Environmental Performance of China’s Industrial System Considering Technological Heterogeneity and Interaction
Abstract
:1. Introduction
2. Literature Review
2.1. Environmental Efficiency Assessment
2.2. Application of Two-Stage DEA Model in ISs
2.3. Literature Summary
3. Methodology
3.1. Group Frontier Model Considering Technical Heterogeneity and Interaction
3.2. Meta-Frontier Model Considering Technological Heterogeneity and Interaction
4. Empirical Analysis
4.1. Samples and Variables
4.2. System Performance Analysis
4.3. Sub-Stage Performance Analysis
4.4. TGRI Analysis
4.5. Analysis of Performance Improvement Potential
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Wu, F.-M.; Wang, Y.-M.; Li, M.-J. Analysis of the environmental efficiency in China based on the DEA cross-efficiency approach under different policy objectives. Expert Syst. 2020, 37, e12461. [Google Scholar] [CrossRef]
- Huang, J.-B.; Luo, Y.-M.; Feng, C. An overview of carbon dioxide emissions from China’s ferrous metal industry: 1991–2030. Resour. Policy 2019, 62, 541–549. [Google Scholar] [CrossRef]
- Wang, Q.; Hang, Y.; Su, B.; Zhou, P. Contributions to sector-level carbon intensity change: An integrated decomposition analysis. Energy Econ. 2018, 70, 12–25. [Google Scholar] [CrossRef]
- Zhu, Q.; Aparicio, J.; Li, F.; Wu, J.; Kou, G. Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects. Eur. J. Oper. Res. 2022, 296, 927–939. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L. Improving eco-efficiency in coal mining area for sustainability development: An emergy and super-efficiency SBM-DEA with undesirable output. J. Clean. Prod. 2022, 339, 130701. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Zhang, T. The spatial and temporal evolution of provincial eco-efficiency in China based on SBM modified three-stage data envelopment analysis. Environ. Sci. Pollut. Res. 2020, 27, 8557–8569. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, L.; Zha, Y. Efficiency evaluation of Chinese regional industrial systems using a dynamic two-stage DEA approach. Socio-Econ. Plan. Sci. 2021, 77, 101031. [Google Scholar] [CrossRef]
- Li, Y.; Xue, H.; Lin, L.; Li, F.; Liang, L.; Kou, G. Provincial production and pollution treatment performance in China based on a two-stage eco-inefficiency approach with undesirable intermediate outputs. J. Clean. Prod. 2022, 331, 130016. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Y.; Li, M.-J.; Wang, Y.-M. Meta-frontier analysis using cross-efficiency method for performance evaluation. Eur. J. Oper. Res. 2020, 280, 219–229. [Google Scholar] [CrossRef]
- Xiao, Q.-W.; Tian, Z.; Ren, F.-R. Efficiency assessment of electricity generation in China using meta-frontier data envelopment analysis: Cross-regional comparison based on different electricity generation energy sources. Energy Strategy Rev. 2022, 39, 100767. [Google Scholar] [CrossRef]
- Li, Y.; Shi, X.; Emrouznejad, A.; Liang, L. Environmental performance evaluation of Chinese industrial systems: A network SBM approach. J. Oper. Res. Soc. 2018, 69, 825–839. [Google Scholar] [CrossRef]
- Chen, L.; Jia, G. Environmental efficiency analysis of China’s regional industry: A data envelopment analysis (DEA) based approach. J. Clean Prod. 2017, 142, 846–853. [Google Scholar] [CrossRef]
- Wu, J.; Xiong, B.; An, Q.; Sun, J.; Wu, H. Total-factor energy efficiency evaluation of Chinese industry by using two-stage DEA model with shared inputs. Ann. Oper. Res. 2017, 255, 257–276. [Google Scholar] [CrossRef]
- Liu, J.S.; Lu, L.Y.Y.; Lu, W.-M.; Lin, B.J.Y. A survey of DEA applications. Omega-Int. J. Manag. Sci. 2013, 41, 893–902. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Yang, G.-l. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 2018, 61, 4–8. [Google Scholar] [CrossRef]
- Shah, W.U.H.; Hao, G.; Yan, H.; Yasmeen, R.; Lu, Y. Energy efficiency evaluation, changing trends and determinants of energy productivity growth across South Asian countries: SBM-DEA and Malmquist approach. Environ. Sci. Pollut. Res. 2022; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Vlontzos, G.; Niavis, S.; Manos, B. A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries. Renew. Sustain. Energy Rev. 2014, 40, 91–96. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Q.; Yin, P.; Song, M. Measuring energy and environmental performance for regions in China by using DEA-based Malmquist indices. Oper. Res. 2017, 17, 715–735. [Google Scholar] [CrossRef]
- Piao, S.-R.; Li, J.; Ting, C.-J. Assessing regional environmental efficiency in China with distinguishing weak and strong disposability of undesirable outputs. J. Clean. Prod. 2019, 227, 748–759. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China. Energy Econ. 2015, 48, 230–241. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, Z. Municipal Ecological Efficiency Assessment and Correlation Factors Decomposition Based on an Improved Environmental Data Envelopment Analysis Model. J. Biobased Mater. Bioenergy 2016, 10, 308–316. [Google Scholar] [CrossRef]
- Ma, N.; Wu, Y.; Wu, J. Environmental efficiency and its distribution dynamics in Chinese cities. J. Chin. Econ. Bus. Stud. 2018, 16, 417–445. [Google Scholar] [CrossRef]
- Wang, X.; He, F.; Zhang, L.; Chen, L. Energy Efficiency of China’s Iron and Steel Industry from the Perspective of Technology Heterogeneity. Energies 2018, 11, 1247. [Google Scholar] [CrossRef]
- Li, Y.; Chiu, Y.-h.; Lu, L.C. Urban energy environment efficiency in China: Based on dynamic meta-frontier slack-based measures. J. Air Waste Manag. Assoc. 2019, 69, 320–332. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Wu, H.; Dai, Q.; Zhou, Z.; Tan, C. Environmental Efficiency Analysis of Urban Agglomerations in China: A Non-Parametric Meta-Frontier Approach. Emerg. Mark. Financ. Trade 2020, 56, 2977–2992. [Google Scholar] [CrossRef]
- Chen, L.; Lai, F.; Wang, Y.-M.; Huang, Y.; Wu, F.-M. A two-stage network data envelopment analysis approach for measuring and decomposing environmental efficiency. Comput. Ind. Eng. 2018, 119, 388–403. [Google Scholar] [CrossRef]
- Chu, J.; Wu, J.; Zhu, Q.; An, Q.; Xiong, B. Analysis of China’s Regional Eco-efficiency: A DEA Two-stage Network Approach with Equitable Efficiency Decomposition. Comput. Econ. 2019, 54, 1263–1285. [Google Scholar] [CrossRef]
- Shao, L.; Yu, X.; Feng, C. Evaluating the eco-efficiency of China’s industrial sectors: A two-stage network data envelopment analysis. J. Environ. Manag. 2019, 247, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Feng, C. Regional total-factor productivity and environmental governance efficiency of China’s industrial sectors: A two-stage network-based super DEA approach. J. Clean. Prod. 2020, 273, 123110. [Google Scholar] [CrossRef]
- Qu, J.; Wang, B.; Liu, X. A modified super-efficiency network data envelopment analysis: Assessing regional sustainability performance in China. Socio-Econ. Plan. Sci. 2022, 82, 101262. [Google Scholar] [CrossRef]
- Liu, X.; Ji, X.; Li, M.; Wu, J. A two-stage environmental efficiency evaluation of China’s industrial sector considering ratio data. Ann. Oper. Res. 2022. [Google Scholar] [CrossRef]
- Sun, J.; Li, G.; Lim, M.K. China’s power supply chain sustainability: An analysis of performance and technology gap. Ann. Oper. Res. 2020. [Google Scholar] [CrossRef]
- He, K.; Zhu, N.; Jiang, W.; Zhu, C. Efficiency evaluation of Chinese provincial industrial system Based on network DEA method. Sustainability 2022, 14, 5264. [Google Scholar] [CrossRef]
- Li, M.; Ji, X.; Zhang, B. Allocation of carbon emission permits in heterogeneous complex network systems: A DEA-based study among China’s industrial sectors. Comput. Ind. Eng. 2022, 174, 108836. [Google Scholar] [CrossRef]
- Wu, J.; Yin, P.; Sun, J.; Chu, J.; Liang, L. Evaluating the environmental efficiency of a two-stage system with undesired outputs by a DEA approach: An interest preference perspective. Eur. J. Oper. Res. 2016, 254, 1047–1062. [Google Scholar] [CrossRef]
- Huang, H.-C.; Hu, C.-F. Performance Measurement for the Recycling Production System Using Cooperative Game Network Data Envelopment Analysis. Sustainability 2021, 13, 11060. [Google Scholar] [CrossRef]
- Ding, L.-l.; Lei, L.; Wang, L.; Zhang, L.-f. Assessing industrial circular economy performance and its dynamic evolution: An extended Malmquist index based on cooperative game network DEA. Sci. Total Environ. 2020, 731, 139001. [Google Scholar] [CrossRef]
- Bian, Y.; Liang, N.; Xu, H. Efficiency evaluation of Chinese regional industrial systems with undesirable factors using a two-stage slacks-based measure approach. J. Clean. Prod. 2015, 87, 348–356. [Google Scholar] [CrossRef]
- Tang, J.; Wang, Q.; Chang, Y.-T. China’s regional industrial two-stage system—Efficiencies and their influencing factors. J. Clean. Prod. 2020, 249, 119420. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Chang, Y.; Zhang, L. Industrial eco-efficiency in China: A provincial quantification using three-stage data envelopment analysis. J. Clean. Prod. 2017, 143, 238–249. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, T.; Xie, X.; Huang, Z. Regional low carbon development pathways for the Yangtze River Delta region in China. Energy Policy 2021, 151, 112172. [Google Scholar] [CrossRef]
- Yin, J.; Zheng, M.; Chen, J. The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China. Energy Policy 2015, 77, 97–108. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, K.; Zhu, Y.; Liu, W. Spatial and temporal differentiation and influencing factors of environmental governance performance in the Yangtze River Delta, China. Sci. Total Environ. 2021, 801, 149699. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Guo, C.; Shao, S.; Jiang, Z. Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach. Appl. Energy 2016, 184, 1142–1153. [Google Scholar] [CrossRef]
- Fang, L.; Wu, F.; Wang, X.; Yu, Y. Analysis of Agricultural Water Efficiency Measurement and Improvement Potential Based on Meta Frontier SBM Model. Resour. Environ. Yangtze Basin 2018, 27, 2293–2304. [Google Scholar]
- Wen, H.; Lee, C.-C.; Zhou, F. Green credit policy, credit allocation efficiency and upgrade of energy-intensive enterprises. Energy Econ. 2021, 94, 105099. [Google Scholar] [CrossRef]
- Shen, L.; Wang, Y. Supervision mechanism for pollution behavior of Chinese enterprises based on haze governance. J. Clean. Prod. 2018, 197, 571–582. [Google Scholar] [CrossRef]
- Hou, J.; Teo, T.S.H.; Zhou, F.; Lim, M.K.; Chen, H. Does industrial green transformation successfully facilitate a decrease in carbon intensity in China? An environmental regulation perspective. J. Clean. Prod. 2018, 184, 1060–1071. [Google Scholar] [CrossRef]
References | Indicators | Mean | Maximum | Minimum | Standard Deviation |
---|---|---|---|---|---|
Inputs [11,28,33,34,35] | Main business cost | 30,605.18 | 139,748.56 | 1226.80 | 31,071.37 |
Industrial energy consumption | 10,141.65 | 31,805.20 | 826.98 | 6935.62 | |
Industrial labor | 184.47 | 1055.37 | 9.83 | 185.93 | |
Total industrial output value | 8864.09 | 38,526.29 | 415.12 | 8018.60 | |
Industrial governance investment | 21.79 | 141.23 | 0.05 | 21.55 | |
Intermediate outputs/inputs [27,36,37] | Industrial solid waste emissions | 11,499.16 | 52,037.00 | 333.00 | 10,038.43 |
Comprehensive utilization of industrial solid waste | 6811.29 | 25,230.00 | 193.00 | 5356.35 | |
Outputs [11,28] | Industrial solid waste disposal | 2742.06 | 27,402.00 | 6.00 | 4178.22 |
Eastern | Central | Western | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Provinces | eo | Eo | TGRI | Provinces | eo | Eo | TGRI | Provinces | eo | Eo | TGRI |
Tianjin | 0.72 | 0.71 | 0.97 | Anhui | 0.83 | 0.79 | 0.95 | Chongqing | 0.87 | 0.63 | 0.72 |
Shanghai | 0.64 | 0.60 | 0.93 | Jiangxi | 0.76 | 0.72 | 0.95 | Sichuan | 0.65 | 0.58 | 0.89 |
Jiangsu | 0.66 | 0.59 | 0.90 | Hunan | 0.54 | 0.52 | 0.98 | Yunnan | 0.69 | 0.53 | 0.75 |
Guangdong | 0.64 | 0.54 | 0.85 | Shanxi | 0.68 | 0.52 | 0.77 | Shaanxi | 0.61 | 0.48 | 0.79 |
Liaoning | 0.77 | 0.51 | 0.65 | Hubei | 0.52 | 0.51 | 0.99 | Guizhou | 0.63 | 0.44 | 0.70 |
Shandong | 0.72 | 0.49 | 0.69 | Heilongjiang | 0.61 | 0.49 | 0.81 | Xinjiang | 0.53 | 0.38 | 0.71 |
Fujian | 0.60 | 0.47 | 0.79 | Henan | 0.46 | 0.44 | 0.95 | Ningxia | 0.44 | 0.36 | 0.81 |
Hebei | 0.72 | 0.44 | 0.60 | Jilin | 0.37 | 0.30 | 0.88 | Gansu | 0.36 | 0.30 | 0.82 |
Beijing | 0.49 | 0.43 | 0.87 | ||||||||
Guangxi | 0.68 | 0.40 | 0.57 | ||||||||
Hainan | 0.61 | 0.34 | 0.57 | ||||||||
Mean | 0.66 | 0.50 | 0.76 | Mean | 0.59 | 0.54 | 0.91 | Mean | 0.60 | 0.46 | 0.78 |
Overall mean | 0.62 | 0.50 | 0.81 |
Regions | Provinces | Production Stage | Regional Ranking | Overall Ranking | Pollution Treatment Stage | Regional Ranking | Overall Ranking |
---|---|---|---|---|---|---|---|
Eastern | Beijing | 0.86 | 4 | 8 | 0.25 | 11 | 26 |
Tianjin | 0.86 | 5 | 10 | 0.66 | 1 | 3 | |
Hebei | 0.66 | 8 | 19 | 0.43 | 5 | 11 | |
Shanghai | 0.95 | 1 | 1 | 0.42 | 6 | 13 | |
Jiangsu | 0.89 | 3 | 5 | 0.48 | 4 | 9 | |
Shandong | 0.70 | 7 | 17 | 0.51 | 3 | 7 | |
Fujian | 0.83 | 6 | 12 | 0.31 | 9 | 23 | |
Guangdong | 0.90 | 2 | 3 | 0.37 | 8 | 19 | |
Guangxi | 0.60 | 10 | 23 | 0.41 | 7 | 14 | |
Hainan | 0.56 | 11 | 25 | 0.30 | 10 | 24 | |
Liaoning | 0.64 | 9 | 21 | 0.65 | 2 | 4 | |
Mean | 0.77 | - | - | 0.44 | - | - | |
Central | Shanxi | 0.84 | 3 | 11 | 0.40 | 7 | 16 |
Jilin | 0.44 | 8 | 27 | 0.44 | 4 | 10 | |
Heilongjiang | 0.62 | 7 | 22 | 0.50 | 3 | 8 | |
Anhui | 0.89 | 1 | 4 | 0.80 | 1 | 1 | |
Jiangxi | 0.87 | 2 | 6 | 0.72 | 2 | 2 | |
Henan | 0.69 | 6 | 18 | 0.37 | 8 | 18 | |
Hubei | 0.79 | 5 | 14 | 0.41 | 6 | 15 | |
Hunan | 0.80 | 4 | 13 | 0.42 | 5 | 12 | |
Mean | 0.74 | - | - | 0.51 | - | - | |
Western | Chongqing | 0.86 | 3 | 9 | 0.53 | 2 | 6 |
Sichuan | 0.77 | 4 | 15 | 0.56 | 1 | 5 | |
Guizhou | 0.74 | 5 | 16 | 0.34 | 4 | 20 | |
Yunnan | 0.86 | 2 | 7 | 0.38 | 3 | 17 | |
Shaanxi | 0.95 | 1 | 2 | 0.24 | 8 | 27 | |
Gansu | 0.51 | 8 | 26 | 0.32 | 6 | 22 | |
Ningxia | 0.65 | 6 | 20 | 0.28 | 7 | 25 | |
Xinjiang | 0.59 | 7 | 24 | 0.33 | 5 | 21 | |
Mean | 0.74 | - | - | 0.37 | - | - | |
Overall mean | 0.75 | - | - | 0.44 | - | - |
Regions | Provinces | Improvement Potential | MP | TP | Improvement Strategy | |||
---|---|---|---|---|---|---|---|---|
Mean | Proportion (%) | Mean | Proportion (%) | Management | Technology | |||
Eastern | Beijing | 0.57 | 0.51 | 89.02 | 0.06 | 10.98 | √ | |
Tianjin | 0.29 | 0.28 | 94.22 | 0.02 | 5.78 | √ | ||
Hebei | 0.56 | 0.28 | 49.31 | 0.29 | 50.69 | √ | √ | |
Shanghai | 0.40 | 0.36 | 89.95 | 0.04 | 10.05 | √ | ||
Jiangsu | 0.41 | 0.34 | 83.78 | 0.07 | 16.22 | √ | ||
Shandong | 0.51 | 0.28 | 55.28 | 0.23 | 44.72 | √ | √ | |
Fujian | 0.53 | 0.40 | 76.71 | 0.12 | 23.29 | √ | ||
Guangdong | 0.46 | 0.36 | 78.36 | 0.10 | 21.64 | √ | ||
Guangxi | 0.60 | 0.32 | 52.75 | 0.29 | 47.25 | √ | √ | |
Hainan | 0.66 | 0.39 | 59.71 | 0.27 | 40.29 | √ | √ | |
Liaoning | 0.49 | 0.23 | 47.57 | 0.26 | 52.43 | √ | √ | |
Mean | 0.50 | 0.34 | 68.47 | 0.16 | 31.53 | √ | √ | |
Central | Shanxi | 0.48 | 0.32 | 65.91 | 0.16 | 34.09 | √ | √ |
Jilin | 0.70 | 0.63 | 90.83 | 0.06 | 9.17 | √ | ||
Heilongjiang | 0.51 | 0.39 | 76.84 | 0.12 | 23.16 | √ | ||
Anhui | 0.21 | 0.17 | 82.14 | 0.04 | 17.86 | √ | ||
Jiangxi | 0.28 | 0.24 | 85.28 | 0.04 | 14.72 | √ | ||
Hainan | 0.56 | 0.54 | 95.95 | 0.02 | 4.05 | √ | ||
Hubei | 0.49 | 0.48 | 99.18 | 0.00 | 0.82 | √ | ||
Hunan | 0.48 | 0.46 | 97.63 | 0.01 | 2.37 | √ | ||
Mean | 0.46 | 0.41 | 87.49 | 0.06 | 12.51 | √ | ||
Western | Chongqing | 0.37 | 0.13 | 34.44 | 0.24 | 65.56 | √ | √ |
Sichuan | 0.42 | 0.35 | 84.56 | 0.06 | 15.44 | √ | ||
Guizhou | 0.56 | 0.37 | 65.24 | 0.20 | 34.76 | √ | √ | |
Yunnan | 0.47 | 0.31 | 65.10 | 0.17 | 34.90 | √ | √ | |
Shaanxi | 0.52 | 0.39 | 74.60 | 0.13 | 25.40 | √ | ||
Gansu | 0.70 | 0.64 | 90.96 | 0.06 | 9.04 | √ | ||
Ningxia | 0.64 | 0.56 | 87.74 | 0.08 | 12.26 | √ | ||
Xinjiang | 0.62 | 0.47 | 75.94 | 0.15 | 24.06 | √ | ||
Mean | 0.54 | 0.40 | 74.61 | 0.14 | 25.39 | √ | ||
Overall mean | 0.50 | 0.38 | 75.65 | 0.12 | 24.35 | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhao, R.; Huang, F. Environmental Performance of China’s Industrial System Considering Technological Heterogeneity and Interaction. Sustainability 2023, 15, 3425. https://doi.org/10.3390/su15043425
Li L, Zhao R, Huang F. Environmental Performance of China’s Industrial System Considering Technological Heterogeneity and Interaction. Sustainability. 2023; 15(4):3425. https://doi.org/10.3390/su15043425
Chicago/Turabian StyleLi, Lei, Ruizeng Zhao, and Feihua Huang. 2023. "Environmental Performance of China’s Industrial System Considering Technological Heterogeneity and Interaction" Sustainability 15, no. 4: 3425. https://doi.org/10.3390/su15043425
APA StyleLi, L., Zhao, R., & Huang, F. (2023). Environmental Performance of China’s Industrial System Considering Technological Heterogeneity and Interaction. Sustainability, 15(4), 3425. https://doi.org/10.3390/su15043425