Determinants of Geothermal Power Sustainability Development: Do Global Competitiveness Markets Matter?
Abstract
:1. Introduction
1.1. Geothermal Background
1.2. Main Challenges
- Make an elaborate finding on what effect global competitiveness will have on geothermal production sustainability among the EU regions between 1990 and 2021.
- To give a comprehensive study on geothermal power industry sustainability implications of global competitiveness drivers between the Union emerging markets and emerged states in the period frame of 1990–2021.
2. Review of the Literature
3. Methodology and Data
3.1. Theoretical Framework
3.2. Testing through Panel Unit Roots
3.3. Panel Estimations Technique
3.4. Durbin–Wu–Hausman Testing
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Observations | Mean | Std. Dev. | Min. | Max. |
---|---|---|---|---|---|
GT | 810 | 4.003 | 0.453 | 3.000 | 5.386 |
GDP | 810 | 4.371 | 0.398 | 3.130 | 5.248 |
ENV | 810 | 1.867 | 0.699 | 1.482 | 1.979 |
HC | 810 | 1.888 | 0.193 | 1.837 | 1.921 |
MRK | 810 | 4.408 | 0.229 | 3.744 | 5.044 |
INN | 810 | 3.646 | 0.331 | 2.223 | 4.354 |
Appendix B
Variables | GT | GDP | ENV | HC | MRK | INN |
---|---|---|---|---|---|---|
GT | 1.000 | |||||
GDP | 0.876 | 1.000 | ||||
ENV | 0.424 | 0.667 | 1.000 | |||
HC | 0.482 | 0.284 | 0.656 | 1.000 | ||
MRK | 0.644 | 0.751 | 0.138 | 0.615 | 1.000 | |
INN | 0.649 | 0.182 | 0.223 | 0.847 | 0.645 | 1.000 |
Appendix C
Long-Run Coefficient | Pooled Mean Group | Mean Group | Dynamic Fixed Estimator | |||
---|---|---|---|---|---|---|
Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob. | |
ECT | −0.303 *** | 0.000 | −0.844 *** | 0.000 | −0.816 *** | 0.000 |
GDP | 0.249 | 0.130 | 0.019 | 0.962 | 0.045 | 0.748 |
ENV | 1.012 | 0.242 | 2.356 | 0.322 | 0.026 | 0.679 |
HC | 1.835 | 0.719 | 2.311 | 0.414 | 0.631 ** | 0.054 |
MRK | 0.652 * | 0.098 | 0.101 | 0.636 | 0.488 ** | 0.022 |
INN | 0.043 | 0.103 | 0.051 | 0.263 | 0.010 | 0.371 |
C | 0.948 *** | 0.000 | 0.264 * | 0.066 | 0.316 *** | 0.363 |
Appendix D
Long-Run Coefficient | PMG | MG | DFE | |||
---|---|---|---|---|---|---|
Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob. | |
ECT | −0.305 *** | 0.001 | −0.844 *** | 0.000 | −0.801 *** | 0.000 |
GDP | 0.447 | 0.108 | 0.627 | 0.391 | 0.545 | 0.194 |
ENV | 0.330 | 0.120 | 0.470 | 0.115 | 0.267* | 0.076 |
HC | 0.900 | 0.535 | 0.300 | 0.183 | 0.219 | 0.186 |
MRK | 0.019 | 0.156 | 0.543 | 0.197 | 0.715 | 0.113 |
INN | 0.045 | 0.264 | 0.025 | 0.454 | 0.020 | 0.352 |
C | 0.895 *** | 0.001 | 0.176 ** | 0.038 | 0.894 *** | 0.005 |
Appendix E
Long-Run Coefficient | PMG | MG | DFE | |||
---|---|---|---|---|---|---|
Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob. | |
ECT | −0.583 *** | 0.000 | −0.852 *** | 0.000 | −0.956 *** | 0.000 |
GDP | 0.108 | 0.193 | 0.336 | 0.296 | 0.056 | 0.665 |
ENV | 0.541 | 0.236 | 0.495 | 0.279 | 0.067 | 0.438 |
HC | 0.219 | 0.225 | 0.467 | 0.159 | 0.914 *** | 0.000 |
MRK | 0.015 | 0.732 | 0.208 | 0.442 | 0.461 * | 0.052 |
INN | 0.016 | 0.952 | 0.334 | 0.995 | 0.857 | 0.845 |
C | 0.169 *** | 0.000 | 0.432 ** | 0.059 | 0.385 * | 0.082 |
Appendix F
European Union (EU27) Region | ||||
---|---|---|---|---|
Developed Countries | Underdeveloped Countries | |||
Member Countries (14) | Year | Member Countries (13) | Year | |
Austria | 1995 | Bulgaria | 2007 | |
Belgium | 1958 | Croatia | 2013 | |
Denmark | 1973 | Cyprus | 2004 | |
Finland | 1995 | Czech | 2004 | |
France | 1958 | Estonia | 2004 | |
Germany | 1958 | Hungary | 2004 | |
Greece | 1981 | Latvia | 2004 | |
Ireland | 1973 | Lithuania | 2004 | |
Italy | 1958 | Malta | 2004 | |
Luxembourg | 1958 | Poland | 2004 | |
Netherlands | 1958 | Romania | 2007 | |
Portugal | 1986 | Slovakia | 2004 | |
Spain | 1986 | Slovenia | 2004 | |
Sweden | 1995 |
Appendix G
References
- Dumas, P.; Garabetian, T.; Bogi, A. Innovation and Competitiveness of the Geothermal Heating and Cooling Sector. In Proceedings of the European Geothermal Congress, Den Haag, The Netherlands, 11–14 June 2019. [Google Scholar]
- Garabetian, T.; Dumas, P. Report on Competitiveness of the Geothermal Industry: European Technology & Innovation Platform on Deep Geothermal. 2020. Available online: https://www.etip-dg.eu/publication/report-on-competitiveness-of-the-geothermal-industry/ (accessed on 12 October 2022).
- Dalla Longa, F.; Nogueira, L.P.; Limberger, J.; Wees, J.V.; Zwaan, B. Scenarios for geothermal energy deployment in Europe. Energy 2020, 206, 118060. [Google Scholar] [CrossRef]
- Kurek, A.; Heijman, W.; Ophem, J.; Gędek, S.; Strojny, J. Dataset for the model of municipality competitiveness in relation to the geothermal resources exploitation in Poland. Data Brief 2020, 31, 105687. [Google Scholar] [CrossRef]
- Kurek, A.; Heijman, W.; Ophem, J.; Gędek, S.; Strojny, J. The impact of geothermal resources on the competitiveness of municipalities: Evidence from Poland. Renew. Energy 2020, 151, 1230–1239. [Google Scholar] [CrossRef]
- Mills, E.; Dong, J.; Yiling, L.; Baafi, M.A.; Li, B.; Zeng, K. Towards sustainable competitiveness: How does financial development affect dynamic energy efficiency in Belt & Road economies? Sustain. Prod. Consum. 2021, 27, 587–601. [Google Scholar] [CrossRef]
- Alsaleh, M.; Zubair, A.O.; Abdul-Rahim, A.S. The impact of global competitiveness on the growth of bioenergy industry in EU-28 region. Sustain. Dev. 2020, 28, 1304–1316. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A.S. Do global competitiveness factors effects the industry sustainability practices? Evidence from European hydropower industry. J. Clean. Prod. 2021, 310, 127492. [Google Scholar] [CrossRef]
- Grace, C.W.; Emily, L.; Oluwafemi, S.D.; Richard, C.; Erica, B.; Brian, C.; Douglas, A.; Marcela, O.; Arne, O. Low-impact land use pathways to deep decarbonization of electricity. Environ. Res. Lett. 2020, 15, 074044. [Google Scholar] [CrossRef]
- Khasani, D.; Ryuichi, I. Numerical study of the effects of CO2 gas in geothermal water on the fluid-flow characteristics in production wells. Eng. Appl. Comput. Fluid Mech. 2021, 15, 111–129. [Google Scholar] [CrossRef]
- Pasimeni, F.; Fiorini, A.; Georgakaki, A. Assessing private R&D spending in Europe for climate change mitigation technologies via patent data. World Pat. Inf. 2019, 59, 101927. [Google Scholar]
- Sigurjonsson, H.; Cook, D.; Davíðsdóttir, B.; Bogason, S.G. A life-cycle analysis of deep enhanced geothermal systems—The case studies of Reykjanes, Iceland and Vendenheim, France. Renew. Energy 2021, 177, 1076–1086. [Google Scholar] [CrossRef]
- Tomaszewska, B.; Bundschuh, J.; Pająk, L.; Dendys, M.; Quezada, V.D.; Bodzek, M.; Armienta, M.A.; Muñoz, M.O.; Kasztelewicz, A. Use of low-enthalpy and waste geothermal energy sources to solve arsenic problems in freshwater production in selected regions of Latin America using a process membrane distillation—Research into model solutions. Sci. Total Environ. 2020, 714, 136853. [Google Scholar] [CrossRef] [PubMed]
- Im, D.-H.; Chung, J.-B.; Kim, E.-S.; Moon, J.-W. Public perception of geothermal power plants in Korea following the Pohang earthquake: A social representation theory study. Public Underst. Sci. 2021, 30, 724–739. [Google Scholar] [CrossRef] [PubMed]
- Greiner, C.; Greven, D.; Klagge, B. Roads to Change: Livelihoods, Land Disputes, and Anticipation of Future Developments in Rural Kenya. Eur. J. Dev. Res. 2021, 33, 1044–1068. [Google Scholar] [CrossRef]
- Naqvi, A.A.; Rehm, M. A multi-agent model of a low income economy: Simulating the distributional effects of natural disasters. J. Econ. Interact. Coord. 2014, 9, 275–309. [Google Scholar] [CrossRef]
- Qi, W.; Xiong, H.; Peng, X. How to Promote International Competitiveness of China’s Renewable Energy Products?—Based on SNA Theory. Pol. J. Environ. Stud. 2021, 30, 4163–4175. [Google Scholar] [CrossRef]
- Britta, K.; Clemens, G.; David, G.; Chigozie, N.E. Cross-Scale Linkages of Centralized Electricity Generation: Geothermal Development and Investor–Community Relations in Kenya. Politics Gov. 2020, 8, 211–222. [Google Scholar] [CrossRef]
- Garcia-Gil, A.; Goetzl, G.; Kłonowski, M.R.; Borovic, S.; Boon, D.P.; Abesser, C.; Janza, M.; Herms, I.; Petitclerc, E.; Erlström, M.; et al. Governance of shallow geothermal energy resources. Energy Policy 2020, 138, 111283. [Google Scholar] [CrossRef]
- Garcia-Gil, A.; Mejías Moreno, M.; Garrido Schneider, E.; Marazuela, M.Á.; Abesser, C.; Mateo Lázaro, J.; Sánchez Navarro, J.Á. Nested Shallow Geothermal Systems. Sustainability 2020, 12, 5152. [Google Scholar] [CrossRef]
- Koon, K.R.; Shah, K.; Ashtine, M.; Lewis, S. A Resource and Policy Driven Assessment of the Geothermal Energy Potential Across the Islands of St. Vincent and the Grenadines. Front. Energy Res. 2021, 9, 546367. [Google Scholar] [CrossRef]
- Carla, D.L. What are the regionally specific institutions that matter for renewable energy deployment and how can they be identified? Some insights from Italian regions. Local Environ. 2021, 26, 632–649. [Google Scholar] [CrossRef]
- Mahbaz, S.B.; Dehghani-Sanij, A.R.; Dusseault, M.B.; Nathwani, J.S. Enhanced and integrated geothermal systems for sustainable development of Canada’s northern communities. Sustain. Energy Technol. Assess. 2020, 37, 100565. [Google Scholar] [CrossRef]
- Cook, D.; Davíðsdóttir, B.; Malinauskaite, L. A cascade model and initial exploration of co-production processes underpinning the ecosystem services of geothermal areas. Renew. Energy 2020, 161, 917–927. [Google Scholar] [CrossRef]
- Neves, R.; Cho, H.; Zhang, J. State of the nation: Customizing energy and finances for geothermal technology in the United States residential sector. Renew. Sustain. Energy Rev. 2020, 137, 110463. [Google Scholar] [CrossRef]
- Mahbaz, S.B.; Yaghoubi, A.; Dehghani-Sanij, A.; Sarvaramini, E.; Leonenko, Y.; Dusseault, M.B. Well-Doublets: A First-Order Assessment of Geothermal SedHeat Systems. Appl. Sci. 2021, 11, 697. [Google Scholar] [CrossRef]
- Aviles, D.; Sabri, F.; Hooman, K. Techno-economic analysis of a hybrid solar-geothermal power plant integrated with a desalination system. Int. J. Energy Res. 2021, 45, 17955–17970. [Google Scholar] [CrossRef]
- Tingting, K.; Shaopeng, H.; Wei, X.; Xuxiang, L. Study on heat extraction performance of multiple-doublet system in Hot Sedimentary Aquifers: Case study from the Xianyang geothermal field, Northwest China. Geothermics 2021, 94, 102131. [Google Scholar] [CrossRef]
- Anser, M.K.; Shabbir, M.S.; Tabash, M.I.; Shah, S.H.A.; Ahmad, M.; Peng, M.Y.-P.; Lopez, L.B. Do renewable energy sources improve clean environmental-economic growth? Empirical investigation from South Asian economies. Energy Explor. Exploit. 2021, 39, 1491–1514. [Google Scholar] [CrossRef]
- Arslan, Z.; Kausar, S.; Kannaiah, D.; Shabbir, M.S.; Khan, G.Y.; Zamir, A. The mediating role of green creativity and the moderating role of green mindfulness in the relationship among clean environment, clean production, and sustainable growth. Environ. Sci. Pollut. Res. 2021, 29, 13238–13252. [Google Scholar] [CrossRef]
- Cao, X.; Kannaiah, D.; Ye, L.; Khan, J.; Shabbir, M.S.; Bilal, K.; Tabash, M.I. Does sustainable environmental agenda matter in the era of globalization? The relationship among financial development, energy consumption, and sustainable environmental-economic growth. Environ. Sci. Pollut. Res. 2022, 29, 30808–30818. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Su, F.; Jain, V.; Salman, A.; Tabash, M.I.; Haddad, A.M.; Zabalawi, E.; Abdalla, A.A.; Shabbir, M.S. Does Renewable Energy Matter to Achieve Sustainable Development Goals? The Impact of Renewable Energy Strategies on Sustainable Economic Growth. Front. Energy Res. 2022, 10, 829252. [Google Scholar] [CrossRef]
- Dai, Z.; Sadiq, M.; Kannaiah, D.; Khan, N.; Shabbir, M.S.; Bilal, K.; Tabash, M.I. The dynamic impacts of environmental-health and MDR-TB diseases and their influence on environmental sustainability at Chinese hospitals. Environ. Sci. Pollut. Res. 2022, 29, 40531–40541. [Google Scholar] [CrossRef]
- Ge, M.; Kannaiah, D.; Li, J.; Khan, N.; Shabbir, M.S.; Bilal, K.; Tabash, M.I. Does foreign private investment affect the clean industrial environment? Nexus among foreign private investment, CO2 emissions, energy consumption, trade openness, and sustainable economic growth. Environ. Sci. Pollut. Res. 2022, 29, 26182–26189. [Google Scholar] [CrossRef]
- Jun, W.; Mughal, N.; Zhao, J.; Shabbir, M.S.; Niedbała, G.; Jain, V.; Anwar, A. Does globalization matter for environmental degradation? Nexus among energy consumption, economic growth, and carbon dioxide emission. Energy Policy 2021, 153, 112230. [Google Scholar]
- Khan, M.B.; Saleem, H.; Shabbir, M.S.; Huobao, X. The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries. Energy Environ. 2021, 33, 107–134. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, D.; Cao, X.; Jain, V.; Chawla, C.; Shabbir, M.S.; Ramos-Meza, C.S. The effects of MDR-TB Treatment Regimens through Socioeconomic and Spatial characteristics on Environmental-Health Outcomes: Evidence from Chinese Hospitals. Energy Environ. 2022, 0958305X221079425. [Google Scholar] [CrossRef]
- Liu, Y.; Sharma, P.; Jain, V.; Shukla, A.; Shabbir, M.S.; Tabash, M.I.; Chawla, C. The relationship among oil prices volatility, inflation rate, and sustainable economic growth: Evidence from top oil importer and exporter countries. Resour. Policy 2022, 77, 102674. [Google Scholar]
- Yaqoob, N.; Ali, S.A.; Kannaiah, D.; Khan, N.; Shabbir, M.S.; Bilal, K.; Tabash, M.I. The effects of Agriculture Productivity, Land Intensification, on Sustainable Economic Growth: A panel analysis from Bangladesh, India, and Pakistan Economies. Environ. Sci. Pollut. Res. 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Benighaus, C.; Bleicher, A. Neither risky technology nor renewable electricity: Contested frames in the development of geothermal energy in Germany. Energy Res. Soc. Sci. 2019, 47, 46–55. [Google Scholar] [CrossRef]
- Allansdottir, A.; Pellizzone, A.; Sciullo, A. Geothermal Energy and Public Engagement. In Geothermal Energy and Society, Lecture Notes in Energy; Manzella, A., Allansdottir, A., Pellizzone, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 67. [Google Scholar] [CrossRef]
- Ejderyan, O.; Ruef, F.; Stauffacher, M. Entanglement of Top-Down and Bottom-Up: Sociotechnical Innovation Pathways of Geothermal Energy in Switzerland. J. Environ. Dev. 2020, 29, 99–122. [Google Scholar] [CrossRef]
- Yuan, W.; Chen, Z.; Grasby, S.E.; Little, E. Closed-loop geothermal energy recovery from deep high enthalpy systems. Renew. Energy 2021, 177, 976–991. [Google Scholar] [CrossRef]
- Neves, R.; Cho, H.; Zhang, J. Pairing geothermal technology and solar photovoltaics for net-zero energy homes. Renew. Sustain. Energy Rev. 2021, 140, 110749. [Google Scholar] [CrossRef]
- Trabzonlu, B.; Akcay, E.C. Exploring Critical Success Factors for Geothermal Investments. In Collaboration and Integration in Construction, Engineering, Management and Technology. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development); Ahmed, S.M., Hampton, P., Azhar, S., Saul, A.D., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Gong, H.; Wang, B.; Liang, H.; Luo, Z.; Cao, Y. Strategic analysis of China’s geothermal energy industry. Front. Eng. Manag. 2020, 8, 390–401. [Google Scholar] [CrossRef]
- Parisi, M.L.; Douziech, M.; Tosti, L.; Pérez-López, P.; Mendecka, B.; Ulgiati, S.; Fiaschi, D.; Manfrida, G.; Blanc, I. Definition of LCA Guidelines in the Geothermal Sector to Enhance Result Comparability. Energies 2020, 13, 3534. [Google Scholar] [CrossRef]
- Tosti, L.; Parisi, M.L.; Basosi, R. Chapter 4—Life cycle assessment of geothermal power plants. In Thermodynamic Analysis and Optimization of Geothermal Power Plants; Colpan, C.O., Ezan, M.A., Kizilkan, O., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 53–63. [Google Scholar] [CrossRef]
- Santamarta, J.C.; García-Gil, A.; Expósito, M.; Casañas, E.; Cruz-Pérez, N.; Rodríguez-Martín, J.; Mejías-Moreno, M.; Gregor Götzl, G.; Gemeni, V. The clean energy transition of heating and cooling in touristic infrastructures using shallow geothermal energy in the Canary Islands. Renew. Energy 2021, 171, 505–515. [Google Scholar] [CrossRef]
- Li, Q.; Cherian, J.; Shabbir, M.S.; Sial, M.S.; Li, J.; Mester, I.; Badulescu, A. Exploring the Relationship between Renewable Energy Sources and Economic Growth. The Case of SAARC Countries. Energies 2021, 14, 520. [Google Scholar] [CrossRef]
- Yikun, Z.; Gul, A.; Saleem, S.; Shabbir, M.S.; Bilal, K.; Abbasi, H.M. The relationship between renewable energy sources and sustainable economic growth: Evidence from SAARC countries. Environ. Sci. Pollut. Res. 2021, 28, 33390–33399. [Google Scholar] [CrossRef]
- European Commission. Commission Delegated Regulation (EU) 2021/268. Official Journal of the European Union. 2020. Available online: http://data.europa.eu/eli/reg_del/2021/268/oj (accessed on 12 January 2023).
- Anser, M.K.; Usman, M.; Sharif, M.; Bashir, S.; Shabbir, M.S.; Yahya Khan, G.; Lopez, L.B. The dynamic impact of renewable energy sources on environmental economic growth: Evidence from selected Asian economies. Environ. Sci. Pollut. Res. 2021, 29, 3323–3335. [Google Scholar] [CrossRef]
- Soltani, M.; Moradi, K.; Souri, M.; Rafiei, B.; Jabarifar, M.; Gharali, K.; Nathwani, J.S. Environmental, economic, and social impacts of geothermal energy systems. Renew. Sustain. Energy Rev. 2021, 140, 110750. [Google Scholar] [CrossRef]
- Piłatowska, M.; Geise, A. Impact of Clean Energy on CO2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries. Energies 2021, 14, 812. [Google Scholar] [CrossRef]
- Koçak, E.; Şarkgüneşi, A. The renewable energy and economic growth nexus in black sea and Balkan Countries. Energy Policy 2016, 100, 51–57. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Appl. Energy 2015, 162, 733–741. [Google Scholar] [CrossRef]
- Shahbaz, M.; Tang, C.F.; Shabbir, M.S. Electricity consumption and economic growth nexus in Portugal using cointegration and causality approaches. Energy Policy 2011, 39, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Palei, T. Assessing the Impact of Infrastructure on Economic Growth and Global Competitiveness. Procedia Econ. Financ. 2015, 23, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Kordalska, A.; Olczyk, M. Global competitiveness and economic growth: A one-way or two-way relationship? Equilib. Q. J. Econ. Econ. Policy 2016, 11, 121–142. [Google Scholar] [CrossRef] [Green Version]
- Alina, M.D.; Liviu, B.; Maria, D.V.; Maria, A.M. The Relationship between the Knowledge Economy and Global Competitiveness in the European Union. Sustainability 2018, 10, 1706. [Google Scholar]
- Hassan, M.S.; Bukhari, S.; Arshed, N. Competitiveness, governance and globalization: What matters for poverty alleviation? Environ. Dev. Sustain. 2020, 22, 3491–3518. [Google Scholar] [CrossRef]
- Reyes, G.E.; Useche, A.J. Competitiveness, Economic Growth and Human Development in Latin American and Caribbean Countries 2006–2015: A Performance and Correlation Analysis. Compet. Rev. 2019, 29, 139–159. [Google Scholar] [CrossRef]
- Campbell, J.Y.; Perron, P. Pitfall and Opportunities: What Macroeconomists should Know about Unit Roots. In Technical Working Paper 100, NBER Working Paper Series; National Bureau Economic Research: Cambridge, MA, USA, 1991. [Google Scholar]
- Ramirez, M.D. A Panel Unit Root and Panel Cointegration Test of the Complementarity Hypothesis in the Mexican Case, 1960-Center Discussion Papers 28402; Yale University, Economic Growth Center: New Haven, CT, USA, 2006. [Google Scholar]
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit Root Test in Panel Data: Asymptotic and Finite-sample Properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y. The Study of the Relationship between Carbon Dioxide (CO2) Emission and Economic Growth. J. Int. Glob. Econ. Stud. 2013, 6, 45–61. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.P. Pooled mean group estimation of dynamic heterogeneous panels. Am. Stat. Assoc. 1999, 446, 621–634. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Smith, R. Estimating long-run relationships from dynamic heterogeneous panels. J. Econom. 1995, 68, 79–113. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.; Shin, Y. Testing for Unit Roots in Heterogeneous Panels. J. Econom. 1997, 115, 53–74. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning, 8th ed.; Springer Science and Business Media: New York, NY, USA, 2017; ISBN 978-1-4614-7138-7. [Google Scholar]
- Hausman, J.A. Specification Tests in Econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef] [Green Version]
- Shaari, M.S.; Abdul Karim, Z.; Zainol-Abidin, N. The Effects of Energy Consumption and National Output on CO2 Emissions: New Evidence from OIC Countries Using a Panel ARDL Analysis. Sustainability 2020, 12, 3312. [Google Scholar] [CrossRef] [Green Version]
- Snee, R. Origins of the Variance Inflation Factor as Recalled by Cuthbert Daniel (Technical report). Snee Assoc. 1981, 14, 170–188. [Google Scholar]
- Rawlings, O.; Pantula, G.; Dickey, A. Applied Regression Analysis: A Research Tool, 2nd ed.; Springer: New York, NY, USA, 1998; pp. 372–373. ISBN 0387227539. [Google Scholar]
- Dong, L.; Sun, D.; Shu, W.; Li, X. Exploration: Safe and clean mining on Earth and asteroids. J. Clean. Prod. 2020, 257, 120899. [Google Scholar] [CrossRef]
- Borthwick, A.G. Marine renewable energy seascape. Engineering 2016, 2, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.V.; Srivastava, V.K.; Mohanty, S.S.; Varjani, S. Municipal solid waste as a sustainable resource for energy production: State-of-the-art review. J. Environ. Chem. Eng. 2021, 9, 105717. [Google Scholar] [CrossRef]
Variables Considered | Abbreviations | Sources of Data | Signs and Statistical | Units of Measurements |
---|---|---|---|---|
Geothermal Power | GT | Eurostat | Dependent variable | Terajoule (TJ) |
Enabling Environment | ENV | WBD | Positive/significant | Confidence interval for the governance (%) |
Human Capital | HC | WBD | Positive/significant | Workforce input (number) |
Market Size | MRK | WBD | Positive/significant | GDP per PPP (current international USD) |
Innovation Ecosystem | INN | WBD | Positive/significant | Trademark applications, direct nonresident |
Economic Growth | EG | Eurostat | Positive/significant | GDP per capita growth (annual %) |
Variables | Level | First Level | ||
---|---|---|---|---|
LLC | IPS | LLC | IPS | |
GT | 53.330 *** (0.000) | 57.267 *** (0.000) | 66.766 *** (0.000) | 87.880 *** (0.000) |
GDP | 9.209 *** (0.000) | 21.204 *** (0.000) | 29.711 *** (0.000) | 36.329 *** (0.000) |
ENV | 2.189 ** (0.014) | 5.018 *** (0.000) | 11.917 *** (0.000) | 14.911 *** (0.000) |
HC | 7.818 *** (0.000) | 11.923 *** (0.000) | 16.282 *** (0.000) | 26.896 *** (0.000) |
MRK | 3.904 *** (0.000) | 2.371 *** (0.000) | 10.737 *** (0.000) | 12.966 *** (0.000) |
INN | 3.775 *** (0.000) | 4.456 *** (0.006) | 6.894 *** (0.000) | 10.492 *** (0.000) |
Variables | Coefficients | The Prob. | The VIF |
---|---|---|---|
GDP | 0.143 | 0.353 | 2.03 |
ENV | 1.325 *** | 0.000 | 1.52 |
HC | 1.786 *** | 0.000 | 1.50 |
MRK | 0.063 * | 0.075 | 1.07 |
INN | 1.191 *** | 0.000 | 1.04 |
C | 0.483 *** | 0.000 |
Model 1. 1990–2021 Estimation in the Long Run for the EU Regions | ||||||
---|---|---|---|---|---|---|
Long-Run Coefficients | The Pooled Mean Group (PMG) | The Mean Group (MG) | The Dynamic Fixed Effect (DFE) | |||
Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob. | |
GDP | 0.058 *** | 0.003 | 0.114 | 0.740 | 0.880 | 0.124 |
ENV | 0.361 *** | 0.000 | 0.161 | 0.298 | 0.330 * | 0.078 |
HC | 4.440 *** | 0.000 | 1.054 | 0.734 | 0.152 * | 0.091 |
MRK | 0.102 *** | 0.007 | 0.192 | 0.228 | 0.325 * | 0.095 |
INN | 0.051 *** | 0.000 | 0.051 | 0.555 | 0.905 | 0.325 |
Hausman Test | 0.50 | 0.779 | 0.15 | 0.951 |
Model 2. Long-Run Estimates for EU14 Emerged Members between 1990 and 2021 | ||||||
---|---|---|---|---|---|---|
Long-Run Coefficient Estimates | The Pooled Mean Group | The Mean Group | The Dynamic Fixed Effects | |||
Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob | |
GDP | 0.065 ** | 0.017 | 0.230 | 0.424 | 0.451 | 0.137 |
ENV | 0.320 *** | 0.002 | 0.444 | 0.232 | 0.068 | 0.593 |
HC | 6.521 *** | 0.000 | 0.308 | 0.963 | 4.144 * | 0.078 |
MRK | 0.248 *** | 0.005 | 0.470 | 0.309 | 0.375 * | 0.087 |
INN | 0.056 *** | 0.000 | 0.112 | 0.290 | 0.067 *** | 0.000 |
Hausman Test | 2.59 | 0.762 | 0.16 | 0.955 |
Model 3. Long-Run Estimates for Emerging EU Nations between 1990 and 2021 | ||||||
---|---|---|---|---|---|---|
Long-Run Coeffients | The Pooled Mean Group | Mean Group | DFE | |||
Coefficient | Prob. | Coefficient | Prob. | Coefficients | Prob. | |
GDP | 0.022 * | 0.075 | 0.272 | 0.362 | 0.016 ** | 0.025 |
ENV | 0.013 * | 0.071 | 1.382 | 0.310 | 0.077 | 0.897 |
HC | 0.043 | 0.299 | 0.740 | 0.430 | 0.309 | 0.811 |
MRK | 0.033 ** | 0.025 | 0.147* | 0.094 | 0.018 ** | 0.047 |
INN | 0.051 | 0.615 | 0.131 | 0.490 | 0.022 | 0.469 |
Hausman Test | 0.79 | 0.941 | 2.10 | 0.716 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Alsaleh, M. Determinants of Geothermal Power Sustainability Development: Do Global Competitiveness Markets Matter? Sustainability 2023, 15, 3747. https://doi.org/10.3390/su15043747
Wang X, Alsaleh M. Determinants of Geothermal Power Sustainability Development: Do Global Competitiveness Markets Matter? Sustainability. 2023; 15(4):3747. https://doi.org/10.3390/su15043747
Chicago/Turabian StyleWang, Xiaohui, and Mohd Alsaleh. 2023. "Determinants of Geothermal Power Sustainability Development: Do Global Competitiveness Markets Matter?" Sustainability 15, no. 4: 3747. https://doi.org/10.3390/su15043747
APA StyleWang, X., & Alsaleh, M. (2023). Determinants of Geothermal Power Sustainability Development: Do Global Competitiveness Markets Matter? Sustainability, 15(4), 3747. https://doi.org/10.3390/su15043747