Phytoremediation Potential of Native Plants Growing in Industrially Polluted Soils of Al-Qassim, Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Processing
2.3. Soil and Plant Analyses
2.4. Data Precision and Accuracy
2.5. Soil Heavy Metals Contamination Assessment
2.5.1. Soil Enrichment Factor (EF)
2.5.2. Soil Contamination Factor (CF)
2.5.3. Estimation of Pollution Load Index (PLI)
2.5.4. Plants Bioaccumulation Factor (BF) Calculation
2.6. Statistical Analyses
3. Results and Discussion
3.1. Soil Physicochemical Characterization
3.2. Soil Heavy Metal Concentrations
3.3. Indices of Pollution
3.3.1. Soil Enrichment Factor (EF)
3.3.2. Pollution Load Index (PLI) and Contamination Factor (CF)
3.3.3. Heavy Metal Concentration in Plants
3.3.4. Bioaccumulation Factor (BF)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G.; Kang, H.; Zhang, X.; Shao, H.; Chu, L.; Ruan, C. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. J. Hazard. Mater. 2010, 174, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S. Recycling sludge on cropland as fertilizer—Advantages and risks. Resour. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Abdel-Salam, A.; Salem, H.M.; Abdel-Salam, M.A.; Seleiman, M.F. Phyto and chemical removal of heavy metal-contaminated soils. In Heavy Metal Contamination of Soils: Monitoring and Remediation; Sherameti, I., Varma, A., Eds.; Series Soil Biology; Springer: Cham, Switzerland, 2015; Volume 44, pp. 299–308. [Google Scholar]
- Salem, H.S.; Abdel-Salam, A.; Abdel-Salam, M.A.; Seleiman, M.F. Phytoremediation of metal and metalloids from contaminated soil. In Plants under Metal and Metalloid Stress- Responses, Tolerance and Remediation; Hasanuzzaman, M., Nahar, K., Fujita, M., Eds.; Series Soil Biology; Springer Nature Pte Ltd.: Singapore, 2018; Chapter 9; pp. 249–262. [Google Scholar]
- Chappell, J. Phytoremediation of TCE in Groundwater Using Populus; Office of Solid Waste and Emergency Response, Technology Innovation Office, US Environmental Protection Agency: Washington, DC, USA, 1998. [Google Scholar]
- Kahangwa, C.A.; Nahonyo, C.L.; Sangu, G.; Nassary, E.K. Assessing phytoremediation potentials of selected plant species in restoration of environments contaminated by heavy metals in gold mining areas of Tanzania. Heliyon 2021, 7, e07979. [Google Scholar] [CrossRef] [PubMed]
- Al-Wabel, M.I.; Sallam, A.; Ahmad, M.; Elanazi, K.; Usman, A.R. Extent of climate change in Saudi Arabia and its impacts on agriculture: A case study from Qassim region. In Environment, Climate, Plant and Vegetation Growth; Springer: Cham, Switzerland, 2020; pp. 635–657. [Google Scholar]
- Antosiewicz, D.M.; Escudĕ-Duran, C.; Wierzbowska, E.; Skłodowska, A. Indigenous plant species with the potential for the phytoremediation of arsenic and metals contaminated soil. Water Air Soil Pollut. 2008, 193, 197–210. [Google Scholar] [CrossRef]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Alsahli, A.A.; El-Gaaly, G. Evaluation of phytoremediation potential of six wild plants for metal in a site polluted by industrial wastes: A field study in Riyadh, Saudi Arabia. Pak. J. Bot. 2013, 45, 571–576. [Google Scholar]
- Aloud, S.S.; Alotaibi, K.D.; Almutairi, K.F.; Albarakah, F.N. Assessment of Heavy Metals Accumulation in Soil and Native Plants in an Industrial Environment, Saudi Arabia. Sustainability 2022, 14, 5993. [Google Scholar] [CrossRef]
- Sabry, T.I.; ElKholy, S.M.; Al-Salamah, I.S. Environmental Assessment of Wastewater Pollution in Al-Qassim Industrial City. In Chemical, Biological and Environmental Engineering; CBEE: Singapore, 2010; pp. 267–274. [Google Scholar]
- Ahmad, M.; Usman, A.R.; Al-Faraj, A.S.; Ahmad, M.; Sallam, A.; Al-Wabel, M.I. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere 2018, 194, 327–339. [Google Scholar] [CrossRef]
- Holliday, V.T. Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy Monograph No. 9; ASA-SSSA, Inc.: Madison, WI, USA, 1986. [Google Scholar]
- Loeppert, R.H.; Suarez, D.L. Carbonate and Gypsum. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 437–474. ISBN 9780891188667. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1983; pp. 539–579. ISBN 9780891189770. [Google Scholar]
- Estefan, G. Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa Region: Third Edition; New India Publishing Agency: New Delhi, India, 2013. [Google Scholar]
- Ho, H.H.; Rudy, S.; Damme, A. Distribution and Contamination Status of Heavy Metals in Estuarine Sediments near CauOng Harbor, Ha Long Bay, Vietnam. Geology Belgica. Geol. Belgica 2010, 13, 37–47. [Google Scholar]
- Lizárraga-Mendiola, L.; Durán-Domínguez-de-Bazúa, M.D.C.; González-Sandoval, M.-R. Environmental Assessment of an Active Tailings Pile in the State of Mexico (Central Mexico). Res. J. Environ. Sci. 2008, 2, 197–208. [Google Scholar] [CrossRef]
- Lindsay, W.L. Chemical Equilibria in Soils; John Wiley & Sons: Hoboken, NJ, USA, 1979. [Google Scholar]
- Sutherlad, R. Bed Sediment-Associated Trace Metals in an Urban Stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Usero, J.G.; Amarillo, J.F. Evaluación de La Calidad de Las Aguas y Sedimentos del Litoral de Andalucía; Consejería de Medio Ambiente: Sevilla, Spain, 2000; p. 164. [Google Scholar]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Soda, S.; Hamada, T.; Yamaoka, Y.; Ike, M.; Nakazato, H.; Saeki, Y.; Kasamatsu, T.; Sakurai, Y. Constructed Wetlands for Advanced Treatment of Wastewater with a Complex Matrix from a Metal-Processing Plant: Bioconcentration and Translocation Factors of Various Metals in Acorus Gramineus and Cyperus Alternifolius. Ecol. Eng. 2012, 39, 63–70. [Google Scholar] [CrossRef]
- Rai, U.; Upadhyay, A.; Singh, N.; Dwivedi, S.; Tripathi, R. Seasonal Applicability of Horizontal Sub-Surface Flow Constructed Wetland for Trace Elements and Nutrient Removal from Urban Wastes to Conserve Ganga River Water Quality at Haridwar, India. Ecol. Eng. 2015, 81, 115–122. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Deekey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill Book Co.: New York, NY, USA, 1997. [Google Scholar]
- Wilson, S.C.; Tighe, M.; Paterson, E.; Ashley, P.M. Food Crop Accumulation and Bioavailability Assessment for Antimony (Sb) Compared with Arsenic (As) in Contaminated Soils. Environ. Sci. Pollut. Res. Int. 2014, 21, 11671–11681. [Google Scholar] [CrossRef]
- Salman, A.; Al-Tayib, M.; Hag Elsafi, S.; Al-Duwarij, N. Assessment of Pollution Sources in the Southeastern of the Riyadh and Its Impact on the Population/Saudi Arabia. Arab. J. Geosci. 2016, 9, 328. [Google Scholar] [CrossRef]
- Dragović, S.; Mihailović, N.; Gajić, B. Heavy Metals in Soils: Distribution, Relationship with Soil Characteristics and Radionuclides and Multivariate Assessment of Contamination Sources. Chemosphere 2008, 72, 491–495. [Google Scholar] [CrossRef]
- Yadav, S.; Rajamani, V. Air Quality and Trace Metal Chemistry of Different Size Fractions of Aerosols in N–NW India—Implications for Source Diversity. Atmos. Environ. 2006, 40, 698–712. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination Features and Health Risk of Soil Heavy Metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Stevanović, V.; Gulan, L.; Milenković, B.; Valjarević, A.; Zeremski, T.; Penjišević, I. Environmental Risk Assessment of Radioactivity and Heavy Metals in Soil of Toplica Region, South Serbia. Environ. Geochem. Health 2018, 40, 2101–2118. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Shen, D.; Wu, S.; Han, Y.; Li, S.; Tang, F.; Lin, N.; Mo, R.; Liu, Y. Uptake Effects of Toxic Heavy Metals from Growth Soils into Jujube and Persimmon of China. Environ. Sci. Pollut. Res. 2018, 25, 31593–31602. [Google Scholar] [CrossRef] [PubMed]
- Cardwell, A.J.; Hawker, D.W.; Greenway, M. Metal Accumulation in Aquatic Macrophytes from Southeast Queensland, Australia. Chemosphere 2002, 48, 653–663. [Google Scholar] [CrossRef]
- Chaney, R.L. Toxic Element Accumulation in Soils and Crops: Protecting Soil Fertility and Agricultural Food-Chains; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants: Fourth Edition; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9780429192036. [Google Scholar]
- Bonanno, G.; Lo Giudice, R. Heavy Metal Bioaccumulation by the Organs of Phragmites Australis (Common Reed) and Their Potential Use as Contamination Indicators. Ecol. Indic. 2010, 10, 639–645. [Google Scholar] [CrossRef]
- Hassan, Z.; Aarts, M. Opportunities and Feasibilities for Biotechnological Improvement of Zn, Cd or Ni Tolerance and Accumulation in Plants. Environ. Exp. Bot. 2011, 72, 53–63. [Google Scholar] [CrossRef]
- Muhammad, S.; Shah, M.T.; Khan, S.; Saddique, U.; Gul, N.; Khan, M.U.; Malik, R.N.; Farooq, M.; Naz, A. Wild Plant Assessment for Heavy Metal Phytoremediation Potential along the Mafic and Ultramafic Terrain in Northern Pakistan. Biomed Res. Int. 2013, 2013, 194765. [Google Scholar] [CrossRef]
- Lim, H.-S.; Lee, J.-S.; Chon, H.-T.; Sager, M. Heavy Metal Contamination and Health Risk Assessment in the Vicinity of the Abandoned Songcheon Au–Ag Mine in Korea. J. Geochemical Explor. 2008, 96, 223–230. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Beef Cattle: Seventh Revised Edition: Update 2000; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Barbafieri, M.; Dadea, C.; Tassi, E.; Bretzel, F.; Fanfani, L. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: Discovering native flora for phytoremediation. Int. J. Phytoremediat. 2011, 13, 985–997. [Google Scholar] [CrossRef]
- Fitz, W.J.; Wenzel, W.W. Arsenic Transformations in the Soil-Rhizosphere-Plant System: Fundamentals and Potential Application to Phytoremediation. J. Biotechnol. 2002, 99, 259–278. [Google Scholar] [CrossRef]
Sr. No. | Family | Species | Classification |
---|---|---|---|
1 | Malvaceae | Malva parviflora | Annual or perennial |
2 | Polygonaceae | Rumex vesicarius | A perennial plant |
3 | Solanaceae | Solanum nigrum | Short-lived perennial shrub |
4 | Asteraceae | Lactuca serriola | Annual or biennial |
5 | Amaranthaceae | Chenopodium murale | Annual |
6 | Brassicaceae | Sisymbrium irio | Annual or winter-annual |
7 | Asteraceae | Pulicaria crispa | Annual or perennial |
8 | Poaceae | Phrgmites australis | Annual or perennial |
9 | Amaranthaceae | Chenopodium album | Annual plant |
10 | Brassicaceae | Brassica tournefortil | Annual plant |
Soil Properties | Min | Max | Mean | SD a | CV |
---|---|---|---|---|---|
Sand % | 79 | 84 | 81 | 1.55 | 1.9 |
Silt % | 8 | 12 | 10 | 1.62 | 16 |
Clay % | 7 | 11 | 9 | 1.34 | 15 |
pH (1:1) | 8.1 | 8.4 | 8.2 | 0.12 | 1.4 |
OM % c | 0.58 | 1.3 | 0.8 | 0.18 | 21 |
EC (1:1) dS/m b | 3.3 | 8.1 | 5.7 | 1.41 | 25 |
CaCO3 % | 5.9 | 14.4 | 9.7 | 2.64 | 27 |
Mean (SD a) | ||||||||
---|---|---|---|---|---|---|---|---|
Site | Ni | Cd | Cu | Zn | Cr | Pb | Mn | Fe |
S1 | 25.7 (4.1) | 5.6 (0.6) | 20.9 (2.2) | 41.5 (2.7) | 12.5 (0.6) | 19.6 (2.5) | 258.2 (22.8) | 7100 (519.6) |
S2 | 28.5 (2.3) | 3.5 (0.7) | 29.5 (6.0) | 59.7 (4.7) | 25 (1.6) | 23 (2.0) | 198.3 (9.9) | 3900 (529.1) |
S3 | 55.5 (4.2) | 16.2 (0.4) | 14 (2.5) | 177.8 (15.7) | 11.9 (0.5) | 49.8 (7.1) | 110 (12.8) | 6600 (793.7) |
S4 | 44 (4.5) | 4.6 (0.5) | 15.3 (1.3) | 41.5 (4.1) | 8.9 (0.3) | 21.8 (4.8) | 196.5 (10.4) | 10,400 (2551.4) |
S5 | 16.8 (0.8) | 7.9 (0.4) | 13.9 (0.9) | 59.7 (4.7) | 23.9 (3.3) | 8.33 (1.0) | 77.3 (5.1) | 5990 (770.9) |
S6 | 15.8 (1.5) | 4.9 (0.6) | 7.1 (1.8) | 177.8 (8.5) | 5.9 (0.5) | 19.9 (4.6) | 68.5 (4.9) | 5230 (333.0) |
S7 | 36.5 (2.7) | 32.8 (2.6) | 7.6 (0.9) | 41.5 (3.0) | 15.9 (1.9) | 15.7 (2.6) | 75.8 (6.0) | 6710 (1712.2) |
S8 | 35.7 (2.6) | 10.5 (1.7) | 6.0 (1.5) | 59.7 (8.0) | 12.9 (1.3) | 11.5 (2.3) | 145 (7.5) | 9900 (883.4) |
S9 | 19.3 (1.0) | 7.9 (0.4) | 16.0 (2.2) | 97.3 (6.5) | 16.9 (2.3) | 15.8 (1.3) | 280 (20.4) | 6800 (419.0) |
S10 | 16.5 (1.8) | 4.3 (0.3) | 6.8 (2.0) | 177.8 (7.4) | 21.9 (2.8) | 14.5 (2.1) | 240 (23.8) | 19,600 (2621.0) |
Sand % | Silt % | Clay % | pH | EC | O.M% | CaCO3 % | |
---|---|---|---|---|---|---|---|
Zn | 0.486 | −0.544 | 0.326 | 0.474 | −0.486 | 0.050 | 0.126 |
Pb | −0.070 | 0.611 * | −0.753 ** | −0.527 | 0.475 | −0.119 | −0.030 |
Ni | −0.030 | −0.127 | 0.193 | −0.086 | 0.528 | −0.449 | 0.357 |
Fe | 0.362 | −0.234 | 0.016 | −0.095 | −0.457 | −0.241 | 0.067 |
Cu | −0.627 * | 0.103 | 0.373 | 0.447 | −0.452 | 0.157 | −0.266 |
Cr | 0.244 | −0.373 | 0.296 | 0.462 | −0.549 | 0.307 | −0.188 |
Cd | 0.195 | −0.194 | 0.099 | 0.071 | −0.035 | 0.188 | 0.020 |
Enrichment Factor | Ni | Cd | Cu | Zn | Cr | Pb | Mn |
---|---|---|---|---|---|---|---|
Minimal to deficient enrichment | 10 | 0 | 50 | 40 | 90 | 0 | 70 |
Medium enrichment | 60 | 0 | 40 | 40 | 10 | 20 | 30 |
Significant enrichment | 30 | 10 | 10 | 20 | 0 | 60 | 0 |
Very high enrichment | 0 | 0 | 0 | 0 | 0 | 20 | 0 |
Extremely high enrichment | 0 | 90 | 0 | 0 | 0 | 0 | 0 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | |
---|---|---|---|---|---|---|---|---|---|---|
Ni | 3.44 | 6.94 | 7.99 | 4.02 | 2.66 | 2.87 | 5.17 | 3.43 | 2.70 | 0.80 |
Cd | 42.82 | 48.72 | 133.25 | 24.01 | 71.60 | 50.86 | 265.36 | 57.58 | 63.07 | 11.91 |
Cu | 3.73 | 9.58 | 2.69 | 1.86 | 2.94 | 1.72 | 1.43 | 0.77 | 2.98 | 0.44 |
Zn | 4.44 | 11.63 | 20.47 | 3.03 | 7.57 | 25.84 | 4.70 | 4.58 | 10.87 | 6.89 |
Cr | 0.67 | 2.44 | 0.69 | 0.33 | 1.52 | 0.43 | 0.90 | 0.50 | 0.94 | 0.42 |
Pb | 10.49 | 22.41 | 28.67 | 7.97 | 5.28 | 14.46 | 8.89 | 4.41 | 8.83 | 2.81 |
Mn | 2.30 | 3.22 | 1.06 | 1.20 | 0.82 | 0.83 | 0.72 | 0.93 | 2.61 | 0.78 |
Site ID | Contamination Factor | Pollution Load Index | |||||||
---|---|---|---|---|---|---|---|---|---|
Ni | Cd | Cu | Zn | Cr | Pb | Mn | Fe | ||
S1 | 0.51 | 8.00 | 0.70 | 0.83 | 0.13 | 1.96 | 0.43 | 0.19 | 0.74 |
S2 | 0.57 | 5.00 | 0.98 | 1.19 | 0.25 | 2.30 | 0.33 | 0.10 | 0.98 |
S3 | 1.11 | 23.14 | 0.47 | 3.56 | 0.12 | 4.98 | 0.18 | 0.17 | 0.98 |
S4 | 0.88 | 6.57 | 0.51 | 0.83 | 0.09 | 2.18 | 0.33 | 0.27 | 0.99 |
S5 | 0.34 | 11.29 | 0.46 | 1.19 | 0.24 | 0.83 | 0.13 | 0.16 | 0.98 |
S6 | 0.32 | 7.00 | 0.24 | 3.56 | 0.06 | 1.99 | 0.11 | 0.14 | 0.98 |
S7 | 0.73 | 46.86 | 0.25 | 0.83 | 0.16 | 1.57 | 0.13 | 0.18 | 0.98 |
S8 | 0.71 | 15.00 | 0.20 | 1.19 | 0.13 | 1.15 | 0.24 | 0.26 | 0.99 |
S9 | 0.39 | 11.29 | 0.53 | 1.95 | 0.17 | 1.58 | 0.47 | 0.18 | 0.98 |
S10 | 0.33 | 6.14 | 0.23 | 3.56 | 0.22 | 1.45 | 0.40 | 0.52 | 0.99 |
SD a | 0.27 | 12.75 | 0.25 | 1.21 | 0.06 | 1.14 | 0.13 | 0.12 | 0.08 |
Range | 0.30–1.11 | 5.0–46.89 | 0.20–0.98 | 0.83–3.56 | 0.06–2.5 | 0.83–4.98 | 0.11–0.47 | 0.10–0.52 | 0.74–0.99 |
Metals | Minimum | Maximum | Average | SD |
---|---|---|---|---|
Fe | 126 | 936.9 | 432 | 191.9 |
Mn | 31 | 141.3 | 70.2 | 38 |
Pb | 0.1 | 5.2 | 1.5 | 0.9 |
Cr | 0.2 | 7.3 | 2.4 | 2 |
Zn | 26 | 53.2 | 38.1 | 9.6 |
Cu | 3.8 | 16 | 10.6 | 3.9 |
Cd | 0.4 | 3.1 | 1.2 | 0.9 |
Ni | 7.7 | 14 | 10.3 | 1.8 |
Plant Species | Ni | Cd | Cu | Zn | Cr | Pb | Mn | Fe |
---|---|---|---|---|---|---|---|---|
Malva parviflora | 0.40 | 0.32 | 0.77 | 0.98 | 0.20 | 0.06 | 0.28 | 0.08 |
Rumex vesicarias | 0.41 | 0.11 | 0.85 | 0.88 | 0.29 | 0.04 | 0.61 | 0.16 |
Solanum nigrum | 0.17 | 0.65 | 0.71 | 0.17 | 0.26 | 0.04 | 0.48 | 0.04 |
Lactuca serviola | 0.22 | 0.34 | 1.88 | 0.84 | 0.08 | 0.01 | 0.72 | 0.01 |
Chenopodium marale | 0.57 | 1.36 | 2.07 | 0.89 | 0.08 | 0.28 | 0.40 | 0.04 |
Sisymbrium irio | 0.64 | 0.03 | 1.61 | 0.15 | 0.22 | 0.06 | 0.51 | 0.05 |
Pulicaria crispa | 0.28 | 0.32 | 0.50 | 0.88 | 0.01 | 0.13 | 1.22 | 0.06 |
Phrgmites australis | 0.21 | 1.13 | 2.80 | 0.53 | 0.29 | 0.18 | 0.64 | 0.02 |
Sisymbrium irio | 0.72 | 0.03 | 2.14 | 0.41 | 0.08 | 0.33 | 0.16 | 0.14 |
Chenopodium album | 0.62 | 0.08 | 7.70 | 0.19 | 0.14 | 0.06 | 0.17 | 0.03 |
Range | 0.17–0.72 | 0.03–1.36 | 0.5–7.7 | 0.15–0.98 | 0.01–0.29 | 0.01–0.33 | 0.16–1.22 | 0.01–0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloud, S.S.; Alotaibi, K.D.; Almutairi, K.F.; Albarakah, F.N. Phytoremediation Potential of Native Plants Growing in Industrially Polluted Soils of Al-Qassim, Saudi Arabia. Sustainability 2023, 15, 2668. https://doi.org/10.3390/su15032668
Aloud SS, Alotaibi KD, Almutairi KF, Albarakah FN. Phytoremediation Potential of Native Plants Growing in Industrially Polluted Soils of Al-Qassim, Saudi Arabia. Sustainability. 2023; 15(3):2668. https://doi.org/10.3390/su15032668
Chicago/Turabian StyleAloud, Saud S., Khaled D. Alotaibi, Khalid F. Almutairi, and Fahad N. Albarakah. 2023. "Phytoremediation Potential of Native Plants Growing in Industrially Polluted Soils of Al-Qassim, Saudi Arabia" Sustainability 15, no. 3: 2668. https://doi.org/10.3390/su15032668
APA StyleAloud, S. S., Alotaibi, K. D., Almutairi, K. F., & Albarakah, F. N. (2023). Phytoremediation Potential of Native Plants Growing in Industrially Polluted Soils of Al-Qassim, Saudi Arabia. Sustainability, 15(3), 2668. https://doi.org/10.3390/su15032668