 0.041 | 0.019 | 0.088 | 0.035 | 0.064 | 0.083 | 0.034 | 0.081 |
Solution consistency | 1 | 0.996 | |||||||||
Solution coverage | 0.714 | 0.667 |
Configuration | Eastern Areas | Mid-Western Areas | ||||||
---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | W1a | W1b | W2a | W2b | W3 | |
P | • | • | ⨂ | ⨂ | ⨂ | ● | ● | ● |
J | • | ⨂ | • | • | ● | • | ⨂ | ● |
C | ⨂ | ⨂ | • | ⨂ | • | • | • | ⨂ |
A | ⨂ | • | • | • | ● | ⨂ | • | ● |
G | ● | ● | ● | ⨂ | • | ● | ● | ● |
E | ● | ● | ● | ⨂ | • | ⨂ | • | ⨂ |
Consistency | 0.968 | 0.918 | 0.963 | 1 | 1 | 0.996 | 1 | 1 |
Raw coverage | 0.284 | 0.387 | 0.238 | 0.229 | 0.190 | 0.270 | 0.219 | 0.201 |
Unique coverage | 0.036 | 0.123 | 0.069 | 0.089 | 0.051 | 0.053 | 0.030 | 0.009 |
Solution consistency | 0.935 | 0.998 | ||||||
Solution coverage | 0.493 | 0.459 |
Configuration Name | Dominant Type | Promotion Type | Substitute Type | Softening Type | |
---|---|---|---|---|---|
Features | Multiple conditions are at high levels and key factors can consolidate favourable conditions. | The edge conditions are missed, and the key factors have obvious substitution for such condition. | Core conditions are missed. With other conditions is relatively better, forming strong substitution of such key conditions. | ||
Factors of grain production | Subjects | — | — | — | — |
Environment | — | Environmental enabler | Environmental substitution | Environmental softening | |
Basic input | — | Factors promoting | Factors substitution | Factors softening | |
Comprehensive | Synthetic development | — | Synthetic substitution | Synthetic softening |
Year | Configuration | Key Points | Dimension | Completeness of Condition | Types | Typical Regions |
---|---|---|---|---|---|---|
2013 | P×J×~C×~A×E | Land used per unit grain output | Basic input | Missing edge conditions | Factors substitution | Jiangsu, Hubei, Hunan, Shandong, Xinjiang, Inner Mongolia |
P×~J×~C×A×~G×E | Land used per unit grain output, agricultural labour productivity | Comprehensive | Missing edge conditions | Synthetic substitution | Heilongjiang, Hebei, Henan | |
~P×J×C×A×G×E | Agricultural labour productivity | Environment | Missing edge conditions | Environmental substitution | Anhui, Jilin | |
2015 | P×C×A×G×E | Land used per unit grain output, fiscal expenditures on grain production | Comprehensive | Complete conditions | Synthetic development | Anhui, Shandong |
P×~J×C×A×G×E | Land used per unit grain output, fiscal expenditures on grain production | Comprehensive | Missing edge conditions | Synthetic substitution | Jiangsu, Hebei, Henan, Jiangxi, Hubei, Xinjiang | |
~P×C×A×~G×E | Fiscal expenditures on grain production | Environment | Missing edge conditions | Environmental substitution | Jilin, Inner Mongolia | |
2017 | P×~J×A×E | Percent of primary industry employment | Basic input | Lacking core points | Factors softening | Hebei, Henan, Anhui, Hubei, Inner Mongolia |
~P×J×C×A×G×E | Land used per unit grain output | Basic input | Lacking core points | Factors softening | Jilin | |
P×J×C×~A×G×~E | Agricultural labour productivity, fiscal expenditures on grain production | Comprehensive | Lacking core points | Synthetic softening | Jiangsu, Jiangxi, Xinjiang | |
2019 | ~P×J×A×~G×~E | Land used per unit grain output, percent of primary industry employment | Basic input | Lacking core points | Factors softening | Jiangsu, Heilongjiang |
P×C×A×~G×~E | Fertilizer intensity of unit area | Basic input | Missing edge conditions | Factors substitution | Hubei, Hunan | |
~P×J×C×A×~G×~E | Percent of primary industry employment, fertilizer intensity of unit area | Basic input | Lacking core points | Factors softening | Shandong, Anhui, Jiangxi, Xinjiang, Inner Mongolia | |
P×J×C×~A×~G×E | Percent of primary industry employment, fertilizer intensity of unit area | Basic input | Missing edge conditions | Factors substitution | Henan, Liaoning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Zeng, F. Sustainable Path of Food Security in China under the Background of Green Agricultural Development. Sustainability 2023, 15, 2538. https://doi.org/10.3390/su15032538
Deng Y, Zeng F. Sustainable Path of Food Security in China under the Background of Green Agricultural Development. Sustainability. 2023; 15(3):2538. https://doi.org/10.3390/su15032538
Chicago/Turabian StyleDeng, Yinglei, and Fusheng Zeng. 2023. "Sustainable Path of Food Security in China under the Background of Green Agricultural Development" Sustainability 15, no. 3: 2538. https://doi.org/10.3390/su15032538
APA StyleDeng, Y., & Zeng, F. (2023). Sustainable Path of Food Security in China under the Background of Green Agricultural Development. Sustainability, 15(3), 2538. https://doi.org/10.3390/su15032538