Spatial–Temporal Patterns and Coupling Characteristics of Rural Elderly Care Institutions in China: Sustainable Human Settlements Perspective
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Theory of Human Settlement
2.2. Theory of Hard and Soft Human Settlement
2.3. Theory of Sustainability
3. Methods and Data
3.1. Methods
3.1.1. Analytic Hierarchy Process
3.1.2. Composite Score Method
3.1.3. Theil Index Measurement
3.1.4. Coupling Coordination Model
3.2. Evaluation Indicators
3.3. Data Sources
3.4. Indicator Weights
4. Analysis of the Results
4.1. Time Series Variation Analysis of Rural Elderly Care Institutions in China
4.2. Spatial Pattern of Comprehensive Scores for Rural Elderly Care Institutions in China
4.3. Analysis of Regional Differences in Rural Elderly Care Institutions in China
4.4. Analysis of Coupling Coordination Degree of Rural Institutions for the Elderly in China
5. Discussion and Conclusions
5.1. Discussion
5.1.1. Comparative Analysis with Reviewed Literature
5.1.2. Comparative Analysis of Consecutive Studies
5.2. Conclusions
6. Recommendations
6.1. Coordinated Development
6.2. Coupling Development
6.3. Sustainable Development
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The State Council. The People’s Republic of China. Seventh National Census Key Data; The State Council: Beijing, China, 2021. Available online: http://www.gov.cn/xinwen/2021-05/11/content_5605871.htm (accessed on 11 May 2021).
- China National Committee on Ageing. A Compilation of Research Reports on the Development of Data from the Fourth China Rural and Urban Sample Survey on the Living Conditions of the Elderly; Hualing Press: Beijing, China, 2018. [Google Scholar]
- Ding, J.D.; Guo, L. Research Report on the Development of Elderly Services in China; Huazhong University of Science and Technology Press: Wuhan, China, 2019. [Google Scholar]
- China Social Security Society. Report on the Development of Elderly Care Services in China; China Labor and Social Security Press: Beijing, China, 2021. [Google Scholar]
- Wang, D.; Qiao, C.; Liu, S.; Wang, C.; Yang, J.; Li, Y.; Huang, P. Assessment of Spatial Accessibility to Residential Care Facilities in 2020 in Guangzhou by Small-Scale Residential Community Data. Sustainability 2020, 12, 3169. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Dong, Z.; Li, L.; Li, W.; Li, S. More Urban Elderly Care Facilities Should Be Placed in Densely Populated Areas for an Aging Wuhan of China. Land 2023, 12, 220. [Google Scholar] [CrossRef]
- Ma, H.; Wang, M.; Yang, B. Research on Urban Community Elderly Care Facility Based on Quality of Life by SEM: Cases Study of Three Types of Communities in Shenzhen, China. Sustainability 2022, 14, 9661. [Google Scholar]
- Higgs, G.; Langford, M.; Llewellyn, M. Towards an understanding of inequalities in accessing residential and nursing home provision: The role of geographical approaches. Health Soc. Care Community 2022, 30, 2218. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z. Optimization and Adjustment of Multilevel Medical Facilities for the Elderly from the Perspective of Accessibility. J. Urban Plan. Dev. 2022, 148, 05022011. [Google Scholar] [CrossRef]
- You, N. Assessing equity of the spatial distribution of primary health care facilities in Fuzhou City, China: A comprehensive method. PLoS ONE 2021, 16, e0261256. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, Y.; Xu, X.; Chen, Y.; Tian, X.; Wang, L.; Chen, S. Spatial Disparities and Correlated Variables of Community Care Facility Accessibility in Rural Areas of China. Sustainability 2021, 13, 13400. [Google Scholar] [CrossRef]
- Vrabková, I.; Ertingerová, I.; Kukuliač, P. Determination of gaps in the spatial accessibility of nursing services for persons over the age of 65 with lowered self-sufficiency: Evidence from the Czech Republic. PLoS ONE 2021, 16, e0244991. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zhuang, R.; Huang, C. Pattern evolution and formative mechanism of aging in China. Acta Geogr. Sin. 2019, 74, 2163–2177. [Google Scholar]
- Stentzel, U.; Bahr, J.; Fredrich, D.; Piegsa, J.; Hoffmann, W.; Berg, N. Is there an association between spatial accessibility of outpatient care and utilization? Analysis of gynecological and general care. BMC Health Serv. Res. 2018, 18, 322. [Google Scholar] [CrossRef]
- Tao, Z.; Cheng, Y.; Dai, T. Measuring spatial accessibility to residential care facilities in Beijing. Prog. Geogr. 2014, 33, 616–624. [Google Scholar]
- Du, P.; Li, L. Long-term Trends Projection of China’s Population Aging in the New Era. J. Renmin Univ. China 2017, 1, 96–109. [Google Scholar]
- Wu, C.P. Study on “Aging in Place in Urban Communities” in China. J. Zhejiang Gongshang Univ. 2019, 3, 91. [Google Scholar]
- Calatayud, E.; Rodríguez-Roca, B.; Aresté, J.; Marcén-Román, Y.; Salavera, C.; Gómez-Soria, I. Functional Differences Found in the Elderly Living in the Community. Sustainability 2021, 13, 5945. [Google Scholar] [CrossRef]
- Camp, N.; Lewis, M.; Hunter, K.; Johnston, J.; Zecca, M.; Di Nuovo, A.; Magistro, D. Technology Used to Recognize Activities of Daily Living in Community-Dwelling Older Adults. Int. J. Environ. Res. Public Health 2021, 18, 163. [Google Scholar] [CrossRef] [PubMed]
- Diago-Galmés, A.; Guillamón-Escudero, C.; Tenías-Burillo, J.M.; Soriano, J.M.; Fernández-Garrido, J. Salivary Testosterone and Cortisol as Biomarkers for the Diagnosis of Sarcopenia and Sarcopenic Obesity in Community-Dwelling Older Adults. Biology 2021, 10, 93. [Google Scholar] [CrossRef]
- Guedes, T.S.R.; Guedes, M.B.O.G.; de Oliveira, H.K.M.; Soares, R.L.; da Cunha, V.L.; Lopes, J.M.; de Oliveira, N.P.D.; Jerez-Roig, J.; de Souza, D.L.B. Urinary Incontinence in Physically Active Older Women of Northeast Brazil. Int. J. Environ. Res. Public Health 2021, 18, 5878. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, L.; Zhang, Z. The relationship between social participation and depressive symptoms among Chinese middle-aged and older adults: A cross-lagged panel analysis. Front. Public Health 2022, 10, 996606. [Google Scholar] [CrossRef]
- Ha, V.-A.T.; Nguyen, T.N.; Nguyen, T.X.; Nguyen, H.T.T.; Nguyen, T.T.H.; Nguyen, A.T.; Pham, T.; Vu, H.T.T. Prevalence and Factors Associated with Falls among Older Outpatients. International. J. Environ. Res. Public Health 2021, 18, 4041. [Google Scholar] [CrossRef]
- Hu, H.; Si, Y.; Li, B. Decomposing Inequality in Long-Term Care Need Among Older Adults with Chronic Diseases in China: A Life Course Perspective. Int. J. Environ. Res. Public Health 2020, 17, 2559. [Google Scholar] [CrossRef]
- Kim, D.; Ko, Y.; Jung, A. Longitudinal effects of exercise according to the World Health Organization guidelines on cognitive function in middle-aged and older adults. Front. Public Health 2022, 10, 1009775. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.H.; Nie, Q. System for the Elderly—An Empirical Investigation Based on Six Cities’ Elderly Institutions. Sociol. Stud. 2022, 37, 164–179. [Google Scholar]
- Zhou, C.; Han, Z.Y.; Qian, Z.J. Government Support and the Development of Private Elderly Care Institutions under the Perspective of Active Aging—An Analysis Based on Dynamic Evolutionary Game. Contemp. Econ. Manag. 2022, 44, 73–81. [Google Scholar] [CrossRef]
- Cheng, M.; Cui, X. Research on Spatial Configuration of Residential Care Homes Based on Principles of Fairness and Efficiency: A Case Study of Minhang District in Shanghai City. Areal Res. Dev. 2022, 41, 43–48. [Google Scholar] [CrossRef]
- Cui, X.; Cheng, M.; Dun, S. A Game Analysis of Service Supply of Residential Care Facilities under the Background of Market-Oriented Reform. Oper. Res. Manag. Sci. 2022, 31, 61–67. [Google Scholar] [CrossRef]
- Wang, B.; Wu, J.L.; Cao, Y.X. Spatial Analyses of Bed Vacancy of Nursing Homes in Beijing. Popul. Dev. 2022, 28, 118–128. [Google Scholar]
- Li, Q.L.; Lu, Z.T. Research on the Logical Framework and Effectiveness of Labor Allocation in Nursing Institutions for the Aged: Investigation Evidences from 117 Institutions in Hubei Province. J. Jiangxi Univ. Financ. Econ. 2021, 4, 73–85. [Google Scholar]
- Doxiadis, C.A. Ekistics, the Science of Human Settlements. Science 1970, 3956, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Doxiadis, C.A. Ekistics and Regional Science. Ekistics 1962, 84, 193–200. [Google Scholar] [CrossRef]
- Doxiadis, C.A. Man’s Movement and his City. Science 1968, 3851, 326–334. [Google Scholar] [CrossRef]
- Doxiadis, C.A. The Ancient Greek City and the City of the Present. Ekistics 1964, 108, 346–364. [Google Scholar]
- Wu, L.Y. Introduction to Sciences of Human Settlements; China Construction Industry Press: Beijing, China, 2001. [Google Scholar]
- Wu, L.Y. Search for the Theory of Science of Human Settlement. Planners 2001, 17, 5–8. [Google Scholar]
- Wu, L.Y. Science of Human Settlements. Urban Dev. Stud. 1996, 1, 1–5. [Google Scholar]
- Wu, L.Y. “Habitat II ”and the Science of Human Settlements. City Plan. Rev. 1997, 5, 4–9. [Google Scholar]
- Ning, Y.M.; Zha, Z.Q. The Study of Evaluation and Optimization for Human Settlement in the Metropolitan Areas: Take Shanghai as an Example. City Plan. Rev. 1999, 23, 15–20. [Google Scholar]
- Ning, Y.M.; Xiang, D.; Wei, L. Study on the Human Settlement Environment with Three Small Towns in the Shanghai Suburban Areas as the Case. City Plan. Rev. 2002, 26, 31–35. [Google Scholar]
- Li, C. Research on the Evaluation of Urban Habitat Environment from a Geographic Perspective; Shanghai People’s Publishing House: Shanghai, China, 2018. [Google Scholar]
- Li, C.; Wu, J.; Li, Y.; Huang, Y. Analysis of healthcare needs differences and influencing factors among elderly population: Evidence from Yangtze River Delta region, China. Front. Public Health 2022, 10, 949468. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Huang, Y. Spatial-temporal analysis of urban-rural differences in the development of elderly care institutions in China. Front. Public Health 2022, 10, 1086388. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Dai, S.Z.; Yang, B. Urban density, directed technological change, and carbon intensity: An empirical study based on Chinese cities. Technol. Soc. 2023, 72, 1–17. [Google Scholar] [CrossRef]
- Dai, S.; Fan, F.; Zhang, K. Creative Destruction and Stock Price Informativeness in Emerging Economies; MPRA Working Paper: Munich, Germany, 2022; Available online: https://mpra.ub.uni-muenchen.de/113661/ (accessed on 13 October 2022).
- Wang, X.L.; Wang, L. The spatiotemporal evolution of COVID-19 in China and its impact on urban economic resilience. Chn. Econ. Rev. 2022, 74, 101806. [Google Scholar] [CrossRef]
- Hu, J.; Ma, C.; Li, C. Can Green Innovation Improve Regional Environmental Carrying Capacity? An Empirical Analysis from China. Int. J. Environ. Res. Public Health 2022, 19, 13034. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Dai, S.Z.; Zhang, K.K. Innovation agglomeration and urban hierarchy: Evidence from Chinese cities. Appl. Econ. 2021, 53, 6300–6318. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, X.R. Transformation effect of resource-based cities based on PSM-DID model: An empirical analysis from China. Environ. Impact Assess. Rev. 2021, 91, 106648. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, X.Y.; Wang, X.L. Are there political cycles hidden inside collaborative innovation efficiency? An empirical study based on Chinese cities. Sci. Public Policy. 2022, 45, 101093005. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.X.; Wang, Y.X.; Wang, X.L. Spillover and Re-Spillover in China’s Collaborative Innovation. Int. Reg. Sci. Rev. 2023, 46, 38–68. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Gu, Q.; Guo, J.; Huang, Y. Spatio-Temporal Differentiation Characteristics and Urbanization Factors of Urban Household Carbon Emissions in China. Int. J. Environ. Res. Public Health 2022, 19, 4451. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Qin, X. Spatial Heterogeneity of Carbon Emissions and Its Influencing Factors in China: Evidence from 286 Prefecture-Level Cities. Int. J. Environ. Res. Public Health 2022, 19, 1226. [Google Scholar] [CrossRef]
- Li, C.; Shen, S.Y.; Meng, Z.M. Study on the Coupling and Coordination of Human Settlement System in Yangtze River Delta City Cluster. Shanghai Econ. 2018, 2, 59–71. [Google Scholar]
- Li, C. Comprehensive measurement of the level of “ Age-appropriateness “ in mega-cities and analysis of the influencing factors: Shanghai as an example. Urban Probl. 2021, 11, 4–18. [Google Scholar]
- Dang, J.W. The Coming of the Super-Ageing Society—Great Prospects for Humanity in the New Era of Longevity; Hua Ling Publishing House: Beijing, China, 2018. [Google Scholar]
- Dang, J.W. The Ageing Economy: A New Economic and Industrial Development Model for the Age of Longevity; CITIC Press Group: Beijing, China, 2022. [Google Scholar]
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.46 | 1.49 |
Coupling Degree | Coupling Stage | Representative Values | Coupling Coordination | Levels | Representative Values |
---|---|---|---|---|---|
C = 0 | Minimal coupling | - | D = 0 | Incongruity | - |
0 < C ≤ 0.3 | Low-level coupling | Ideal state value 0.25 | 0 < D ≤ 0.3 | Low-level coordination | Ideal state value 0.25 |
0.3 < C ≤ 0.5 | Antagonistic phase | Ideal state value 0.50 | 0.3 < D ≤ 0.5 | Moderate coordination | Ideal state value 0.50 |
0.5 < C ≤ 0.8 | Breaking-in phase | Ideal state value 0.75 | 0.5 < D ≤ 0.8 | Good coordination | Ideal state value 0.75 |
0.8 < C < 1 | High-level coupling | Ideal state value 1.00 | 0.8 < D < 1 | High level of coordination | Ideal state value 1.00 |
C = 1 | Maximum coupling | D = 1 | Extremely well coordinated |
Indicators | B1 | B2 | B3 | Weights |
---|---|---|---|---|
B1 | 1.0000 | 0.8800 | 1.1500 | 0.3347 |
B2 | 1.1364 | 1.0000 | 0.8800 | 0.3333 |
B3 | 0.8696 | 1.1364 | 1.0000 | 0.3320 |
Consistency test | Maximum eigenvalue λmax = 3.017399, CI = 0.008699, RI = 0.58, CR = 0.014999 < 0.1 |
Indicators | Weights | Three-Tier Indicator Weights | λmax | CI | CR |
---|---|---|---|---|---|
C1 | 0.3379 | 0.1131 | 3.0077 | 0.0038 | 0.0066 |
C2 | 0.3293 | 0.1102 | |||
C3 | 0.3328 | 0.1114 | |||
C4 | 0.3240 | 0.1080 | 3.0290 | 0.0145 | 0.0250 |
C5 | 0.3428 | 0.1143 | |||
C6 | 0.3332 | 0.1111 | |||
C7 | 0.3360 | 0.1116 | 3.0273 | 0.0137 | 0.0236 |
C8 | 0.3249 | 0.1079 | |||
C9 | 0.3391 | 0.1126 |
Regions | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Northeastern Region | 0.1014 | 0.0956 | 0.1087 | 0.1130 | 0.1352 | 0.1343 | 0.1295 |
Eastern Region | 0.1378 | 0.1235 | 0.1412 | 0.1592 | 0.1879 | 0.1817 | 0.1866 |
Central Region | 0.1293 | 0.1149 | 0.1187 | 0.1515 | 0.1466 | 0.1339 | 0.1394 |
Western Region | 0.0916 | 0.0823 | 0.1077 | 0.1112 | 0.1497 | 0.1393 | 0.1360 |
Regions | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Northeastern Region | 0.0135 | 0.0153 | 0.0139 | 0.0167 | 0.0279 | 0.0249 | 0.0230 |
Eastern Region | 0.0306 | 0.0315 | 0.0293 | 0.0300 | 0.0510 | 0.0504 | 0.0515 |
Central Region | 0.0337 | 0.0364 | 0.0325 | 0.0245 | 0.0506 | 0.0439 | 0.0435 |
Western Region | 0.0190 | 0.0211 | 0.0193 | 0.0227 | 0.0333 | 0.0308 | 0.0308 |
Regions | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Northeastern Region | 0.0497 | 0.0401 | 0.0509 | 0.0544 | 0.0568 | 0.0517 | 0.0505 |
Eastern Region | 0.0509 | 0.0404 | 0.0521 | 0.0495 | 0.0571 | 0.0492 | 0.0493 |
Central Region | 0.0487 | 0.0361 | 0.0458 | 0.0569 | 0.0471 | 0.0433 | 0.0448 |
Western Region | 0.0369 | 0.0282 | 0.0515 | 0.0468 | 0.0655 | 0.0580 | 0.0526 |
Regions | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Northeastern Region | 0.0381 | 0.0403 | 0.0438 | 0.0419 | 0.0505 | 0.0577 | 0.0560 |
Eastern Region | 0.0563 | 0.0516 | 0.0598 | 0.0796 | 0.0798 | 0.0822 | 0.0858 |
Central Region | 0.0469 | 0.0424 | 0.0403 | 0.0701 | 0.0489 | 0.0467 | 0.0511 |
Western Region | 0.0357 | 0.0330 | 0.0369 | 0.0417 | 0.0509 | 0.0504 | 0.0526 |
Year | Overall Score | Eastern Region | Central Region | Western Region | Northeastern Region |
---|---|---|---|---|---|
2010 | Top 20% | 29 | 18 | 7 | 1 |
Middle 60% | 43 | 48 | 45 | 30 | |
Bottom 20% | 14 | 11 | 28 | 2 | |
2012 | Top 20% | 25 | 12 | 15 | 3 |
Middle 60% | 51 | 52 | 39 | 24 | |
Bottom 20% | 10 | 13 | 26 | 6 | |
2014 | Top 20% | 28 | 13 | 14 | 0 |
Middle 60% | 47 | 43 | 50 | 26 | |
Bottom 20% | 11 | 21 | 16 | 7 | |
2016 | Top 20% | 30 | 10 | 14 | 1 |
Middle 60% | 45 | 47 | 45 | 29 | |
Bottom 20% | 11 | 20 | 21 | 3 |
Comprehensive Score | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Tdb | 0.005 | 0.006 | 0.009 | 0.004 | 0.004 | 0.005 | 0.003 |
Td | 0.064 | 0.059 | 0.058 | 0.047 | 0.054 | 0.062 | 0.063 |
Tz | 0.029 | 0.029 | 0.027 | 0.031 | 0.037 | 0.026 | 0.025 |
Tx | 0.067 | 0.067 | 0.059 | 0.036 | 0.041 | 0.047 | 0.044 |
TWR | 0.165 | 0.161 | 0.153 | 0.117 | 0.136 | 0.139 | 0.135 |
TBR | 0.015 | 0.013 | 0.007 | 0.013 | 0.008 | 0.010 | 0.012 |
Hard Environment | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Tdb | 0.014 | 0.013 | 0.015 | 0.017 | 0.019 | 0.018 | 0.019 |
Td | 0.133 | 0.114 | 0.111 | 0.127 | 0.144 | 0.171 | 0.177 |
Tz | 0.079 | 0.081 | 0.082 | 0.145 | 0.119 | 0.093 | 0.103 |
Tx | 0.170 | 0.167 | 0.165 | 0.178 | 0.159 | 0.152 | 0.154 |
TWR | 0.396 | 0.375 | 0.373 | 0.467 | 0.441 | 0.435 | 0.453 |
TBR | 0.044 | 0.038 | 0.037 | 0.015 | 0.026 | 0.029 | 0.034 |
Soft Environment | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Tdb | 0.012 | 0.011 | 0.022 | 0.012 | 0.009 | 0.009 | 0.009 |
Td | 0.095 | 0.086 | 0.083 | 0.065 | 0.064 | 0.064 | 0.069 |
Tz | 0.034 | 0.031 | 0.039 | 0.063 | 0.036 | 0.052 | 0.048 |
Tx | 0.095 | 0.086 | 0.084 | 0.055 | 0.063 | 0.087 | 0.076 |
TWR | 0.236 | 0.214 | 0.228 | 0.196 | 0.172 | 0.211 | 0.203 |
TBR | 0.009 | 0.010 | 0.001 | 0.003 | 0.008 | 0.006 | 0.002 |
Elderly Served | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Tdb | 0.015 | 0.017 | 0.017 | 0.010 | 0.012 | 0.014 | 0.009 |
Td | 0.088 | 0.088 | 0.095 | 0.080 | 0.096 | 0.097 | 0.092 |
Tz | 0.055 | 0.041 | 0.043 | 0.093 | 0.058 | 0.051 | 0.057 |
Tx | 0.088 | 0.080 | 0.088 | 0.052 | 0.099 | 0.084 | 0.088 |
TWR | 0.246 | 0.227 | 0.242 | 0.234 | 0.265 | 0.245 | 0.246 |
TBR | 0.017 | 0.015 | 0.021 | 0.039 | 0.026 | 0.030 | 0.029 |
Regions | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Northeastern Region | 0.353 | 0.433 | 0.343 | 0.422 | 0.545 | 0.512 | 0.449 |
Eastern Region | 0.501 | 0.551 | 0.494 | 0.453 | 0.567 | 0.519 | 0.485 |
Central Region | 0.627 | 0.702 | 0.640 | 0.348 | 0.594 | 0.528 | 0.506 |
Western Region | 0.360 | 0.379 | 0.345 | 0.383 | 0.302 | 0.309 | 0.316 |
Regions | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Northeastern Region | 0.098 | 0.110 | 0.099 | 0.114 | 0.146 | 0.138 | 0.127 |
Eastern Region | 0.139 | 0.140 | 0.140 | 0.134 | 0.168 | 0.158 | 0.157 |
Central Region | 0.157 | 0.158 | 0.151 | 0.096 | 0.156 | 0.139 | 0.137 |
Western Region | 0.084 | 0.086 | 0.089 | 0.099 | 0.103 | 0.099 | 0.101 |
Rural | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Number of elderly care institutions | 28,520 | 29,100 | 29,736 | 22,523 | 19,144 | 15,081 | 14,773 |
GFA of elderly care facilities | 3155 | 4384 | 4798 | 3876 | 3366 | 2963 | 3135 |
Number of beds at end of year | 209.21 | 226.11 | 244.68 | 206.39 | 209.72 | 167.69 | 168.06 |
Number of employees at end of year | 13.19 | 14.29 | 14.89 | 14.32 | 12.42 | 10.46 | 10.64 |
Proportion of university education | 9.08 | 11.46 | 10.54 | 15.85 | 14.13 | 15.61 | 16.79 |
Proportion of persons aged 35 and under | 20.07 | 20.90 | 20.71 | 25.15 | 24.58 | 23.55 | 21.49 |
Number of people in elderly care institution at the end of the year | 169.12 | 179.12 | 186.33 | 137.47 | 144.57 | 106.71 | 103.73 |
Proportion of semi-self-care persons | 13.38 | 14.83 | 14.64 | 18.62 | 17.14 | 18.30 | 19.24 |
Proportion of people who cannot care for themselves | 4.17 | 4.17 | 4.53 | 6.65 | 4.96 | 5.27 | 6.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wu, J.; Huang, Y. Spatial–Temporal Patterns and Coupling Characteristics of Rural Elderly Care Institutions in China: Sustainable Human Settlements Perspective. Sustainability 2023, 15, 3286. https://doi.org/10.3390/su15043286
Li C, Wu J, Huang Y. Spatial–Temporal Patterns and Coupling Characteristics of Rural Elderly Care Institutions in China: Sustainable Human Settlements Perspective. Sustainability. 2023; 15(4):3286. https://doi.org/10.3390/su15043286
Chicago/Turabian StyleLi, Chen, Jiaji Wu, and Yi Huang. 2023. "Spatial–Temporal Patterns and Coupling Characteristics of Rural Elderly Care Institutions in China: Sustainable Human Settlements Perspective" Sustainability 15, no. 4: 3286. https://doi.org/10.3390/su15043286
APA StyleLi, C., Wu, J., & Huang, Y. (2023). Spatial–Temporal Patterns and Coupling Characteristics of Rural Elderly Care Institutions in China: Sustainable Human Settlements Perspective. Sustainability, 15(4), 3286. https://doi.org/10.3390/su15043286