Health and Well-Being Benefits of Outdoor and Indoor Vertical Greening Systems: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Overview of the Included Studies
3.2. Findings
3.2.1. Air Pollution/Air Quality
3.2.2. Thermal Comfort/Energy Efficiency
3.2.3. Noise Reduction
3.2.4. Social Perceptions
3.2.5. Health/Well-Being
3.2.6. Design Solutions
3.2.7. Literature Review and Other Issues
3.3. Methods Used
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, D.; Sun, Y.; Yang, Y.; Han, Y.; Xu, C. Urban park use and self-reported physical, mental, and social health during the COVID-19 pandemic: An on-site survey in Beijing, China. Urban For. Urban Green. 2023, 79, 127804. [Google Scholar] [CrossRef] [PubMed]
- Abhijith, K.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments: A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Martins, M.; Hadba, L.; Mendonça, P.; Silva, L. Evaluating the potential of vegetation to capture pollutants in urban environment. Environ. Sci. Eng. 2022, 2, 3–13. [Google Scholar] [CrossRef]
- Silva, L.; Monteiro, J. The influence of urban form on environmental quality within a medium-sized city. Procedia Eng. 2016, 161, 2046–2052. [Google Scholar] [CrossRef] [Green Version]
- Azkorra, Z.; Pérez, G.; Coma, J.; Cabeza, L.; Burés, S.; Álvaro, J.; Erkoreka, A.; Urrestarazu, M. Evaluation of green walls as a passive acoustic insulation system for buildings. Appl. Acoust. 2015, 89, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.; Fonseca, F.; Rodrigues, D.; Campos, A. Assessing the influence of urban geometry on noise propagation by using the sky view factor. J. Environ. Plan. Manag. 2018, 61, 535–552. [Google Scholar] [CrossRef]
- Koch, K.; Ysebaert, T.; Denys, S.; Samson, R. Urban heat stress mitigation potential of green walls: A review. Urban For. Urban Green. 2020, 55, 126843. [Google Scholar] [CrossRef]
- Donovan, G. Including public-health benefits of trees in urban-forestry decision making. Urban For. Urban Green. 2017, 22, 120–123. [Google Scholar] [CrossRef]
- Krellenberg, K.; Welz, J.; Reyes-Päcke, S. Urban green areas and their potential for social interaction—A case study of a socio-economically mixed neighbourhood in Santiago de Chile. Habitat Int. 2014, 44, 11–21. [Google Scholar] [CrossRef]
- Aziz, N.; Shian, L.; Mokhtar, M.; Raman, T.; Saikim, F.; Chen, W.; Nordin, N. Effectiveness of urban green space on undergraduates’ stress relief in tropical city: A field experiment in Kuala Lumpur. Urban For. Urban Green. 2021, 63, 127236. [Google Scholar] [CrossRef]
- Vujcic, M.; Tomicevic-Dubljevic, J.; Zivojinovic, I.; Toskovic, O. Connection between urban green areas and visitors’ physical and mental well-being. Urban For. Urban Green. 2019, 40, 335–343. [Google Scholar] [CrossRef]
- Falco, A.; Piscitelli, P.; Vito, D.; Pacella, F.; Franco, C.; Pulimeno, M.; Ambrosino, P.; Arias, J.; Miani, A. COVID-19 epidemic spread and green areas Italy and Spain between 2020 and 2021: An observational multi-country retrospective study. Environ. Res. 2023, 216, 114089. [Google Scholar] [CrossRef] [PubMed]
- De Meo, I.; Becagli, C.; Cantiani, G.; Casagli, A.; Paletto, A. Citizens’ use of public urban green spaces at the time of the COVID-19 pandemic in Italy. Urban For. Urban Green. 2022, 77, 127739. [Google Scholar] [CrossRef]
- Derks, J.; Giessen, L.; Winkel, G. COVID-19-induced visitor boom reveals the importance of forests as critical infrastructure. For. Policy Econ. 2020, 118, 102253. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Fonseca, F.; Pires, M.; Mendes, B. SAUS: A tool for preserving urban green areas from air pollution. Urban For. Urban Green. 2019, 46, 126440. [Google Scholar] [CrossRef]
- Bustami, R.; Belusko, M.; Ward, J.; Beecham, S. Vertical greenery systems: A systematic review of research trends. Build. Environ. 2018, 146, 226–237. [Google Scholar] [CrossRef]
- Ghazalli, A.; Brack, C.; Bai, X.; Said, I. Physical and non-physical benefits of vertical greenery systems: A review. J. Urban Technol. 2019, 26, 53–78. [Google Scholar] [CrossRef]
- Aleksejeva, J.; Voulgaris, G.; Gasparatos, A. Assessing the potential for strategic green roof implementation for green infrastructure: Insights from Sumida ward, Tokyo. Urban For. Urban Green. 2022, 74, 127632. [Google Scholar] [CrossRef]
- Rowe, T.; Poppe, J.; Buyle, M.; Belmans, B.; Audenaert, A. Is the sustainability potential of vertical greening systems deeply rooted? Establishing uniform outlines for environmental impact assessment of VGS. Renew. Sustain. Energy Rev. 2022, 162, 112414. [Google Scholar] [CrossRef]
- Akram, M.; Hasannuzaman, M.; Cuce, E.; Cuce, P. Global technological advancement and challenges of glazed window, facade system and vertical greenery-based energy savings in buildings: A comprehensive review. Energy Built Environ. 2023, 4, 206–226. [Google Scholar] [CrossRef]
- Chàfer, M.; Cabeza, L.; Pisello, A.; Tan, C.; Wong, N. Trends and gaps in global research of greenery systems through a bibliometric analysis. Sustain. Cities Soc. 2021, 65, 102608. [Google Scholar] [CrossRef]
- Elsadek, M.; Liu, B.; Lian, Z. Green façades: Their contribution to stress recovery and well-being in high-density cities. Urban For. Urban Green. 2019, 46, 126446. [Google Scholar] [CrossRef]
- Shao, Y.; Li, J.; Zhou, Z.; Zhang, F.; Cui, Y. The impact of indoor living wall system on air quality: A comparative monitoring test in building corridors. Sustainability 2021, 13, 7884. [Google Scholar] [CrossRef]
- Fonseca, F.; Ribeiro, P.; Conticelli, E.; Jabbari, M.; Papageorgiou, G.; Tondelli, S.; Ramos, R. Built environment attributes and their influence on walkability. Int. J. Sustain. Transp. 2021, 16, 660–679. [Google Scholar] [CrossRef]
- Wimalasooriya, C.; Licorish, S.; Costa, D.; MacDonell, S. A systematic mapping study addressing the reliability of mobile applications: The need to move beyond testing reliability. J. Syst. Softw. 2022, 186, 111–166. [Google Scholar] [CrossRef]
- Norton, B.; Coutts, A.; Livesley, S.; Harris, R.; Hunter, A.; Williams, N. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Currie, B.; Bass, B. Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosyst. 2008, 11, 409–422. [Google Scholar] [CrossRef]
- Ottelé, M.; Van Bohemen, H.; Fraaij, A. Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecol. Eng. 2010, 36, 154–162. [Google Scholar] [CrossRef]
- Ottelé, M.; Perini, K.; Fraaij, A.; Haas, E.; Raiteri, R. Comparative life cycle analysis for green façades and living wall systems. Energy Build. 2011, 43, 3419–3429. [Google Scholar] [CrossRef]
- Zhao, X.; Zuo, J.; Wu, G.; Huang, C. A bibliometric review of green building research 2000–2016. Archit. Sci. Rev. 2019, 62, 74–88. [Google Scholar] [CrossRef]
- Abedi, S.; Yarahmadi, R.; Farshad, A.; Najjar, N.; Ebrahimi, H.; Soleimani-Alyar, S. Evaluation of the critical parameters on the removal efficiency of a botanical biofilter system. Build. Environ. 2022, 212, 108811. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W. Harnessing the four horsemen of climate change: A framework for deep resilience, decarbonization, and planetary health in Ontario, Canada. Sustainability 2021, 13, 379. [Google Scholar] [CrossRef]
- Andric, I.; Kamal, A.; Al-Ghamdi, S. Efficiency of green roofs and green walls as climate change mitigation measures in extremely hot and dry climate: Case study of Qatar. Energy Rep. 2020, 6, 2476–2489. [Google Scholar] [CrossRef]
- Caron, A.; Redon, N.; Thevenet, F.; Hanoune, B.; Coddeville, P. Performances and limitations of electronic gas sensors to investigate an indoor air quality event. Build. Environ. 2016, 107, 19–28. [Google Scholar] [CrossRef]
- Chang, L.; Chang, F. Study of Living Wall Systems’(LWSs) Support system for improving LWSs Life cycle performance and noise reduction potential. Build. Environ. 2022, 216, 109007. [Google Scholar] [CrossRef]
- Convertino, F.; Vox, G.; Schettini, E. Convective heat transfer in green façade system. Biosyst. Eng. 2019, 188, 67–81. [Google Scholar] [CrossRef]
- Davis, M.; Tenpierik, M.; Ramírez, F.; Perez, M. More than just a green facade: The sound absorption properties of a vertical garden with and without plants. Build. Environ. 2017, 116, 64–72. [Google Scholar] [CrossRef] [Green Version]
- De Lucia, M.; Treves, A.; Comino, E. Rice husk and thermal comfort: Design and evaluation of indoor modular green walls. Dev. Built Environ. 2021, 6, 100043. [Google Scholar] [CrossRef]
- Feitosa, R.; Wilkinson, S. Small-scale experiments of seasonal heat stress attenuation through a combination of green roof and green walls. J. Clean. Prod. 2020, 250, 119443. [Google Scholar] [CrossRef]
- Fensterseifer, P.; Gabriel, E.; Tassi, R.; Piccilli, D.; Minetto, B. A year-assessment of the suitability of a green façade to improve thermal performance of an affordable housing. Ecol. Eng. 2022, 185, 106810. [Google Scholar] [CrossRef]
- Flores, S.; Filippín, C. Energy efficiency, thermal resilience, and health during extreme heat events in low-income housing in Argentina. Energy Build. 2021, 231, 110576. [Google Scholar] [CrossRef]
- Ghazalli, A.; Brack, C.; Bai, X.; Said, I. Alterations in use of space, air quality, temperature and humidity by the presence of vertical greenery system in a building corridor. Urban For. Urban Green. 2018, 32, 177–184. [Google Scholar] [CrossRef]
- Gunn, C.; Vahdati, M.; Shahrestani, M. Green walls in schools: The potential well-being benefits. Build. Environ. 2022, 224, 109560. [Google Scholar] [CrossRef]
- Han, G.; Wen, Y.; Leng, J.; Sun, L. Improving comfort and health: Green retrofit designs for sunken courtyards during the summer period in a subtropical climate. Buildings 2021, 11, 413. [Google Scholar] [CrossRef]
- He, C.; Qiu, K.; Pott, R. Reduction of traffic-related particulate matter by roadside plants: Effect of traffic pressure and sampling height. Int. J. Phytoremed. 2020, 22, 184–200. [Google Scholar] [CrossRef] [PubMed]
- Hop, M.; Hiemstra, J. Contribution of green roofs and green walls to ecosystem services of urban green. Acta Hortic. 2013, 990, 475–480. [Google Scholar] [CrossRef]
- Hozhabralsadat, M.; Heidari, A.; Karimian, Z.; Farzam, M. Assessment of plant species suitability in green walls based on API, heavy metal accumulation, and particulate matter capture capacity. Environ. Sci. Pollut. Res. 2022, 29, 68564–68581. [Google Scholar] [CrossRef]
- Irga, P.; Pettit, T.; Irga, R.; Paull, N.; Douglas, A.; Torpy, F. Does plant species selection in functional active green walls influence VOC phytoremediation efficiency? Environ. Sci. Pollut. Res. 2019, 26, 12851–12858. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, F.; Rabbani, M.; Jozay, M. Investigating the plant and air-quality performances of an internal green wall system under hydroponic conditions. J. Environ. Manag. 2020, 275, 111230. [Google Scholar] [CrossRef]
- Kyrkou, A. The role of greenery in healthcare facilities for children. Sustain. Mediterr. Constr. 2019, N9, 8–12. [Google Scholar]
- Li, Z.; Wang, Y.; Liu, H.; Liu, H. Physiological and psychological effects of exposure to different types and numbers of biophilic vegetable walls in small spaces. Build. Environ. 2022, 225, 109645. [Google Scholar] [CrossRef]
- Liberalesso, T.; Júnior, R.; Cruz, C.; Matos, C.; Manso, M. Users’ perceptions of green roofs and green walls: An analysis of youth hostels in Lisbon, Portugal. Sustainability 2020, 12, 10136. [Google Scholar] [CrossRef]
- Mannan, M.; Al-Ghamdi, S. Life cycle embodied energy analysis of indoor active living wall system. Energy Rep. 2020, 6, 391–395. [Google Scholar] [CrossRef]
- McCullough, M.; Martin, M.; Sajady, M. Implementing green walls in schools. Front. Psychol. 2018, 9, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghaddam, F.; Delgado, I.; Dominguez, E.; Mir, J.; Mateu, L. Understanding the performance of vertical gardens by using building simulation and its influences on urban landscape. Archit. City Environ. 2021, 16, 10321. [Google Scholar] [CrossRef]
- Morgan, A.; Torpy, F.; Irga, P.; Fleck, R.; Gill, R.; Pettit, T. The botanical biofiltration of volatile organic compounds and particulate matter derived from cigarette smoke. Chemosphere 2022, 295, 133942. [Google Scholar] [CrossRef]
- Ottelé, M.; Ursem, W.; Fraaij, A.; Van Bohemen, H. The development of an ESEM based counting method for fine dust particles and a philosophy behind the background of particle adsorption on leaves. WIT Trans. Ecol. Environ. 2011, 147, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Parhizkar, H.; Khoraskani, R.; Tahbaz, M. Double skin façade with Azolla; ventilation, indoor air quality and thermal performance assessment. J. Clean. Prod. 2020, 249, 119313. [Google Scholar] [CrossRef]
- Paull, N.; Irga, P.; Torpy, F. Active green wall plant health tolerance to diesel smoke exposure. Environ. Pollut. 2018, 240, 448–456. [Google Scholar] [CrossRef]
- Paull, N.; Krix, D.; Irga, P.; Torpy, F. Green wall plant tolerance to ambient urban air pollution. Urban For. Urban Green. 2021, 63, 127201. [Google Scholar] [CrossRef]
- Pettit, T.; Irga, P.; Abdo, P.; Torpy, F. Do the plants in functional green walls contribute to their ability to filter particulate matter? Build. Environ. 2017, 125, 299–307. [Google Scholar] [CrossRef]
- Pettit, T.; Irga, P.; Torpy, F. The in situ pilot-scale phytoremediation of airborne VOCs and particulate matter with an active green wall. Air Qual. Atmos. Health 2019, 12, 33–44. [Google Scholar] [CrossRef]
- Pettit, T.; Irga, P.; Surawski, N.; Torpy, F. An assessment of the suitability of active green walls for NO2 reduction in green buildings using a closed-loop flow reactor. Atmosphere 2019, 10, 801. [Google Scholar] [CrossRef] [Green Version]
- Pettit, T.; Irga, P.; Torpy, F. The botanical biofiltration of elevated air pollution concentrations associated the Black Summer wildfire natural disaster. J. Hazard. Mater. Lett. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Pettit, T.; Torpy, F.; Surawski, N.; Fleck, R.; Irga, P. Effective reduction of roadside air pollution with botanical biofiltration. J. Hazard. Mater. 2021, 414, 125566. [Google Scholar] [CrossRef] [PubMed]
- Pichlhöfer, A.; Sesto, E.; Hollands, J.; Korjenic, A. Health-related benefits of different indoor plant species in a school setting. Sustainability 2021, 13, 9566. [Google Scholar] [CrossRef]
- Santiago, J.; Rivas, E.; Sanchez, B.; Buccolieri, R.; Esposito, A.; Martilli, A.; Vivanco, M.; Martin, F. Impact of different combinations of green infrastructure elements on traffic-related pollutant concentrations in urban areas. Forests 2022, 13, 1195. [Google Scholar] [CrossRef]
- Scamoni, F.; Scrosati, C.; Depalma, M.; Barozzi, B. Experimental evaluations of acoustic properties and long-term analysis of a novel indoor living wall. J. Build. Eng. 2022, 47, 103890. [Google Scholar] [CrossRef]
- Senosiain, J. Urban regreeneration: Green urban infrastructure as a response to climate change mitigation and adaptation. Int. J. Des. Nat. Ecodyn. 2020, 15, 33–38. [Google Scholar] [CrossRef]
- Silva, C.; Serro, J.; Ferreira, P.; Teotónio, I. The socioeconomic feasibility of greening rail stations: A case study in Lisbon. Eng. Econ. 2019, 64, 167–190. [Google Scholar] [CrossRef]
- Srbinovska, M.; Andova, V.; Mateska, A.; Krstevska, M. The effect of small green walls on reduction of particulate matter concentration in open areas. J. Clean. Prod. 2021, 279, 123306. [Google Scholar] [CrossRef]
- Suárez-Cáceres, G.; Fernández-Cañero, R.; Fernández-Espinosa, A.; Rossini-Oliva, S.; Franco-Salas, A.; Urrestarazu, L. Volatile organic compounds removal by means of a felt-based living wall to improve indoor air quality. Atmos. Pollut. Res. 2021, 12, 224–229. [Google Scholar] [CrossRef]
- Suárez-Cáceres, G.; Urrestarazu, L. Removal of volatile organic compounds by means of a felt-based living wall using different plant species. Sustainability 2021, 13, 6393. [Google Scholar] [CrossRef]
- Talhouk, S.; Chalak, A.; Kamareddine, Z.; Fabian, M.; Itani, M.; Ferguson, N. Vertical gardening and Syrian women refugees in Lebanon: An exploratory study on motivation for gardening and depression relief. Local Environ. 2021, 26, 1235–1249. [Google Scholar] [CrossRef]
- Tarboush, O.; Asilsoy, B.; Çağnan, Ç. Evaluation of perception with regards to green wall systems application in Nicosia, N. Cyprus. Int. J. Adv. Appl. Sci. 2020, 7, 24–36. [Google Scholar] [CrossRef]
- Thorpert, P.; Rayner, J.; Haaland, C.; Englund, J.; Fransson, A. Exploring the integration between colour theory and biodiversity values in the design of living walls. Front. Ecol. Evol. 2022, 10, 804118. [Google Scholar] [CrossRef]
- Tomson, N.; Michael, R.; Agranovski, I. Removal of particulate air pollutants by Australian vegetation potentially used for green barriers. Atmos. Pollut. Res. 2021, 12, 101070. [Google Scholar] [CrossRef]
- Urbano-López, B. Greening, an urbanization coping mechanism. Rev. Chapingo Serie Cienc. For. Ambiente 2013, 19, 225–235. [Google Scholar] [CrossRef]
- Urrestarazu, M.; Burés, S. Sustainable green walls in architecture. J. Food Agric. Environ. 2012, 10, 792–794. [Google Scholar]
- Urrestarazu, L.; Blasco-Romero, A.; Fernández-Cañero, R. Media and social impact valuation of a living wall: The case study of the Sagrado Corazon hospital in Seville (Spain). Urban For. Urban Green. 2017, 24, 141–148. [Google Scholar] [CrossRef]
- Urrestarazu, L.; Kaltsidi, M.; Nektarios, P.; Markakis, G.; Loges, V.; Perini, K.; Fernández-Cañero, R. Particularities of having plants at home during the confinement due to the COVID-19 pandemic. Urban For. Urban Green. 2021, 59, 126919. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, A.; Wesselius, J.; Maas, J.; Tanja-Dijkstra, K. Green walls for a restorative classroom environment: A controlled evaluation study. Environ. Behav. 2017, 49, 791–813. [Google Scholar] [CrossRef] [Green Version]
- Van den Bogerd, N.; Dijkstra, S.; Tanja-Dijkstra, K.; De Boer, M.; Seidell, J.; Koole, S.; Maas, J. Greening the classroom: Three field experiments on the effects of indoor nature on students’ attention, well-being, and perceived environmental quality. Build. Environ. 2020, 171, 106675. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Hornikx, M.; Forssen, J.; Botteldooren, D. The potential of building envelope greening to achieve quietness. Build. Environ. 2013, 61, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Vera, S.; Viecco, M.; Jorquera, H. Effects of biodiversity in green roofs and walls on the capture of fine particulate matter. Urban For. Urban Green. 2021, 63, 127229. [Google Scholar] [CrossRef]
- Yeom, S.; Kim, H.; Hong, T. Psychological and physiological effects of a green wall on occupants: A cross-over study in virtual reality. Build. Environ. 2021, 204, 108134. [Google Scholar] [CrossRef]
- Yeom, S.; Kim, H.; Hong, T.; Ji, C.; Lee, D. Emotional impact, task performance and task load of green walls exposure in a virtual environment. Indoor Air 2022, 32, e12936. [Google Scholar] [CrossRef]
- Wahba, S.; Kamel, B.; Nassar, K.; Abdelsalam, A. Effectiveness of green roofs and green walls on energy consumption and indoor comfort in arid climates. Civ. Eng. J. 2018, 4, 2284–2295. [Google Scholar] [CrossRef] [Green Version]
- Weerakkody, U.; Dover, J.; Mitchell, P.; Reiling, K. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci. Total Environ. 2018, 635, 1012–1024. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.; Mitchell, P.; Reiling, K. Topographical structures in planting design of living walls affect their ability to immobilise traffic-based particulate matter. Sci. Total Environ. 2019, 660, 644–649. [Google Scholar] [CrossRef]
- Zhang, X.; Ni, Z.; Wang, Y.; Chen, S.; Xia, B. Public perception and preferences of small urban green infrastructures: A case study in Guangzhou, China. Urban For. Urban Green. 2020, 53, 126700. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, D.; Wang, Y.; Ma, D.; Meng, X. Assessment of urban surface and canopy cooling strategies in high-rise residential communities. J. Clean. Prod. 2021, 288, 125599. [Google Scholar] [CrossRef]
- Zinia, N.; McShane, P. Ecosystem services management: An evaluation of green adaptations for urban development in Dhaka, Bangladesh. Landsc. Urban Plan. 2018, 173, 23–32. [Google Scholar] [CrossRef]
- Živković, P.; Dimitrijević-Jovanović, D.; Stevanović, Ž. The impact of the building envelope with the green living systems on the built environment. Therm. Sci. 2018, 22, 1033–1045. [Google Scholar] [CrossRef] [Green Version]
- Dahanayake, K.; Chow, C. Studying the potential of energy saving through vertical greenery systems: Using EnergyPlus simulation program. Energy Build. 2017, 138, 47–59. [Google Scholar] [CrossRef]
- Jim, C.; Hui, L.; Rupprecht, C. Public perceptions of green roofs and green walls in Tokyo, Japan: A call to heighten awareness. Environ Manag. 2022, 70, 35–53. [Google Scholar] [CrossRef]
- Perini, K.; Rosasco, P. Cost–benefit analysis for green façades and living wall systems. Build. Environ. 2013, 70, 110–121. [Google Scholar] [CrossRef]
- Manso, M.; Teotónio, I.; Silva, C.; Cruz, C. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sust. Energ. Rev. 2021, 135, 110111. [Google Scholar] [CrossRef]
- Ling, T.; Chiang, Y. Well-being, health and urban coherence-advancing vertical greening approach toward resilience: A design practice consideration. J. Clean. Prod. 2018, 182, 187–197. [Google Scholar] [CrossRef]
Topics | |||||||||
---|---|---|---|---|---|---|---|---|---|
AP/AQ | TC/EE | NR | SP | H/WB | DS | LR | OI | Method | |
Abedi et al. [31] | ● | E | |||||||
Anderson et al. [32] | ○ | D | |||||||
Andric et al. [33] | ○ | S | |||||||
Caron et al. [34] | ● | E | |||||||
Chàfer et al. [21] | X | R | |||||||
Chang et al. [35] | ○ | E | |||||||
Convertino et al. [36] | ○ | O | |||||||
Currie et al. [27] | ○ | O | |||||||
Davis et al. [37] | ● | E | |||||||
De Lucia et al. [38] | ● | E | |||||||
Elsadek et al. [22] | ○ | O | |||||||
Feitosa et al. [39] | ○ | O | |||||||
Fensterseifer et al. [40] | ○ | O | |||||||
Flores et al. [41] | ● | O | |||||||
Ghazalli et al. 2018 [42] | ● | O | |||||||
Ghazalli et al. [17] | X | R | |||||||
Gunn et al. [43] | ● | Q | |||||||
Han et al. [44] | ○ | M | |||||||
He et al. [45] | ○ | O | |||||||
Hop et al. [46] | X | R | |||||||
Hozhabralsadat et al. [47] | ○ | O | |||||||
Irga et al. [48] | ● | E | |||||||
Kazemi et al. [49] | ● | E | |||||||
Kyrkou et al. [50] | ● | D | |||||||
Li et al. [51] | ● | M | |||||||
Liberalesso et al. [52] | ○ | Q | |||||||
Mannan & Al-Ghamdi [53] | ● | O | |||||||
McCullough et al. [54] | X | D | |||||||
Moghaddam et al. [55] | ○ | S | |||||||
Morgan et al. [56] | ● | E | |||||||
Norton et al. [26] | ○ | D | |||||||
Ottelé et al. [28] | ○ | E | |||||||
Ottelé et al. [57] | ○ | E | |||||||
Ottelé et al. [29] | ○ | O | |||||||
Parhizkar et al. [58] | ● | E | |||||||
Paull et al. [59] | ○ | E | |||||||
Paull et al. [60] | ○ | E | |||||||
Pettit et al. [61] | ● | E | |||||||
Pettit et al. [62] | ● | E | |||||||
Pettit et al. [63] | ● | E | |||||||
Pettit et al. [64] | ○ | E | |||||||
Pettit et al. [65] | ○ | E | |||||||
Pichlhöfer et al. [66] | ● | O | |||||||
Rowe et al. [19] | X | R | |||||||
Santiago et al. [67] | ○ | S | |||||||
Scamoni et al. [68] | ● | E | |||||||
Senosiain et al. [69] | ○ | D | |||||||
Silva et al. [70] | ○ | O | |||||||
Srbinovska et al. [71] | ○ | O | |||||||
Suárez-Cáceres et al. [72] | ● | E | |||||||
Suárez-Cáceres et al. [73] | ● | E | |||||||
Talhouk et al. [74] | ○ | Q | |||||||
Tarboush et al. [75] | ○ | Q | |||||||
Thorpert et al. [76] | ○ | O | |||||||
Tomson et al. [77] | ○ | O | |||||||
Urbano-López [78] | X | R | |||||||
Urrestarazu & Burés [79] | ○ | D | |||||||
Urrestarazu et al. [80] | ○ | Q | |||||||
Urrestarazu et al. [81] | ● | Q | |||||||
Van den Berg et al. [82] | ● | M | |||||||
Van den Bogerd et al. [83] | ● | M | |||||||
Van Renterghem et al. [84] | ○ | O | |||||||
Vera et al. [85] | ○ | E | |||||||
Yeom et al. [86] | ● | M | |||||||
Yeom et al. [87] | ● | M | |||||||
Wahba et al. [88] | ○ | S | |||||||
Weerakkody et al. [89] | ○ | E | |||||||
Weerakkody et al. [90] | ○ | E | |||||||
Zhang et al. [91] | ○ | Q | |||||||
Zhao et al. [30] | X | R | |||||||
Zhu et al. [92] | ○ | S | |||||||
Zinia et al. [93] | ○ | Q | |||||||
Zivkovic et al. [94] | X | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, F.; Paschoalino, M.; Silva, L. Health and Well-Being Benefits of Outdoor and Indoor Vertical Greening Systems: A Review. Sustainability 2023, 15, 4107. https://doi.org/10.3390/su15054107
Fonseca F, Paschoalino M, Silva L. Health and Well-Being Benefits of Outdoor and Indoor Vertical Greening Systems: A Review. Sustainability. 2023; 15(5):4107. https://doi.org/10.3390/su15054107
Chicago/Turabian StyleFonseca, Fernando, Marina Paschoalino, and Lígia Silva. 2023. "Health and Well-Being Benefits of Outdoor and Indoor Vertical Greening Systems: A Review" Sustainability 15, no. 5: 4107. https://doi.org/10.3390/su15054107
APA StyleFonseca, F., Paschoalino, M., & Silva, L. (2023). Health and Well-Being Benefits of Outdoor and Indoor Vertical Greening Systems: A Review. Sustainability, 15(5), 4107. https://doi.org/10.3390/su15054107