Low-Fouling Plate-and-Frame Ultrafiltration for Juice Clarification: Part 2—Module Design and Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Module Design
2.2.1. Plate-and-Frame Elements
2.2.2. Membrane Module
2.3. Orange Juice Clarification
3. Results and Discussion
3.1. Plate-and-Frame Module
3.2. Clarification of Orange Juice
3.3. pH Value
3.4. Viscosity
3.5. Total Soluble Solid
3.6. Total Acid
3.7. Vitamin C
3.8. Water Content
3.9. Ash Content
3.10. Color Space
3.11. Summary of the Clarified Product Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ruxton, C.H.S.; Myers, M. Fruit Juices: Are They Helpful or Harmful? An Evidence Review. Nutrients 2021, 13, 1815. [Google Scholar] [CrossRef] [PubMed]
- Chanson-Rolle, A.; Braesco, V.; Chupin, J.; Bouillot, L. Nutritional Composition of Orange Juice: A Comparative Study between French Commercial and Home-Made Juices. Food Nutr. Sci. 2016, 7, 252–261. [Google Scholar] [CrossRef]
- Franke, A.A.; Cooney, R.V.; Henning, S.M.; Custer, L.J. Bioavailability and antioxidant effects of orange juice components in humans. J. Agric. Food Chem. 2005, 53, 5170–5178. [Google Scholar] [CrossRef] [PubMed]
- Dal Magro, L.; Pessoa, J.P.S.; Klein, M.P.; Fernandez-Lafuente, R.; Rodrigues, R.C. Enzymatic clarification of orange juice in continuous bed reactors: Fluidized-bed versus packed-bed reactor. Catalysis Today 2021, 362, 184–191. [Google Scholar] [CrossRef]
- Ackerley, J.; Wicker, L. Floc Formation and Changes in Serum Soluble Cloud Components of Fresh Valencia Orange Juice. J. Food Sci. 2003, 68, 1169–1174. [Google Scholar] [CrossRef]
- Sentandreu, E.; Gurrea, M.d.C.; Betoret, N.; Navarro, J.L. Changes in orange juice characteristics due to homogenization and centrifugation. J. Food Eng. 2011, 105, 241–245. [Google Scholar] [CrossRef]
- Domingues, R.C.C.; Faria Junior, S.B.; Silva, R.B.; Cardoso, V.L.; Reis, M.H.M. Clarification of passion fruit juice with chitosan: Effects of coagulation process variables and comparison with centrifugation and enzymatic treatments. Process. Biochem. 2012, 47, 467–471. [Google Scholar] [CrossRef]
- de Oliveira, R.C.; Docê, R.C.; de Barros, S.T.D. Clarification of passion fruit juice by microfiltration: Analyses of operating parameters, study of membrane fouling and juice quality. J. Food Eng. 2012, 111, 432–439. [Google Scholar] [CrossRef]
- Ghosh, P.; Pradhan, R.C.; Mishra, S. Clarification of jamun juice by centrifugation and microfiltration: Analysis of quality parameters, operating conditions, and resistance. J. Food Process Eng. 2018, 41, e12603. [Google Scholar] [CrossRef]
- Álvarez, S.; Riera, F.A.; Álvarez, R.; Coca, J.; Cuperus, F.P.; Th Bouwer, S.; Boswinkel, G.; van Gemert, R.W.; Veldsink, J.W.; Giorno, L.; et al. A new integrated membrane process for producing clarified apple juice and apple juice aroma concentrate. J. Food Eng. 2000, 46, 109–125. [Google Scholar] [CrossRef]
- Anvarian, A.H.P.; Smith, M.P.; Overton, T.W. The effects of orange juice clarification on the physiology of Escherichia coli; growth-based and flow cytometric analysis. Int. J. Food Microbiol. 2016, 219, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Fellers, P. Florida’s Citrus Juice Standards for Grades and Their Differences from United States Standards for Grades and United States Food and Drug Administration Standards of Identity. Proc. Fla. State Hort. Soc. 1990, 103, 260–264. [Google Scholar]
- Li, J.; Chase, H.A. Applications of membrane techniques for purification of natural products. Biotechnol. Lett. 2010, 32, 601–608. [Google Scholar] [CrossRef]
- Hameed, K.W. Concentration of Orange Juice Using Forward Osmosis Membrane Process. Iraqi J. Chem. Pet. Eng. 2013, 14, 71–79. [Google Scholar]
- Wu, M.L.; Zall, R.R.; Tzeng, W.C. Microfiltration and Ultrafiltration Comparison for Apple Juice Clarification. J. Food Sci. 1990, 55, 1162–1163. [Google Scholar] [CrossRef]
- Mirsaeedghazi, H.; Mousavi, S.; Mohammad Emam-Djomeh, Z.; Rezaei, K.; Aroujalian, A.; Navidbakhsh, M. Comparison between ultarfiltration and microfiltration in the clarification of pomegranate juice. J. Food Process Eng. 2012, 35, 424–436. [Google Scholar] [CrossRef]
- Pagliero, C.; Ochoa, N.A.; Marchese, J. Orange Juice Clarification by Microfiltration: Effect of Operational Variables on Membrane Fouling. Lat. Am. Appl. Res. 2011, 41, 279–284. [Google Scholar]
- Mirsaeedghazi, H.; Emam-Djomeh, Z. Clarification of Bitter Orange (Citrus Aurantium) Juice Using Microfiltration with Mixed Cellulose Esters Membrane. J. Food Process. Preserv. 2017, 41, e12738. [Google Scholar] [CrossRef]
- Severcan, S.S.; Uzal, N.; Kahraman, K. Clarification of Apple Juice Using New Generation Nanocomposite Membranes Fabricated with TiO2 and Al2O3 Nanoparticles. Food Bioprocess Technol. 2020, 13, 391–403. [Google Scholar] [CrossRef]
- Mejia, J.A.A.; Yáñez-Fernandez, J. Clarification Processes of Orange Prickly Pear Juice (Opuntia spp.) by Microfiltration. Membranes 2021, 11, 354. [Google Scholar] [CrossRef]
- Qaid, S.; Zait, M.; El Kacemi, K.; Midaoui, A.; el Hajji, H.; Taky, M. Ultrafiltration for clarification of Valencia orange juice: Comparison of two flat sheet membranes on quality of juice production. J. Mater. Environ. Sci. 2017, 8, 1186–1194. [Google Scholar]
- Dahdouh, L.; Delalonde, M.; Ricci, J.; Ruiz, E.; Wisnewski, C. Influence of high shear rate on particles size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innov. Food Sci. Emerg. Technol. 2018, 48, 304–312. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Sicari, V.; Tundis, R.; Leporini, M.; Falco, T.; Calabrò, V. The Influence of Ultrafiltration of Citrus limon L. Burm. cv Femminello Comune Juice on Its Chemical Composition and Antioxidant and Hypoglycemic Properties. Antioxidants 2019, 8, 23. [Google Scholar] [CrossRef]
- Hojjatpanah, G.; Emam-Djomeh, Z.; Ashtari, A.K.; Mirsaeedghazi, H.; Omid, M. Evaluation of the fouling phenomenon in the membrane clarification of black mulberry juice. Int. J. Food Sci. Technol. 2011, 46, 1538–1544. [Google Scholar] [CrossRef]
- Gulec, H.A.; Bagci, P.O.; Bagci, U. Clarification of Apple Juice Using Polymeric Ultrafiltration Membranes: A Comparative Evaluation of Membrane Fouling and Juice Quality. Food Bioprocess Technol. 2017, 10, 875–885. [Google Scholar] [CrossRef]
- Du, N.; Pan, L.; Liu, J.; Wang, L.; Li, H.; Li, K.; Xie, C.; Hang, F.; Lu, H.; Li, W. Clarification of Limed Sugarcane Juice by Stainless Steel Membranes and Membrane Fouling Analysis. Membranes 2022, 12, 910. [Google Scholar] [CrossRef]
- Wibisono, Y.; Alvianto, D.; Argo, B.D.; Hermanto, M.B.; Witoyo, J.E.; Bilad, M.R. Low Fouling Plate and Frame Ultrafiltration for Juice Clarification: Part 1—Membrane Preparation and Characterization. Sustainability 2023, 15, 806. [Google Scholar] [CrossRef]
- Scholz, M.; Wessling, M.; Balster, J. Chapter 5 Design of Membrane Modules for Gas Separations. In Membrane Engineering for the Treatment of Gases: Volume 1: Gas-separation Problems with Membranes; The Royal Society of Chemistry: Londra, UK, 2011; Volume 1, pp. 125–149. [Google Scholar]
- Balster, J. Plate and Frame Membrane Module. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–3. [Google Scholar]
- Conidi, C.; Castro-Muñoz, R.; Cassano, A. Membrane-Based Operations in the Fruit Juice Processing Industry: A Review. Beverages 2020, 6, 18. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Gabelman, A.; Hwang, S.-T. Hollow fiber membrane contactors. J. Membr. Sci. 1999, 159, 61–106. [Google Scholar] [CrossRef]
- Prasad, R.; Sirkar, K.K. Membrane-Based Solvent Extraction. In Membrane Handbook; Ho, W.S.W., Sirkar, K.K., Eds.; Springer: Boston, MA, USA, 1992; pp. 727–763. [Google Scholar]
- Curcio, S.; Calabrò, V.; Iorio, G.; de Cindio, B. Fruit juice concentration by membranes: Effect of rheological properties on concentration polarization phenomena. J. Food Eng. 2001, 48, 235–241. [Google Scholar] [CrossRef]
- de Carvalho, L.M.J.; de Castro, I.M.; da Silva, C.A.B. A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus L. Merril) by micro- and ultra-filtration. J. Food Eng. 2008, 87, 447–454. [Google Scholar] [CrossRef]
- Fang, P.; Du, J.; Yu, S. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump. Int. J. Artif. Organs 2020, 43, 782–795. [Google Scholar] [CrossRef] [PubMed]
- Braha, D.; Maimon, O. The Measurement of a Design Structural and Functional Complexity. In A Mathematical Theory of Design: Foundations, Algorithms and Applications; Braha, D., Maimon, O., Eds.; Springer: Boston, MA, USA, 1998; pp. 241–277. [Google Scholar]
- Pichaiyongvongdee, S.; Haruenkit, R. Comparative Studies of Limonin and Naringin Distribution in Different Parts of Pummelo [Citrus grandis (L.) Osbeck] Cultivars Grown in Thailand. Kasetsart J. Nat. Sci. 2009, 43, 28–36. [Google Scholar]
- Weaver, C.M.; Daniel, J.R. The Food Chemistry Laboratory: A Manual for Experimental Foods, Dietetics, and Food Scientists, Second Edition; Taylor & Francis: Abingdon, UK, 2003. [Google Scholar]
- Ashurst, P.R. Production and Packaging of Non-carbonated Fruit Juices and Fruit Beverages; Blackie Academic & Professional: Weinheim, Germany, 1995. [Google Scholar]
- Corredig, M.; Kerr, W.; Wicker, L. Particle Size Distribution of Orange Juice Cloud after Addition of Sensitized Pectin. J. Agric. Food Chem. 2001, 49, 2523–2526. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, N.; Fliss, I.; Makhlouf, J. Inactivation of pectin methylesterase and stabilization of opalescence in orange juice by dynamic high pressure. Food Res. Int. 2005, 38, 569–576. [Google Scholar] [CrossRef]
- Sass-Kiss, A.; Sass, M. Immunoanalytical Method for Quality Control of Orange Juice Products. J. Agric. Food Chem. 2000, 48, 4027–4031. [Google Scholar] [CrossRef]
- Vandenberghe, L.P.S.; Rodrigues, C.; de Carvalho, J.C.; Medeiros, A.B.P.; Soccol, C.R. 25—Production and Application of Citric Acid. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Negi, S., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 557–575. [Google Scholar]
- Kabasakalis, V.; Siopidou, D.; Moshatou, E. Ascorbic acid content of commercial fruit juices and its rate of loss upon storage. Food Chem. 2000, 70, 325–328. [Google Scholar] [CrossRef]
- Pupin, A.M.; Dennis, M.J.; Toledo, M.C.F. HPLC analysis of carotenoids in orange juice. Food Chem. 1999, 64, 269–275. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Vicario, I.M.; Heredia, F.J. Review: Analysis of carotenoids in orange juice. J. Food Compos. Anal. 2007, 20, 638–649. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Liu, H.; Liu, J.; Jiao, Z. Profiles of Sugar and Organic Acid of Fruit Juices: A Comparative Study and Implication for Authentication. J. Food Qual. 2020, 2020, 7236534. [Google Scholar] [CrossRef]
- Lee, H.S. Liquid chromatographic determination of benzoic acid in orange juice: Interlaboratory study. J. AOAC Int. 1995, 78, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Seidler, A.; Voss, S.; Hesse, A. The oxalate content of fruit and vegetable juices, nectars and drinks. J. Food Compos. Anal. 2015, 45, 108–112. [Google Scholar] [CrossRef]
- Cen, H.; Bao, Y.; He, Y.; Sun, D.-W. Visible and near infrared spectroscopy for rapid detection of citric and tartaric acids in orange juice. J. Food Eng. 2007, 82, 253–260. [Google Scholar] [CrossRef]
- Shaw, P.E.; Wilson, C.W., III; Hansen, R.W. H.p.l.c. Determination of trace levels of succinic acid in orange juice from Freeze-damaged and undamaged fruit. J. Sci. Food Agric. 1987, 41, 153–158. [Google Scholar] [CrossRef]
- Pepin, A.; Stanhope, K.L.; Imbeault, P. Are Fruit Juices Healthier Than Sugar-Sweetened Beverages? A Review. Nutrients 2019, 11, 1006. [Google Scholar] [CrossRef] [Green Version]
- Conidi, C.; Destani, F.; Cassano, A. Performance of Hollow Fiber Ultrafiltration Membranes in the Clarification of Blood Orange Juice. Beverages 2015, 1, 341–353. [Google Scholar] [CrossRef]
- Abd-Razak, N.H.; Zairossani, M.N.; Chew, Y.M.J.; Bird, M.R. Fouling Analysis and the Recovery of Phytosterols from Orange Juice Using Regenerated Cellulose Ultrafiltration Membranes. Food Bioprocess Technol. 2020, 13, 2012–2028. [Google Scholar] [CrossRef]
- Fajarika, D.; Noor, E. The Design Process for Entrapping Limonin and Naringin in Siam Juice by Cyclodextrin. IPTEK J. Proc. Ser. 2014, 1. [Google Scholar] [CrossRef]
- Laorko, A.; Li, Z.; Tongchitpakdee, S.; Chantachum, S.; Youravong, W. Effect of membrane property and operating conditions on phytochemical properties and permeate flux during clarification of pineapple juice. J. Food Eng. 2010, 100, 514–521. [Google Scholar] [CrossRef]
- Quist-Jensen, C.A.; Macedonio, F.; Conidi, C.; Cassano, A.; Aljlil, S.; Alharbi, O.A.; Drioli, E. Direct contact membrane distillation for the concentration of clarified orange juice. J. Food Eng. 2016, 187, 37–43. [Google Scholar] [CrossRef]
- Jesus, D.F.; Leite, M.F.; Silva, L.F.M.; Modesta, R.D.; Matta, V.M.; Cabral, L.M.C. Orange (Citrus sinensis) juice concentration by reverse osmosis. J. Food Eng. 2007, 81, 287–291. [Google Scholar] [CrossRef]
- Salehinia, S.; Mirsaeedghazi, H.; Khashehchi, M. The effect of laser on the efficiency of membrane clarification of pomegranate juice. J. Food Sci. Technol. 2021, 58, 1682–1692. [Google Scholar] [CrossRef] [PubMed]
- Toker, R.; Karhan, M.; Tetik, N.; Turhan, I.; Oziyci, H.R. Effect of Ultrafiltration and Concentration Processes on the Physical and Chemical Composition of Blood Orange Juice. J. Food Process. Preserv. 2014, 38, 1321–1329. [Google Scholar] [CrossRef]
- Rezzadori, K.; Serpa, L.; Penha, F.; Petrus, R.; Petrus, J. Crossflow microfiltration of sugarcane juice: Effects of processing conditions and juice quality. Food Sci. Technol. 2014, 34, 210–217. [Google Scholar] [CrossRef] [Green Version]
No. | Instruments | Specification | Dimensions |
1. | Feed container | Capacity: 12 L | 345 × 185 × 220 mm |
2. | Membrane process | Batch ultrafiltration using a submerged module | - |
3. | Type of membrane | Flat sheet | Active area: 85 × 128 mm Thickness: 0.3 mm |
4. | Membrane additive | Phenolic compound from garlic extract | - |
5. | Plate and frame | 5 elements | 125 × 168 mm with a thick cover of 5 mm and the middle 10 mm |
6. | Food-grade nylon spacers | 10 sheets | 100 mesh (125 × 168 mm) Thickness: 0.1 mm |
7. | Food-grade silicon rubber | 20 sheets | 125 × 168 mm Thickness: 1 mm |
8. | Straight-blade impeller | 2 pieces | Blade: 60 × 20 mm Height: 202 mm |
9. | Manometer | 1 piece | −1–0.5 bar |
10. | Diaphragm pump | Voltage: 12–24 V Max Power: 60 W Current: 1.6–3.0 A Max Flow: 3.6 L/min Max Pressure: 0.3–0.55 MPa Max Liquid Temperature: 100° | 157 × 100 × 60 mm |
11. | Electronic box control |
| 280 × 240 × 100 mm |
Orange Juice Content | Molecular Weight | Source |
---|---|---|
Pectin commercial (Hereford UK) | 212,000 Da | [41] |
Pectin Methyl Ester | 54,000 Da | [42] |
Protein | 12–72 kDa | [43] |
Citric Acid | 210.14 Da | [44] |
Citric Acid | 192.12 Da | [44] |
Ascorbic Acid | 176.12 Da | [45] |
Carotenoid | 536.87 Da | [46,47] |
Malic Acid | 134.09 Da | [48] |
Benzoic acid | 122.22 Da | [49] |
Oxalic Acid | 90.03 Da | [50] |
Tartaric Acid | 150.09 Da | [51] |
Succinic Acid | 118.09 Da | [52] |
Fructose | 180.16 Da | [53] |
Sucrose | 342.30 Da | [53] |
Glucose | 180.16 Da | [53] |
Sample | pH | Total Soluble Solids (°Brix) | Viscosity | Ash Content (%) | Water Content (%) | Total Acid (%) | Vitamin C (mg/100 g) | Color | ||
---|---|---|---|---|---|---|---|---|---|---|
(L*) | (a*) | (b*) | ||||||||
Orange Juice | 5.76 ± 0.06 | 8.40 ± 0.14 | 3.27 ± 0.33 | 0.34 ± 0.01 | 90.58 ± 0.32 | 0.62 ± 0.08 | 29.25 ± 0.21 | 34.35 ± 0.07 | 7.15 ± 1.06 | 22.05 ± 1.48 |
Permeate | 5.82 ± 0.33 | 7.95 ± 0.21 | 2.94 ± 0.16 | 0.32 ± 0.01 | 91.48 ± 0.53 | 0.82 ± 0.11 | 21.02 ± 1.00 | 35.10 ± 0.57 | 7.90 ± 0.28 | 21.65 ± 1.06 |
Retentate | 5.85 ± 0.02 | 9.00 ± 0.85 | 2.85 ± 0.06 | 0.36 ± 0.02 | 89.78 ± 0.63 | 0.54 ± 0.01 | 31.85 ± 3.64 | 34.00 ± 0.14 | 7.20 ± 0.28 | 22.35 ± 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wibisono, Y.; Saraswati, A.; Alvianto, D.; Bilad, M.R.; Zaini, J.; Putranto, A.W.; Nugroho, W.A.; Shahrai, N.N.; Huda, N. Low-Fouling Plate-and-Frame Ultrafiltration for Juice Clarification: Part 2—Module Design and Application. Sustainability 2023, 15, 2769. https://doi.org/10.3390/su15032769
Wibisono Y, Saraswati A, Alvianto D, Bilad MR, Zaini J, Putranto AW, Nugroho WA, Shahrai NN, Huda N. Low-Fouling Plate-and-Frame Ultrafiltration for Juice Clarification: Part 2—Module Design and Application. Sustainability. 2023; 15(3):2769. https://doi.org/10.3390/su15032769
Chicago/Turabian StyleWibisono, Yusuf, Amelia Saraswati, Dikianur Alvianto, Muhammad Roil Bilad, Juliana Zaini, Angky Wahyu Putranto, Wahyunanto Agung Nugroho, Nurul Nuraliya Shahrai, and Nurul Huda. 2023. "Low-Fouling Plate-and-Frame Ultrafiltration for Juice Clarification: Part 2—Module Design and Application" Sustainability 15, no. 3: 2769. https://doi.org/10.3390/su15032769
APA StyleWibisono, Y., Saraswati, A., Alvianto, D., Bilad, M. R., Zaini, J., Putranto, A. W., Nugroho, W. A., Shahrai, N. N., & Huda, N. (2023). Low-Fouling Plate-and-Frame Ultrafiltration for Juice Clarification: Part 2—Module Design and Application. Sustainability, 15(3), 2769. https://doi.org/10.3390/su15032769