A Cost-Effective Fall-Detection Framework for the Elderly Using Sensor-Based Technologies
Abstract
:1. Introduction
1.1. Motivation
1.2. Paper Organization
2. Related Work
3. Proposed Methodology
Data Extraction Framework
4. Implementation Details
5. Analysis and Discussion
5.1. PIR Analog Signals
5.2. Machine Learning Classifiers
5.3. Support Vector Machine (SVM)
5.4. Decision Tree
5.5. Random Forest
5.6. Naïve Bayes
5.7. Adaboost
5.8. Classifier Performance Assessment
6. Experimental Results and Discussion
7. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daher, M.; Diab, A.; El Najjar, M.E.B.; Khalil, M.A.; Charpillet, F. Elder tracking and fall detection system using smart tiles. IEEE Sens. J. 2016, 17, 469–479. [Google Scholar] [CrossRef]
- Falls. Available online: http://www.who.int/mediacentre/factsheets/fs344/en/ (accessed on 24 January 2019).
- Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 2013, 12, 66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Conly, C.; Athitsos, V. A survey on vision-based fall detection. In Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 1–3 July 2015; pp. 1–7. [Google Scholar]
- Mubashir, M.; Shao, L.; Seed, L. A survey on fall detection: Principles and approaches. Neurocomputing 2013, 100, 144–152. [Google Scholar] [CrossRef]
- Alwan, M.; Rajendran, P.J.; Kell, S.; Mack, D.; Dalal, S.; Wolfe, M.; Felder, R. A smart and passive floor-vibration based fall detector for elderly. In Proceedings of the 2006 2nd International Conference on Information & Communication Technologies, Damascus, Syria, 24–28 April 2006; IEEE: New York, NY, USA, 2006; Volume 1, pp. 1003–1007. [Google Scholar]
- Chaccour, K.; Darazi, R.; El Hassans, A.H.; Andres, E. Smart carpet using differential piezoresistive pressure sensors for elderly fall detection. In Proceedings of the 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Abu Dhabi, United Arab Emirates, 19–21 October 2015; IEEE: New York, NY, USA, 2015; pp. 225–229. [Google Scholar]
- Tzeng, H.W.; Chen, M.Y.; Chen, J.Y. Design of fall detection system with floor pressure and infrared image. In Proceedings of the 2010 International Conference on System Science and Engineering, Taipei, Taiwan, 1–3 July 2010; IEEE: New York, NY, USA, 2010; pp. 131–135. [Google Scholar]
- Zhu, L.; Wang, R.; Wang, Z.; Yang, H. TagCare: Using RFIDs to monitor the status of the elderly living alone. IEEE Access 2017, 5, 11364–11373. [Google Scholar] [CrossRef]
- Palmerini, L.; Bagalà, F.; Zanetti, A.; Klenk, J.; Becker, C.; Cappello, A. A wavelet-based approach to fall detection. Sensors 2015, 15, 11575–11586. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-García, J.A.; Soria Morillo, L.M.; Concepción, M.Á.Á.D.L.; Fernández-Montes, A.; Ortega Ramírez, J.A. Evaluating wearable activity recognition and fall detection systems. In Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering, Dubrovnik, Croatia, 7–11 September 2014; Springer: Cham, Switzerland, 2015; pp. 653–656. [Google Scholar]
- Aziz, O.; Musngi, M.; Park, E.J.; Mori, G.; Robinovitch, S.N. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med. Biol. Eng. Comput. 2017, 55, 45–55. [Google Scholar] [CrossRef]
- Guan, Q.; Li, C.; Guo, X.; Shen, B. Infrared signal based elderly fall detection for in-home monitoring. In Proceedings of the 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 26–27 August 2017; IEEE: New York, NY, USA, 2017; Volume 1, pp. 373–376. [Google Scholar]
- Shinmoto Torres, R.L.; Wickramasinghe, A.; Pham, V.N.; Ranasinghe, D.C. What if your floor could tell someone you fell? A device free fall detection method. In Proceedings of the Conference on Artificial Intelligence in Medicine in Europe, Pavia, Italy, 17–20 June 2015; Springer: Cham, Switzerland, 2015; pp. 86–95. [Google Scholar]
- Wickramasinghe, A.; Torres, R.L.S.; Ranasinghe, D.C. Recognition of falls using dense sensing in an ambient assisted living environment. Pervasive Mob. Comput. 2017, 34, 14–24. [Google Scholar] [CrossRef]
- Lee, T.; Mihailidis, A. An intelligent emergency response system: Preliminary development and testing of automated fall detection. J. Telemed. Telecare 2005, 11, 194–198. [Google Scholar] [CrossRef]
- Rougier, C.; Meunier, J.; St-Arnaud, A.; Rousseau, J. Robust video surveillance for fall detection based on human shape deformation. IEEE Trans. Circuits Syst. Video Technol. 2011, 21, 611–622. [Google Scholar] [CrossRef]
- Wang, S.; Chen, L.; Zhou, Z.; Sun, X.; Dong, J. Human fall detection in surveillance video based on PCANet. Multimed. Tools Appl. 2016, 75, 11603–11613. [Google Scholar] [CrossRef]
- Lee, D.W.; Jun, K.; Naheem, K.; Kim, M.S. Deep Neural Network–Based Double-Check Method for Fall Detection Using IMU-L Sensor and RGB Camera Data. IEEE Access 2021, 9, 48064–48079. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Rodríguez, V.; Martin, S. Comprehensive review of vision-based fall detection systems. Sensors 2021, 21, 947. [Google Scholar] [CrossRef]
- Zhou, Z.; Stone, E.E.; Skubic, M.; Keller, J.; He, Z. Nighttime in-home action monitoring for eldercare. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–1 September 2011; IEEE: New York, NY, USA, 2011; pp. 5299–5302. [Google Scholar]
- Alhimale, L.; Zedan, H.; Al-Bayatti, A. The implementation of an intelligent and video-based fall detection system using a neural network. Appl. Soft Comput. 2014, 18, 59–69. [Google Scholar] [CrossRef]
- Chen, J.; Romero, R.; Thompson, L.A. Motion Analysis of Balance Pre and Post Sensorimotor Exercises to Enhance Elderly Mobility: A Case Study. Appl. Sci. 2023, 13, 889. [Google Scholar] [CrossRef]
- Wang, X.; Ellul, J.; Azzopardi, G. Elderly fall detection systems: A literature survey. Front. Robot. AI 2020, 7, 71. [Google Scholar] [CrossRef]
- Khraief, C.; Benzarti, F.; Amiri, H. Elderly fall detection based on multi-stream deep convolutional networks. Multimed. Tools Appl. 2020, 79, 19537–19560. [Google Scholar] [CrossRef]
- Yacchirema, D.; de Puga, J.S.; Palau, C.; Esteve, M. Fall detection system for elderly people using IoT and ensemble machine learning algorithm. Pers. Ubiquitous Comput. 2019, 23, 801–817. [Google Scholar] [CrossRef]
- Hussain, F.; Umair, M.B.; Ehatisham-ul-Haq, M.; Pires, I.M.; Valente, T.; Garcia, N.M.; Pombo, N. An efficient machine learning-based elderly fall detection algorithm. arXiv 2019, arXiv:1911.11976. [Google Scholar]
- Bridenbaugh, S.A.; Kressig, R.W. Laboratory review: The role of gait analysis in seniors’ mobility and fall prevention. Gerontology 2011, 57, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Baldewijns, G.; Claes, V.; Debard, G.; Mertens, M.; Devriendt, E.; Milisen, K.; Tournoy, J.; Croonenborghs, T.; Vanrumste, B. Automated in-home gait transfer time analysis using video cameras. J. Ambient. Intell. Smart Environ. 2016, 8, 273–286. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Y.; Zhang, W. 3D depth image analysis for indoor fall detection of elderly people. Digit. Commun. Netw. 2016, 2, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Leone, A.; Rescio, G.; Caroppo, A.; Siciliano, P.; Manni, A. Human Postures Recognition by Accelerometer Sensor and ML Architecture Integrated in Embedded Platforms: Benchmarking and Performance Evaluation. Sensors 2023, 23, 1039. [Google Scholar] [CrossRef]
- Youssfi Alaoui, A.; Tabii, Y.; Oulad Haj Thami, R.; Daoudi, M.; Berretti, S.; Pala, P. Fall Detection of Elderly People Using the Manifold of Positive Semidefinite Matrices. J. Imaging 2021, 7, 109. [Google Scholar] [CrossRef]
- Tamura, T.; Yoshimura, T.; Sekine, M.; Uchida, M.; Tanaka, O. A wearable airbag to prevent fall injuries. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 910–914. [Google Scholar] [CrossRef]
- Shi, G.; Chan, C.S.; Luo, Y.; Zhang, G.; Li, W.J.; Leong, P.H.; Leung, K.S. Development of a human airbag system for fall protection using mems motion sensing technology. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; IEEE: New York, NY, USA, 2006; pp. 4405–4410. [Google Scholar]
- Shi, G.; Chan, C.S.; Li, W.J.; Leung, K.S.; Zou, Y.; Jin, Y. Mobile human airbag system for fall protection using MEMS sensors and embedded SVM classifier. IEEE Sens. J. 2009, 9, 495–503. [Google Scholar] [CrossRef]
- Saleh, M.; Jeannès, R.L.B. Elderly fall detection using wearable sensors: A low cost highly accurate algorithm. IEEE Sens. J. 2019, 19, 3156–3164. [Google Scholar] [CrossRef]
- Wang, Z.; Ramamoorthy, V.; Gal, U.; Guez, A. Possible life saver: A review on human fall detection technology. Robotics 2020, 9, 55. [Google Scholar] [CrossRef]
- Chuma, E.L.; Roger, L.L.B.; De Oliveira, G.G.; Iano, Y.; Pajuelo, D. Internet of things (IoT) privacy–protected, fall-detection system for the elderly using the radar sensors and deep learning. In Proceedings of the 2020 IEEE International Smart Cities Conference (ISC2), Piscataway, NJ, USA, 28 September–1 October 2020; IEEE: New York, NY, USA, 2020; pp. 1–4. [Google Scholar]
- Yu, X.; Jang, J.; Xiong, S. Machine learning-based pre-impact fall detection and injury prevention for the elderly with wearable inertial sensors. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, virtually, 25–29 July 2021; Springer: Cham, Switzerland, 2021; pp. 278–285. [Google Scholar]
- Sankaran, S.; Thiyagarajan, A.P.; Kannan, A.D.; Karnan, K.; Krishnan, S.R. Design and Development of Smart Airbag Suit for Elderly with Protection and Notification System. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatre, India, 8–10 July 2021; IEEE: New York, NY, USA, 2021; pp. 1273–1278. [Google Scholar]
- Chu, C.T.; Chang, C.H.; Chang, T.J.; Liao, J.X. Elman neural network identify elders fall signal base on second-order train method. In Proceedings of the 2017 6th International Symposium on Next Generation Electronics (ISNE), Keelung, Taiwan, 23–25 May 2017; IEEE: New York, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Sixsmith, A.; Johnson, N. A smart sensor to detect the falls of the elderly. IEEE Pervasive Comput. 2004, 3, 42–47. [Google Scholar] [CrossRef]
- Hayashida, A.; Moshnyaga, V.; Hashimoto, K. New approach for indoor fall detection by infrared thermal array sensor. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; IEEE: New York, NY, USA, 2017; pp. 1410–1413. [Google Scholar]
- Jeffin Gracewell, J.; Pavalarajan, S. Fall detection based on posture classification for smart home environment. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 3581–3588. [Google Scholar] [CrossRef]
- Badgujar, S.; Pillai, A.S. Fall Detection for Elderly People using Machine Learning. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; IEEE: New York, NY, USA, 2020; pp. 1–4. [Google Scholar]
- Kalinga, T.; Sirithunge, C.; Buddhika, A.G.; Jayasekara, P.; Perera, I. A Fall Detection and Emergency Notification System for Elderly. In Proceedings of the 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 20–23 April 2020; IEEE: New York, NY, USA, 2020; pp. 706–712. [Google Scholar]
- Nahian, M.; Raju, M.H.; Tasnim, Z.; Mahmud, M.; Ahad, M.A.R.; Kaiser, M.S. Contactless fall detection for the elderly. In Contactless Human Activity Analysis; Springer: Cham, Switzerland, 2021; pp. 203–235. [Google Scholar]
- Edgcomb, A.; Vahid, F. Automated fall detection on privacy-enhanced video. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; IEEE: New York, NY, USA, 2012; pp. 252–255. [Google Scholar]
- Ngo, Y.T.; Nguyen, H.V.; Pham, T.V. Study on fall detection based on intelligent video analysis. In Proceedings of the 2012 International Conference on Advanced Technologies for Communications, Ha Noi, Vietnam, 10–12 October 2012; IEEE: New York, NY, USA, 2013; pp. 114–117. [Google Scholar]
- Shieh, W.Y.; Huang, J.C. Speedup the multi-camera video-surveillance system for elder falling detection. In Proceedings of the 2009 International Conference on Embedded Software and Systems, Hangzhou, China, 25–27 May 2009; IEEE: New York, NY, USA, 2009; pp. 350–355. [Google Scholar]
- Anderson, D.; Luke, R.H.; Keller, J.M.; Skubic, M.; Rantz, M.; Aud, M. Linguistic summarization of video for fall detection using voxel person and fuzzy logic. Comput. Vis. Image Underst. 2009, 113, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Foroughi, H.; Aski, B.S.; Pourreza, H. Intelligent video surveillance for monitoring fall detection of elderly in home environments. In Proceedings of the 2008 11th International Conference on Computer and Information Technology, Khulna, Bangladesh, 24–27 December 2008; IEEE: New York, NY, USA, 2009; pp. 219–224. [Google Scholar]
- Ruan, W.; Yao, L.; Sheng, Q.Z.; Falkner, N.J.; Li, X. Tagtrack: Device-free localization and tracking using passive rfid tags. In Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, London, UK, 2–5 December 2014; pp. 80–89. [Google Scholar]
- Su, B.Y.; Ho, K.C.; Rantz, M.J.; Skubic, M. Doppler radar fall activity detection using the wavelet transform. IEEE Trans. Biomed. Eng. 2014, 62, 865–875. [Google Scholar] [CrossRef]
- Liu, L.; Popescu, M.; Rantz, M.; Skubic, M. Fall detection using doppler radar and classifier fusion. In Proceedings of the 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong, China, 5–7 January 2012; IEEE: New York, NY, USA, 2012; pp. 180–183. [Google Scholar]
- Liu, L.; Popescu, M.; Skubic, M.; Rantz, M.; Cuddihy, P. An automatic in-home fall detection system using Doppler radar signatures. J. Ambient. Intell. Smart Environ. 2016, 8, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Moon, T. Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2015, 13, 8–12. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Machine learning basics. In Deep Learning; MIT Press: Cambridge, MA, USA, 2016; pp. 98–164. [Google Scholar]
- Lin, W.Y.; Chen, C.H.; Lee, M.Y. Design and Implementation of a Wearable Accelerometer-Based Motion/Tilt Sensing Internet of Things Module and Its Application to Bed Fall Prevention. Biosensors 2021, 11, 428. [Google Scholar] [CrossRef]
- Ramirez, H.; Velastin, S.A.; Meza, I.; Fabregas, E.; Makris, D.; Farias, G. Fall detection and activity recognition using human skeleton features. IEEE Access 2021, 9, 33532–33542. [Google Scholar] [CrossRef]
- Hsu, F.S.; Chang, T.C.; Su, Z.J.; Huang, S.J.; Chen, C.C. Smart Fall Detection Framework Using Hybridized Video and Ultrasonic Sensors. Micromachines 2021, 12, 508. [Google Scholar] [CrossRef]
- Zheng, L.; Zhao, J.; Dong, F.; Huang, Z.; Zhong, D. Fall detection algorithm based on inertial sensor and hierarchical decision. Sensors 2023, 23, 107. [Google Scholar] [CrossRef]
- Sehairi, K.; Chouireb, F.; Meunier, J. Elderly fall detection system based on multiple shape features and motion analysis. In Proceedings of the 2018 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 2–4 April 2018; IEEE: New York, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Amsaprabhaa, M. Multimodal spatiotemporal skeletal kinematic gait feature fusion for vision-based fall detection. Expert Syst. Appl. 2023, 2, 118–681. [Google Scholar]
- Chen, Z.; Wang, Y.; Yang, W. Video Based Fall Detection Using Human Poses. In Proceedings of the Big Data: 9th CCF Conference, BigData 2021, Guangzhou, China, 8–10 January 2022; Springer: Singapore, 2022; pp. 283–296. [Google Scholar]
- Javed, A.R.; Sarwar, M.U.; Beg, M.O.; Asim, M.; Baker, T.; Tawfik, H. A collaborative healthcare framework for shared healthcare plan with ambient intelligence. Hum. Cent. Comput. Inf. Sci. 2020, 10, 40. [Google Scholar] [CrossRef]
- Javed, A.R.; Sarwar, M.U.; Khan, S.; Iwendi, C.; Mittal, M.; Kumar, N. Analyzing the effectiveness and contribution of each axis of tri-axial accelerometer sensor for accurate activity recognition. Sensors 2020, 20, 2216. [Google Scholar] [CrossRef] [Green Version]
- Javed, A.R.; Shahzad, F.; ur Rehman, S.; Zikria, Y.B.; Razzak, I.; Jalil, Z.; Xu, G. Future smart cities requirements, emerging technologies, applications, challenges, and future aspects. Cities 2022, 129, 103794. [Google Scholar] [CrossRef]
- Hussain, T.; Hussain, D.; Hussain, I.; AlSalman, H.; Hussain, S.; Ullah, S.S.; Al-Hadhrami, S. Internet of Things with Deep Learning-Based Face Recognition Approach for Authentication in Control Medical Systems. Comput. Math. Methods Med. 2022, 2022, 5137513. [Google Scholar] [CrossRef]
- Hussain, I.; Hussain, D.; Kohli, R.; Ismail, M.; Hussain, S.; Sajid Ullah, S.; Alroobaea, R.; Ali, W.; Umar, F. Evaluation of Deep Learning and Conventional Approaches for Image Recaptured Detection in Multimedia Forensics. Mob. Inf. Syst. 2022, 2022, 2847580. [Google Scholar] [CrossRef]
- Bourouis, S.; Sallay, H.; Bouguila, N. A Competitive Generalized Gamma Mixture Model for Medical Image Diagnosis. IEEE Access 2021, 9, 13727–13736. [Google Scholar] [CrossRef]
- Faruk, O.; Ahmed, E.; Ahmed, S.; Tabassum, A.; Tazin, T.; Bourouis, S.; Khan, M.M. A Novel and Robust Approach to Detect Tuberculosis Using Transfer Learning. J. Healthc. Eng. 2021, 2021, 1002799. [Google Scholar] [CrossRef]
- Bourouis, S.; Laalaoui, Y.; Bouguila, N. Bayesian frameworks for traffic scenes monitoring via view-based 3D cars models recognition. Multimed. Tools Appl. 2019, 78, 18813–18833. [Google Scholar] [CrossRef]
- Bourouis, S.; Pawar, Y.; Bouguila, N. Entropy-Based Variational Scheme with Component Splitting for the Efficient Learning of Gamma Mixtures. Sensors 2022, 22, 186. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, A.; Rani, S.; Alshazly, H.; Ahmed Idris, S.; Bourouis, S. Deep neural network based vehicle detection and classification of aerial images. Intell. Autom. Soft Comput. 2022, 34, 119–131. [Google Scholar] [CrossRef]
- Sidenbladh, H. Detecting human motion with support vector machines. In Proceedings of the 17th International Conference on Pattern Recognition ICPR, Cambridge, UK, 26 August 2004; IEEE: New York, NY, USA, 2004; Volume 2, pp. 188–191. [Google Scholar]
- Grahn, J.; Kjellstromg, H. Using SVM for efficient detection of human motion. In Proceedings of the 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, Beijing, China, 15–16 October 2005; IEEE: New York, NY, USA, 2006; pp. 231–238. [Google Scholar]
- Cao, D.; Masoud, O.T.; Boley, D.; Papanikolopoulos, N. Human motion recognition using support vector machines. Comput. Vis. Image Underst. 2009, 113, 1064–1075. [Google Scholar] [CrossRef]
- Charbuty, B.; Abdulazeez, A.; Abdulazeez, A. Classification based on decision tree algorithm for machine learning. J. Appl. Sci. Technol. Trends 2021, 2, 20–28. [Google Scholar] [CrossRef]
- Liu, J.; Ulishney, C.; Dumitrescu, C.E. Random forest machine learning model for predicting combustion feedback information of a natural gas spark ignition engine. J. Energy Resour. Technol. 2021, 143, 012301. [Google Scholar] [CrossRef]
- Vangara, V.; Vangara, S.P.; Thirupathur, K. Opinion Mining Classification using Naive Bayes Algorithm. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2020, 9, 495–498. [Google Scholar] [CrossRef]
- Shahraki, A.; Abbasi, M.; Haugen, Ø. Boosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost. Eng. Appl. Artif. Intell. 2020, 94, 103770. [Google Scholar] [CrossRef]
- Al Nahian, J.; Ghosh, T.; Al Banna, H.; Aseeri, M.A.; Uddin, M.N.; Ahmed, M.R.; Mahmud, M.; Kaiser, M.S. Towards an accelerometer-based elderly fall detection system using cross-disciplinary time series features. IEEE Access 2021, 9, 39413–39431. [Google Scholar] [CrossRef]
- Hashim, H.A.; Mohammed, S.L.; Gharghan, S.K. Accurate fall detection for patients with Parkinson’s disease based on a data event algorithm and wireless sensor nodes. Measurement 2020, 156, 107573. [Google Scholar] [CrossRef]
Equipment | Price |
---|---|
Infrared Sensor | 500/- × 3 =1500/- |
Arduino Uno Microcontroller | 200/- × 1 = 200/- |
Transistor | =20/- × 2 = 40/- |
Photodiode | =20/- × 3 = 60/- |
Transformer | =80/- × 1 = 80/- |
Capacitors | =5/- × 5 = 25/- |
Resistors | =5/- × 5 = 25/- |
Diodes | =3/- × 5 = 15/- |
LCD Display | =400/- × 1 =400/- |
Buzzer | =20/- × 1 =20/- |
Author | Methods/Classifiers | Hardware/Evaluation Parameters | Limitations |
---|---|---|---|
[15] | Radio-frequency identification tags (RFID) | RFID tags, received signal strength (RSS), and Doppler frequency value (DFV) | The authors used distinct equipment and devices; however, the accuracy was not adequately high |
[16] | Metaheuristic algorithms are used | Floor-based RFID technique, RFID tags arranged in a two-dimensional grid on a smart carpet | Inadequate accuracy |
[17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] | Digital camera, 3D image shape analysis, analysis using the PCA, SVM, NN algorithms | Vision-based system | Cameras were installed in the ceiling, detecting 77% of fall cases with 90% accuracy. Additionally, this affected the privacy of the elderly by monitoring the patient activities |
[34,35,36,37] | Wearable-based solutions to protect the head and thighs | Sensors and wearable devices which use both an accelerometer and angular velocity to detect fall events | It seems impractical to wear an airbag and device all the time |
[37,38,39,40,41] | Three-dimensional MEMS Bluetooth, accelerometers, microcontroller unit (MCU), gyroscopes, and high-speed cameras | High-speed cameras are used to record and analyze human motion | It seems impractical to use the device all the time |
[42] | Neural network algorithm is used for fall detection | Implemented in a wearable device combined with low-energy Bluetooth | It seems impractical to wear the expedient all the time |
[43] | Array-based detectors of smart inactivity | Intelligent fall indicator system based on infrared array detectors | Infrared radiation changes impact on elderly fall detection |
Proposed Methodology | IRA-E700ST0 pyroelectric infrared sensors (PIR), Arduino Uno, SVM, DT, RF, NB, AB | Accuracy, precision (specificity), recall (sensitivity). RF achieves 99% accuracy in the detection of elderly fall events | Low-cost, sensor-based system with highly mature, state-of-the-art, and representative algorithms |
ML Algorithm | Accuracy | Precision (Specificity) | Recall (Sensitivity) | F-Measure |
---|---|---|---|---|
Three PIR Sensors Dataset | ||||
SVM | 0.9711 (97%) | 0.97 | 0.97 | 0.97 |
DT | 0.9708 (97%) | 0.97 | 0.97 | 0.97 |
NB | 0.8942 (89%) | 0.90 | 0.89 | 0.89 |
RF | 0.9809 (98%) | 0.98 | 0.98 | 0.98 |
AB | 0.9904 (99%) | 0.99 | 0.99 | 0.99 |
Two PIR Sensors Dataset | ||||
SVM | 93% | 0.93 | 0.93 | 0.93 |
DT | 92% | 0.91 | 0.92 | 0.92 |
NB | 86% | 0.86 | 0.86 | 0.86 |
RF | 96% | 0.96 | 0.96 | 0.96 |
AB | 98% | 0.98 | 0.98 | 0.98 |
One PIR Sensor Dataset Accuracy | ||||
SVM | 89% | 0.89 | 0.89 | 0.89 |
DT | 89% | 0.89 | 0.89 | 0.89 |
NB | 82% | 0.82 | 0.81 | 0.81 |
RF | 87% | 0.87 | 0.87 | 0.87 |
AB | 86% | 0.86 | 0.86 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, C.A.U.; Karim, F.K.; Abbas, A.; Iqbal, J.; Elmannai, H.; Hussain, S.; Ullah, S.S.; Khan, M.S. A Cost-Effective Fall-Detection Framework for the Elderly Using Sensor-Based Technologies. Sustainability 2023, 15, 3982. https://doi.org/10.3390/su15053982
Hassan CAU, Karim FK, Abbas A, Iqbal J, Elmannai H, Hussain S, Ullah SS, Khan MS. A Cost-Effective Fall-Detection Framework for the Elderly Using Sensor-Based Technologies. Sustainability. 2023; 15(5):3982. https://doi.org/10.3390/su15053982
Chicago/Turabian StyleHassan, Ch. Anwar Ul, Faten Khalid Karim, Assad Abbas, Jawaid Iqbal, Hela Elmannai, Saddam Hussain, Syed Sajid Ullah, and Muhammad Sufyan Khan. 2023. "A Cost-Effective Fall-Detection Framework for the Elderly Using Sensor-Based Technologies" Sustainability 15, no. 5: 3982. https://doi.org/10.3390/su15053982
APA StyleHassan, C. A. U., Karim, F. K., Abbas, A., Iqbal, J., Elmannai, H., Hussain, S., Ullah, S. S., & Khan, M. S. (2023). A Cost-Effective Fall-Detection Framework for the Elderly Using Sensor-Based Technologies. Sustainability, 15(5), 3982. https://doi.org/10.3390/su15053982