The Impact of Hygiene Factors on Online Hotel Consumption in China during the COVID-19 Pandemic
Abstract
:1. Introduction
- (1)
- During the COVID-19 pandemic, do hygiene factors have an impact on online hotel sales?
- (2)
- Are there differences in the factors influencing the generation and growth of hotel sales?
2. Theoretical Foundation and Hypothesis Development
2.1. Theoretical Background
2.2. Hypothesis Development
2.2.1. Information Completeness
2.2.2. Online Hotel Ratings
2.2.3. OTA Recommended Tags
3. Method
3.1. Data Collection
3.2. Variables
3.2.1. Dependent Variable
3.2.2. Independent Variables
3.2.3. Control Variables
3.3. Model
4. Data Analysis and Results
4.1. Descriptive Statistics and Correlation Analysis
4.2. Binary Logit Regression Analysis
4.3. OLS Regression Analysis Results
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
6. Implications
6.1. Theoretical Implications
6.2. Managerial Implications
7. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Province/ City with Provincial Status | Hotel Number |
---|---|
Shanxi | 1 |
Shenzhen | 1 |
Guangdong | 2 |
Xinjiang | 2 |
Jilin | 3 |
Tibet | 4 |
Inner Mongolia | 4 |
Harbin | 4 |
Qinghai | 4 |
Ningxia | 5 |
Beijing | 5 |
Sichuan | 5 |
Gansu | 5 |
Hubei | 6 |
Shaanxi | 7 |
Jiangsu | 7 |
Heilongjiang | 117 |
Guangxi | 150 |
Zhejiang | 167 |
Hainan | 204 |
Fujian | 246 |
Liaoning | 294 |
Jiangxi | 386 |
Tianjin | 400 |
Hebei | 425 |
Guizhou | 503 |
Yunnan | 658 |
Hunan | 778 |
Shanghai | 791 |
Henan | 970 |
Chongqing | 1055 |
Total number | 7209 |
References
- Ministry of Culture and Tourism of the People’s Republic of China Domestic Tourism Data in 2022. Available online: https://zwgk.mct.gov.cn/zfxxgkml/tjxx/202301/t20230118_938716.html (accessed on 18 January 2023).
- Le, L.H.; Hancer, M.; Chaulagain, S.; Pham, P. Reducing Hotel Employee Turnover Intention by Promoting Pride in Job and Meaning of Work: A Cross-Cultural Perspective. Int. J. Hosp. Manag. 2023, 109, 103409. [Google Scholar] [CrossRef]
- Jung, H.S.; Jung, Y.S.; Yoon, H.H. COVID-19: The Effects of Job Insecurity on the Job Engagement and Turnover Intent of Deluxe Hotel Employees and the Moderating Role of Generational Characteristics. Int. J. Hosp. Manag. 2021, 92, 102703. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoety, Z.H.; Alamoudi, H.; Alharthi, M.; Sharkasi, N.; Agag, G. Ensuring a Sustainable Hospitality and Tourism Industry in the COVID-19 Era: Using an Open Market Valuation Technique. Sustainability 2022, 14, 3190. [Google Scholar] [CrossRef]
- Siddiqi, U.I.; Akhtar, N.; Islam, T. Restaurant Hygiene Attributes and Consumers’ Fear of COVID-19: Does Psychological Distress Matter? J. Retail. Consum. Serv. 2022, 67, 102972. [Google Scholar] [CrossRef]
- Yin, J.; Ni, Y. COVID-19 Event Strength, Psychological Safety, and Avoidance Coping Behaviors for Employees in the Tourism Industry. J. Hosp. Tour. Manag. 2021, 47, 431–442. [Google Scholar] [CrossRef]
- Zenker, S.; Kock, F. The Coronavirus Pandemic—A Critical Discussion of a Tourism Research Agenda. Tour. Manag. 2020, 81, 104164. [Google Scholar] [CrossRef]
- Davahli, M.R.; Karwowski, W.; Sonmez, S.; Apostolopoulos, Y. The Hospitality Industry in the Face of the COVID-19 Pandemic: Current Topics and Research Methods. Int. J. Environ. Res. Public Health 2020, 17, 7366. [Google Scholar] [CrossRef]
- Jiang, Y.; Wen, J. Effects of COVID-19 on Hotel Marketing and Management: A Perspective Article. Int. J. Contemp. Hosp. Manag. 2020, 32, 2563–2573. [Google Scholar] [CrossRef]
- Hsieh, Y.J.; Chen, Y.L.; Wang, Y.C. Government and Social Trust vs. Hotel Response Efficacy: A Protection Motivation Perspective on Hotel Stay Intention during the COVID-19 Pandemic. Int. J. Hosp. Manag. 2021, 97, 102991. [Google Scholar] [CrossRef]
- Pham Minh, Q.; Ngoc Mai, N. Perceived Risk and Booking Intention in the Crisis of COVID-19: Comparison of Tourist Hotels and Love Hotels. Tour. Recreat. Res. 2021, 48, 128–140. [Google Scholar] [CrossRef]
- Kim, S.S.; Kim, J.; Badu-Baiden, F.; Giroux, M.; Choi, Y. Preference for Robot Service or Human Service in Hotels? Impacts of the COVID-19 Pandemic. Int. J. Hosp. Manag. 2021, 93, 102795. [Google Scholar] [CrossRef]
- Shin, H.; Kang, J. Reducing Perceived Health Risk to Attract Hotel Customers in the COVID-19 Pandemic Era: Focused on Technology Innovation for Social Distancing and Cleanliness. Int. J. Hosp. Manag. 2020, 91, 102664. [Google Scholar] [CrossRef]
- Romero, J.; Lado, N. Service Robots and COVID-19: Exploring Perceptions of Prevention Efficacy at Hotels in Generation Z. Int. J. Contemp. Hosp. Manag. 2021, 33, 4057–4078. [Google Scholar] [CrossRef]
- Kim, J.J.; Han, H. Saving the Hotel Industry: Strategic Response to the COVID-19 Pandemic, Hotel Selection Analysis, and Customer Retention. Int. J. Hosp. Manag. 2022, 102, 103163. [Google Scholar] [CrossRef] [PubMed]
- Deyá-Tortella, B.; Leoni, V.; Ramos, V. COVID-Led Consumption Displacement: A Longitudinal Analysis of Hotel Booking Patterns. Int. J. Hosp. Manag. 2022, 107, 103343. [Google Scholar] [CrossRef] [PubMed]
- Toubes, D.R.; Araújo Vila, N.; Fraiz Brea, J.A. Changes in Consumption Patterns and Tourist Promotion after the COVID-19 Pandemic. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1332–1352. [Google Scholar] [CrossRef]
- Kourtesopoulou, A.; Theodorou, S.-D.; Kriemadis, A.; Papaioannou, A. The Impact of Online Travel Agencies Web Service Quality on Customer Satisfaction and Purchase Intentions. In Proceedings of the Smart Tourism as a Driver for Culture and Sustainability; Katsoni, V., Segarra-Oña, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 343–356. [Google Scholar]
- Sharma, M.; Antony, R.; Sehrawat, R.; Cruz, A.C.; Daim, T.U. Exploring Post-Adoption Behaviors of e-Service Users: Evidence from the Hospitality Sector /Online Travel Services. Technol. Soc. 2022, 68, 101781. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Hsu, P.-Y.; Lan, Y.-C. Cooperation and Competition between Online Travel Agencies and Hotels. Tour. Manag. 2019, 71, 187–196. [Google Scholar] [CrossRef]
- Ye, B.H.; Fu, H.; Law, R. Use of Impact-Range Performance and Asymmetry Analyses to Improve OTA Website Quality. J. Hosp. Tour. Manag. 2016, 26, 9–17. [Google Scholar] [CrossRef]
- Brown, S.; Hillegeist, S.A. How Disclosure Quality Affects the Level of Information Asymmetry. Rev. Account. Stud. 2007, 12, 443–477. [Google Scholar] [CrossRef]
- Choi, Y.; Hickerson, B.; Kerstetter, D. Understanding the Sources of Online Travel Information. J. Travel Res. 2018, 57, 116–128. [Google Scholar] [CrossRef]
- Manu, C.; Sreejesh, S.; Paul, J. Tell Us Your Concern, and We Shall Together Address! Role of Service Booking Channels and Brand Equity on Post-Failure Outcomes. Int. J. Hosp. Manag. 2021, 96, 102982. [Google Scholar] [CrossRef]
- Mohd-Any, A.A.; Winklhofer, H.; Ennew, C. Measuring Users’ Value Experience on a Travel Website (e-Value): What Value Is Co-Created by the User? J. Travel Res. 2014, 54, 496–510. [Google Scholar] [CrossRef]
- Park, K.; Ha, J.; Park, J.-Y. An Experimental Investigation on the Determinants of Online Hotel Booking Intention. J. Hosp. Mark. Manag. 2017, 26, 627–643. [Google Scholar] [CrossRef]
- Hu, X.S.; Yang, Y. Determinants of Consumers’ Choices in Hotel Online Searches: A Comparison of Consideration and Booking Stages. Int. J. Hosp. Manag. 2020, 86, 102370. [Google Scholar] [CrossRef]
- Guo, L.; Liu, K.; Song, Y.; Yang, Z. Recovering Hotel Room Sales during the COVID-19 Pandemic: Lessons from OTA Information Using the Quantile Regression Approach. Curr. Issues Tour. 2021, 25, 94–114. [Google Scholar] [CrossRef]
- Jiménez-Barreto, J.; Loureiro, S.; Braun, E.; Sthapit, E.; Zenker, S. Use Numbers Not Words! Communicating Hotels’ Cleaning Programs for COVID-19 from the Brand Perspective. Int. J. Hosp. Manag. 2021, 94, 102872. [Google Scholar] [CrossRef]
- Thomsen, C.R.; Jeong, M. An Analysis of Airbnb Online Reviews: User Experience in 16 U.S. Cities. J. Hosp. Tour. Technol. 2021, 12, 97–111. [Google Scholar] [CrossRef]
- Spence, M. Competitive and Optimal Responses to Signals: An Analysis of Efficiency and Distribution. J. Econ. Theory 1974, 7, 296–332. [Google Scholar] [CrossRef]
- Connelly, B.L.; Certo, S.T.; Ireland, R.D.; Reutzel, C.R. Signaling Theory: A Review and Assessment. J. Manag. 2011, 37, 39–67. [Google Scholar] [CrossRef]
- Kirmani, A.; Rao, A.R. No Pain, No Gain: A Critical Review of the Literature on Signaling Unobservable Product Quality. J. Mark. 2000, 64, 66–79. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Y.; Wang, B.; Pan, Z. How Do Product Recommendations Affect Impulse Buying? An Empirical Study on WeChat Social Commerce. Inf. Manag. 2019, 56, 236–248. [Google Scholar] [CrossRef]
- Berger, J. Signaling Can Increase Consumers’ Willingness to Pay for Green Products. Theoretical Model and Experimental Evidence. J. Consum. Behav. 2019, 18, 233–246. [Google Scholar] [CrossRef]
- Fanasch, P.; Frick, B. The Value of Signals: Do Self-Declaration and Certification Generate Price Premiums for Organic and Biodynamic Wines? J. Clean. Prod. 2020, 249, 119415. [Google Scholar] [CrossRef]
- Guyader, H.; Ottosson, M.; Witell, L. You Can’t Buy What You Can’t See: Retailer Practices to Increase the Green Premium. J. Retail. Consum. Serv. 2017, 34, 319–325. [Google Scholar] [CrossRef]
- Dick, G.P.M. ISO 9000 Certification Benefits, Reality or Myth? TQM Mag. 2000, 12, 365–371. [Google Scholar] [CrossRef]
- Mavlanova, T.; Benbunan-Fich, R.; Lang, G. The Role of External and Internal Signals in E-Commerce. Decis. Support Syst. 2016, 87, 59–68. [Google Scholar] [CrossRef]
- Abrate, G.; Capriello, A.; Fraquelli, G. When Quality Signals Talk: Evidence from the Turin Hotel Industry. Tour. Manag. 2011, 32, 912–921. [Google Scholar] [CrossRef]
- Chiu, H.-H.; Chen, C.-M. Advertising, Price and Hotel Service Quality: A Signalling Perspective. Tour. Econ. 2014, 20, 1013–1025. [Google Scholar] [CrossRef]
- Li, C.; Cui, G.; Peng, L. The Signaling Effect of Management Response in Engaging Customers: A Study of the Hotel Industry. Tour. Manag. 2017, 62, 42–53. [Google Scholar] [CrossRef]
- Wu, C.H.-J.; Liao, H.-C.; Hung, K.-P.; Ho, Y.-H. Service Guarantees in the Hotel Industry: Their Effects on Consumer Risk and Service Quality Perceptions. Int. J. Hosp. Manag. 2012, 31, 757–763. [Google Scholar] [CrossRef]
- Chung, W.; Kalnins, A. Agglomeration Effects and Performance: A Test of the Texas Lodging Industry. Strateg. Manag. J. 2001, 22, 969–988. [Google Scholar] [CrossRef]
- Yang, Y.; Mueller, N.J.; Croes, R.R. Market Accessibility and Hotel Prices in the Caribbean: The Moderating Effect of Quality-Signaling Factors. Tour. Manag. 2016, 56, 40–51. [Google Scholar] [CrossRef]
- Núñez-Serrano, J.A.; Turrión, J.; Velázquez, F.J. Are Stars a Good Indicator of Hotel Quality? Assymetric Information and Regulatory Heterogeneity in Spain. Tour. Manag. 2014, 42, 77–87. [Google Scholar] [CrossRef]
- Scholl-Grissemann, U.; Kallmuenzer, A.; Peters, M. This Hotel Is Family-Run! Enabling Positive Consumer Response via Perceived Hospitableness. Int. J. Hosp. Manag. 2021, 99, 103067. [Google Scholar] [CrossRef]
- Chu, R.K.S.; Choi, T. An Importance-Performance Analysis of Hotel Selection Factors in the Hong Kong Hotel Industry: A Comparison of Business and Leisure Travellers. Tour. Manag. 2000, 21, 363–377. [Google Scholar] [CrossRef]
- Wisker, Z.L.; Kadirov, D.; Bone, C. Modelling P2P Airbnb Online Host Advertising Effectiveness: The Role of Emotional Appeal Information Completeness Creativity and Social Responsibility. Int. J. Cult. Tour. Hosp. Res. 2019, 13, 505–523. [Google Scholar] [CrossRef]
- Liu, C.; Arnett, K.P. Exploring the Factors Associated with Web Site Success in the Context of Electronic Commerce. Inf. Manag. 2000, 38, 23–33. [Google Scholar] [CrossRef]
- Kim, D.J.; Ferrin, D.L.; Rao, H.R. A Trust-Based Consumer Decision-Making Model in Electronic Commerce: The Role of Trust, Perceived Risk, and Their Antecedents. Decis. Support Syst. 2008, 44, 544–564. [Google Scholar] [CrossRef]
- Salameh, A.A.; Al Mamun, A.; Hayat, N.; Ali, M.H. Modelling the Significance of Website Quality and Online Reviews to Predict the Intention and Usage of Online Hotel Booking Platforms. Heliyon 2022, 8, e10735. [Google Scholar] [CrossRef]
- Punyatoya, P. Effects of Cognitive and Affective Trust on Online Customer Behavior. Mark. Intell. Plan. 2018, 37, 80–96. [Google Scholar] [CrossRef]
- Abou-Shouk, M.A.; Khalifa, G.S. The Influence of Website Quality Dimensions on E-Purchasing Behaviour and e-Loyalty: A Comparative Study of Egyptian Travel Agents and Hotels. J. Travel Tour. Mark. 2017, 34, 608–623. [Google Scholar] [CrossRef]
- Bonsón Ponte, E.; Carvajal-Trujillo, E.; Escobar-Rodríguez, T. Influence of Trust and Perceived Value on the Intention to Purchase Travel Online: Integrating the Effects of Assurance on Trust Antecedents. Tour. Manag. 2015, 47, 286–302. [Google Scholar] [CrossRef]
- Witt, S.F.; Witt, C.A. Forecasting Tourism Demand: A Review of Empirical Research. Int. J. Forecast. 1995, 11, 447–475. [Google Scholar] [CrossRef]
- Kayaman, R.; Arasli, H. Customer Based Brand Equity: Evidence from the Hotel Industry. Manag. Serv. Qual. Int. J. 2007, 17, 92–109. [Google Scholar] [CrossRef]
- Melloni, G.; Caglio, A.; Perego, P. Saying More with Less? Disclosure Conciseness, Completeness and Balance in Integrated Reports. J. Account. Public Policy 2017, 36, 220–238. [Google Scholar] [CrossRef]
- Liu, Z.; Park, S. What Makes a Useful Online Review? Implication for Travel Product Websites. Tour. Manag. 2015, 47, 140–151. [Google Scholar] [CrossRef]
- Gavilan, D.; Avello, M.; Martinez-Navarro, G. The Influence of Online Ratings and Reviews on Hotel Booking Consideration. Tour. Manag. 2018, 66, 53–61. [Google Scholar] [CrossRef]
- Park, Y.J.; Joo, J.; Polpanumas, C.; Yoon, Y. “Worse Than What I Read?” The External Effect of Review Ratings on the Online Review Generation Process: An Empirical Analysis of Multiple Product Categories Using Amazon.Com Review Data. Sustainability 2021, 13, 912. [Google Scholar] [CrossRef]
- Tran, L.T.T.; Pham, L.M.T.; Le, L.T. E-Satisfaction and Continuance Intention: The Moderator Role of Online Ratings. Int. J. Hosp. Manag. 2019, 77, 311–322. [Google Scholar] [CrossRef]
- Varkaris, E.; Neuhofer, B. The Influence of Social Media on the Consumers’ Hotel Decision Journey. J. Hosp. Tour. Technol. 2017, 8, 101–118. [Google Scholar] [CrossRef]
- Fang, B.; Ye, Q.; Kucukusta, D.; Law, R. Analysis of the Perceived Value of Online Tourism Reviews: Influence of Readability and Reviewer Characteristics. Tour. Manag. 2016, 52, 498–506. [Google Scholar] [CrossRef]
- Ye, Q.; Law, R.; Gu, B. The Impact of Online User Reviews on Hotel Room Sales. Int. J. Hosp. Manag. 2009, 28, 180–182. [Google Scholar] [CrossRef]
- Verma, R.; Stock, D.; McCarthy, L. Customer Preferences for Online, Social Media, and Mobile Innovations in the Hospitality Industry. Cornell Hosp. Q. 2012, 53, 183–186. [Google Scholar] [CrossRef]
- Casaló, L.V.; Flavián, C.; Guinalíu, M.; Ekinci, Y. Do Online Hotel Rating Schemes Influence Booking Behaviors? Int. J. Hosp. Manag. 2015, 49, 28–36. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Ku, C.-H.; Chen, C.-H. Using Deep Learning and Visual Analytics to Explore Hotel Reviews and Responses. Tour. Manag. 2020, 80, 104129. [Google Scholar] [CrossRef]
- Castro, C.; Ferreira, F.A. Online Hotel Ratings and Its Influence on Hotel Room Rates: The Case of Lisbon, Portugal. Tour. Manag. Stud. 2018, 14, 63–72. [Google Scholar] [CrossRef]
- Xie, K.L.; Zhang, Z.; Zhang, Z. The Business Value of Online Consumer Reviews and Management Response to Hotel Performance. Int. J. Hosp. Manag. 2014, 43, 1–12. [Google Scholar] [CrossRef]
- Yi, B.; Shi, D.; Shi, F.; Zhang, L. Do the Flipped Impacts of Hotels Matter to the Popularity of Airbnb? Int. J. Contemp. Hosp. Manag. 2021, 33, 2239–2263. [Google Scholar] [CrossRef]
- Xiang, Z.; Du, Q.; Ma, Y.; Fan, W. A Comparative Analysis of Major Online Review Platforms: Implications for Social Media Analytics in Hospitality and Tourism. Tour. Manag. 2017, 58, 51–65. [Google Scholar] [CrossRef]
- Su, J.-H.; Chang, W.-Y.; Tseng, V.S. Personalized Music Recommendation by Mining Social Media Tags. Procedia Comput. Sci. 2013, 22, 303–312. [Google Scholar] [CrossRef]
- Wei, S.; Zheng, X.; Chen, D.; Chen, C. A Hybrid Approach for Movie Recommendation via Tags and Ratings. Electron. Commer. Res. Appl. 2016, 18, 83–94. [Google Scholar] [CrossRef]
- Belém, F.M.; Silva, R.M.; de Andrade, C.M.V.; Person, G.; Mingote, F.; Ballet, R.; Alponti, H.; de Oliveira, H.P.; Almeida, J.M.; Gonçalves, M.A. “Fixing the Curse of the Bad Product Descriptions”—Search-Boosted Tag Recommendation for E-Commerce Products. Inf. Process. Manag. 2020, 57, 102289. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, S.; He, Y. The Impact of Information Disclosure on Consumer Purchase Behavior on Sharing Economy Platform Airbnb. Int. J. Prod. Econ. 2021, 231, 107846. [Google Scholar] [CrossRef]
- Matlovicova, K.; Kolesárová, J.; Matlovic, R. Selected Theoretical Aspects of the Destination Marketing Based on Participation of Marginalized Communities. In Proceedings of the 8th International Annual Scientific Conference on Hotel Services, Tourism and Education, Sydney, Australia, 8–11 February 2016; pp. 128–143. [Google Scholar]
- Hung, W.T.; Shang, J.K.; Wang, F.C. Pricing Determinants in the Hotel Industry: Quantile Regression Analysis. Int. J. Hosp. Manag. 2010, 29, 378–384. [Google Scholar] [CrossRef]
- Lu, Q.; Xiao, L.; Ye, Q. Investigating the Impact of Online Word-of-Mouth on Hotel Sales with Panel Data. In Proceedings of the 2012 International Conference on Management Science & Engineering 19th Annual Conference, Dallas, TX, USA, 20–22 September 2012; pp. 3–9. [Google Scholar]
- Ivanova, M.; Ivanov, S. Affiliation to Hotel Chains: Hotels’ Perspective. Tour. Manag. Perspect. 2015, 16, 148–162. [Google Scholar] [CrossRef]
- Kim, J.; Jang, S.; Kang, S.; Kim, S.J. Why Are Hotel Room Prices Different? Exploring Spatially Varying Relationships between Room Price and Hotel Attributes. J. Bus. Res. 2020, 107, 118–129. [Google Scholar] [CrossRef]
- Soler, I.P.; Gemar, G. Hedonic Price Models with Geographically Weighted Regression: An Application to Hospitality. J. Destin. Mark. Manag. 2018, 9, 126–137. [Google Scholar] [CrossRef]
- Ben Aissa, S.; Goaied, M. Determinants of Tunisian Hotel Profitability: The Role of Managerial Efficiency. Tour. Manag. 2016, 52, 478–487. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chen, C.-M. How Do Hotel Characteristics Moderate the Impact of COVID-19 on Hotel Performance? Evidence from Taiwan. Curr. Issues Tour. 2022, 25, 1192–1197. [Google Scholar] [CrossRef]
- Li, Y.; Yao, J.; Chen, J. The Negative Effect of Scarcity Cues on Consumer Purchase Decisions in the Hospitality Industry during the COVID-19 Pandemic. Int. J. Hosp. Manag. 2021, 94, 102815. [Google Scholar] [CrossRef]
- O’brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual Quant 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Cox, D.; Harris, D. Reduction of Liver Xanthine Oxidase Activity and Iron Storage Proteins in Rats Fed Excess Zinc. J. Nutr. 1962, 78, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Wegner, D.M.; Wheatley, T. Apparent Mental Causation: Sources of the Experience of Will. Am. Psychol. 1999, 54, 480–492. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.W.; Wegner, D.M.; Haggard, P. Modulating the Sense of Agency with External Cues. Conscious. Cogn. 2009, 18, 1056–1064. [Google Scholar] [CrossRef]
- Richardson, P.S.; Dick, A.S.; Jain, A.K. Extrinsic and Intrinsic Cue Effects on Perceptions of Store Brand Quality. J. Mark. 1994, 58, 28–36. [Google Scholar] [CrossRef]
- Kim, M.; Lee, S.M.; Choi, S.; Kim, S.Y. Impact of Visual Information on Online Consumer Review Behavior: Evidence from a Hotel Booking Website. J. Retail. Consum. Serv. 2021, 60, 102494. [Google Scholar] [CrossRef]
- Lee, J.; Park, D.-H.; Han, I. The Effect of Negative Online Consumer Reviews on Product Attitude: An Information Processing View. Electron. Commer. Res. Appl. 2008, 7, 341–352. [Google Scholar] [CrossRef]
- Lee, M.; Jeong, M.; Lee, J. Roles of Negative Emotions in Customers’ Perceived Helpfulness of Hotel Reviews on a User-Generated Review Website: A Text Mining Approach. Int. J. Contemp. Hosp. Manag. 2017, 29, 762–783. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.; Fang, E.E. User Reviews Variance, Critic Reviews Variance, and Product Sales: An Exploration of Customer Breadth and Depth Effects. J. Retail. 2015, 91, 372–389. [Google Scholar] [CrossRef]
- Bae, S.Y.; Chang, P.-J. The Effect of Coronavirus Disease-19 (COVID-19) Risk Perception on Behavioural Intention towards ‘Untact’ Tourism in South Korea during the First Wave of the Pandemic (March 2020). Curr. Issues Tour. 2021, 24, 1017–1035. [Google Scholar] [CrossRef]
- Peco-Torres, F.; Polo-Peña, A.I.; Frías-Jamilena, D.M. The Effect of COVID-19 on Tourists’ Intention to Resume Hotel Consumption: The Role of Resilience. Int. J. Hosp. Manag. 2021, 99, 103075. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lee, K.; Hyun, S.S. Understanding the Influence of the Perceived Risk of the Coronavirus Disease (COVID-19) on the Post-Traumatic Stress Disorder and Revisit Intention of Hotel Guests. J. Hosp. Tour. Manag. 2021, 46, 327–335. [Google Scholar] [CrossRef]
- Pillai, S.G.; Haldorai, K.; Seo, W.S.; Kim, W.G. COVID-19 and Hospitality 5.0: Redefining Hospitality Operations. Int. J. Hosp. Manag. 2021, 94, 102869. [Google Scholar] [CrossRef] [PubMed]
- Bonfanti, A.; Vigolo, V.; Yfantidou, G. The Impact of the COVID-19 Pandemic on Customer Experience Design: The Hotel Managers’ Perspective. Int. J. Hosp. Manag. 2021, 94, 102871. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.P.; Kumar, G.; Ramkumar, M. Customer Expectations in the Hotel Industry during the COVID-19 Pandemic: A Global Perspective Using Sentiment Analysis. Tour. Recreat. Res. 2021, 48, 110–127. [Google Scholar] [CrossRef]
- Mocák, P.; Kvetoslava, M.; René, M.; János, P.; Piotr, P.; Mishra, P.K.; Katarína, K.; Michaela, D. 15-Minute City Concept as a Sustainable Urban Development Alternative: A Brief Outline of Conceptual Frameworks and Slovak Cities as a Case. Folia Geogr. 2022, 64, 69. [Google Scholar]
Variable Category | Variable Name | Variable Definitions | Variable Handling Methods |
---|---|---|---|
Dependent variables | Sales1 | Hotel with or without sales | Categorical variable. Use time node T1 number of reviews—T0 number of reviews, add the number of reviews as sales, and filter by code, coding data with sales as 1 and data without sales as 0. |
Sales2 | Actual sales of hotels with volume | Continuous variable. Based on data from sales1, retain data coded as 1 in the sales1 variable. | |
Review | Number of historical reviews | Proxy variable for sales. | |
Independent variables | Hygiene | Reviewer’s online hygiene rating posted for a hotel | Continuous variable crawled on the hotel details page. |
Descr_len | Length of hotel textual description | Continuous variable, taking the natural logarithm on top of the original. | |
Hyg_tag | The recommended tags contain tags related to hygiene (e.g., “Have disinfection measures in place”, “Have temperature testing”, etc.) | Categorical variable with a value of “1” and without a value of “0”. | |
Loca_tag | The recommended tags contain tags related to the location (e.g., “Excellent location”, “Easy to get around”,, etc.) | Categorical variable with a value of “1” and without a value of “0”. | |
Ser_tag | The recommended tags contain tags related to service (e.g., “Excellent service”, “Enthusiastic receptionist”,, etc.) | Categorical variable with a value of “1” and without a value of “0”. | |
Cost_tag | The recommended tags contain tags related to cost effectiveness (e.g., “Value for money”) | Categorical variable with a value of “1” and without a value of “0”. | |
Control variables | H_Size | Hotel size, number of hotel rooms | Add 1 to the original and take the natural logarithm. |
H_Age | Hotel age, time of hotel operation | Refers to the number of months elapsed since opening, taking the natural logarithm of the original base. |
Variable Name | Min | Max | Mean | Std. Dev. | 25% Digit | Median | 75% Digit |
---|---|---|---|---|---|---|---|
Review | 1 | 7055 | 184.8 | 364.2 | 15 | 55 | 193 |
Descr_len | 3.932 | 7.076 | 5.171 | 0.55 | 4.727 | 5.17 | 5.595 |
Hygiene | 1 | 5 | 4.325 | 0.64 | 4.1 | 4.5 | 4.8 |
H_Size | 2.639 | 4.29 | 3.429 | 0.442 | 3.045 | 3.434 | 3.784 |
H_Age | 0.693 | 7.249 | 3.835 | 0.658 | 3.367 | 3.784 | 4.304 |
Categorical Variables | Tags Related to Hygiene | Tags Related to Excellent Location | Tags Related to Excellent Service | Tags Related to Cost-Effectiveness |
---|---|---|---|---|
Yes (Coding 1) | 224 (3.1%) | 2573 (35.7%) | 3515 (48.8%) | 1170 (16.2%) |
No (Coding 0) | 6985 (96.9%) | 4636 (64.3%) | 3694 (51.2%) | 6039 (83.8%) |
Variable Name | Results | Wald | Exp(B) | VIF |
---|---|---|---|---|
Descr_len | 0.437 *** (0.000) | 66.672 | 1.548 | 1.2 |
Hygiene | 0.433 *** (0.000) | 74.376 | 1.541 | 1.27 |
Hyg_tag | 1.944 *** (0.000) | 40.831 | 6.987 | 1.05 |
Loca_tag | 0.707 *** (0.000) | 141.626 | 2.028 | 1.13 |
Ser_tag | 0.743 *** (0.000) | 176.292 | 2.102 | 1.14 |
Cost_tag | 0.533 *** (0.000) | 48.478 | 1.704 | 1.04 |
H_Size | 1.250 *** (0.000) | 351.582 | 3.489 | 1.19 |
H_Age | −0.252 *** (0.000) | 33.315 | 0.777 | 1.11 |
_cons | −7.883 *** (0.000) | 326.834 | 0 | — |
−2 Log likelihood | 7977.181 | Nagelkerke R square | 0.312 | |
Cox–Snell R square | 0.233 | Hosmer–Lemeshow test | 0.083 |
Variable Name | Model 2 | Model 3 | ||
---|---|---|---|---|
Results | VIF | Results | VIF | |
Descr_len | 3.013 *** (0.000) | 1.18 | 2.696 *** (0.000) | 1.18 |
Hygiene | 6.175 *** (0.000) | 1.3 | 8.486 *** (0.000) | 1.62 |
Hyg_tag | 17.070 *** (0.000) | 1.05 | 16.173 *** (0.000) | 1.06 |
Loca_tag | 0.937 (0.129) | 1.04 | 1.148 * (0.062) | 1.04 |
Ser_tag | 1.682 *** (0.008) | 1.06 | 1.790 *** (0.005) | 1.06 |
Cost_tag | −3.085 *** (0.000) | 1.03 | −2.717 *** (0.000) | 1.04 |
Hygiene × Descr_len | 8.374 *** (0.000) | 1.29 | ||
H_Size | 7.216 *** (0.000) | 1.07 | 7.099 *** (0.000) | 1.07 |
H_Age | −1.252 ** (0.012) | 1.15 | −0.999 ** (0.044) | 1.16 |
_cons | −56.343 *** (0.000) | −66.393 *** (0.000) | ||
R-squared | 0.135 | 0.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Chai, X.; Fan, Q.; Zhang, W. The Impact of Hygiene Factors on Online Hotel Consumption in China during the COVID-19 Pandemic. Sustainability 2023, 15, 3537. https://doi.org/10.3390/su15043537
Sun C, Chai X, Fan Q, Zhang W. The Impact of Hygiene Factors on Online Hotel Consumption in China during the COVID-19 Pandemic. Sustainability. 2023; 15(4):3537. https://doi.org/10.3390/su15043537
Chicago/Turabian StyleSun, Chuanming, Xingyu Chai, Qing Fan, and Wenyuan Zhang. 2023. "The Impact of Hygiene Factors on Online Hotel Consumption in China during the COVID-19 Pandemic" Sustainability 15, no. 4: 3537. https://doi.org/10.3390/su15043537
APA StyleSun, C., Chai, X., Fan, Q., & Zhang, W. (2023). The Impact of Hygiene Factors on Online Hotel Consumption in China during the COVID-19 Pandemic. Sustainability, 15(4), 3537. https://doi.org/10.3390/su15043537