Interpretive Structural Modeling: Research Trends, Linkages to Sustainable Development Goals, and Impact of COVID-19
Abstract
:1. Introduction
2. Study Methods
2.1. SPAR-4-SLR Protocol
2.1.1. Assembling
2.1.2. Arranging
2.1.3. Assessing
3. Results and Discussion
3.1. Publications and Citations Trends
3.2. Most-Influential Authors
3.3. Mapping ISM Research to SDGs
3.4. Top Contributing Countries and Their SDG Mappings
3.5. Frequently Cited Journals and Their SDG Mappings
3.6. Most-Productive Institutions and Their SDG Mappings
3.7. Co-occurrence Analysis Based on Keywords
3.7.1. Cluster 1 (Red): Integration of ISM with MICMAC/TISM/AHP/Fuzzy Logic and Alignment to Sustainability
3.7.2. Cluster 2 (Purple): Framing Strategies for Various Stakeholders by Using the ISM Technique
3.7.3. Cluster 3 (Green): Decision-Related Matters Using the ISM Technique in Various Fields
3.7.4. Cluster 4 (Yellow): Evaluation of Various Risks by Using the ISM Approach
3.8. ISM Research and COVID-19
4. Future Research Directions
4.1. Blockchain; Internet of Things; Cloud Computing
4.2. Sustainability; Environmental Management Systems
4.3. Technology Management; Innovation; Productivity
4.4. Climate Change Adaptation; Urban Climate; Resilience
4.5. Smart Cities; Sustainable Development
4.6. Information Modeling; Facilities Management; Construction Industry
4.7. Humanitarian Logistics; Disaster Management; Big Data
5. Conclusions
Implications
6. Recommended Approaches
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janes, F.R. Interpretive structural modelling: A methodology for structuring complex issues. Trans. Inst. Meas. Control. 1988, 10, 145–154. [Google Scholar] [CrossRef]
- Attri, R.; Dev, N.; Sharma, V. Interpretive structural modelling (ISM) approach: An overview. Res. J. Manag. Sci. 2013, 2, 3–8. [Google Scholar]
- Mathiyazhagan, K.; Govindan, K.; NoorulHaq, A.; Geng, Y. An ISM approach for the barrier analysis in implementing green supply chain management. J. Clean. Prod. 2013, 47, 283–297. [Google Scholar] [CrossRef]
- Kumar, R.; Goel, P. Exploring the domain of interpretive structural modelling (ISM) for sustainable future panorama: A bibliometric and content analysis. Arch. Comput. Methods Eng. 2021, 29, 2781–2810. [Google Scholar] [CrossRef]
- Sushil. Incorporating polarity of relationships in ISM and TISM for theory building in information and organization management. Int. J. Inf. Manag. 2018, 43, 38–51. [Google Scholar] [CrossRef]
- Dhir, S.; Dhir, S. Modeling of strategic thinking enablers: A modified total interpretive structural modeling (TISM) and MICMAC approach. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 175–188. [Google Scholar] [CrossRef]
- Raman, R.; Nair, V.K.; Prakash, V.; Patwardhan, A.; Nedungadi, P. Green-hydrogen research: What have we achieved, and where are we going? Bibliometrics analysis. Energy Rep. 2022, 8, 9242–9260. [Google Scholar] [CrossRef]
- Raman, R.; Subramaniam, N.; Nair, V.K.; Shivdas, A.; Achuthan, K.; Nedungadi, P. Women entrepreneurship and sustainable development: Bibliometric analysis and emerging research trends. Sustainability 2022, 14, 9160. [Google Scholar] [CrossRef]
- Achuthan, K.; Nair, V.K.; Kowalski, R.; Ramanathan, S.; Raman, R. Cyberbullying research—Alignment to sustainable development and impact of COVID-19: Bibliometrics and science mapping analysis. Comput. Hum. Behav. 2022, 140, 107566. [Google Scholar] [CrossRef]
- Shankar, R.; Narain, R.; Agarwal, A. An interpretive structural modeling of knowledge management in engineering industries. J. Adv. Manag. Res. 2003, 1, 28–40. [Google Scholar] [CrossRef]
- Thomas, A.; Suresh, M. Assessment of COVID-19 prevention and protection measures in hospitals. Clean. Eng. Technol. 2022, 7, 100440. [Google Scholar] [CrossRef]
- Vaishnavi, V.; Suresh, M.; Dutta, P. Modelling the readiness factors for agility in healthcare organization: A TISM approach. Benchmarking Int. J. 2019, 26, 2372–2400. [Google Scholar] [CrossRef]
- Sreenivasan, A.; Suresh, M.; Panduro, J.A.T. Modelling the resilience of start-ups during COVID-19 pandemic. Benchmarking: Int. J. 2022. (ahead-of-print). [Google Scholar] [CrossRef]
- Menon, S.; Suresh, M. Factors influencing organizational agility in higher education. Benchmarking Int. J. 2020, 28, 307–332. [Google Scholar] [CrossRef]
- Guan, L.; Abbasi, A.; Ryan, M.J. Analyzing green building project risk interdependencies using Interpretive Structural Modeling. J. Clean. Prod. 2020, 256, 120372. [Google Scholar] [CrossRef]
- Badhotiya, G.K.; Soni, G.; Jain, V.; Joshi, R.; Mittal, S. Assessing supply chain resilience to the outbreak of COVID-19 in Indian manufacturing firms. Oper. Manag. Res. 2022, 15, 1161–1180. [Google Scholar] [CrossRef]
- Kumar, M.; Raut, R.D.; Sharma, M.; Choubey, V.K.; Paul, S.K. Enablers for resilience and pandemic preparedness in food supply chain. Oper. Manag. Res. 2022, 15, 1198–1223. [Google Scholar] [CrossRef]
- Poduval, A.; Ayyagari, M.S.; Malinda, M.; KEk, V.; Kumar, A.; Kandasamy, J. Barriers in repurposing an existing manufacturing plant: A total interpretive structural modeling (TISM) approach. Oper. Manag. Res. 2022, 15, 1315–1340. [Google Scholar] [CrossRef]
- Pilevari, N.; Shiva, M.V. Country-wide resilience model for the health system: A case study on iran, under coronavirus outbreak. Iran. J. Public Health 2021, 50, 806. [Google Scholar] [CrossRef]
- Lakshmi Priyadarsini, S.; Suresh, M. Factors influencing the epidemiological characteristics of pandemic COVID-19: A TISM approach. Int. J. Healthc. Manag. 2020, 13, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Harikumar, P.; Saleeshya, P.G. Suitability and adaptability of Lean manufacturing in Indian pharmaceutical sector. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 390, p. 012050. [Google Scholar] [CrossRef]
- Broome, B.J.; Derk, I.; Razzante, R.J.; Steiner, E.; Taylor, J.; Zamora, A. Building an inclusive climate for intercultural dialogue: A participant-generated framework. Negot. Confl. Manag. Res. 2019, 12, 234–255. [Google Scholar] [CrossRef]
- Sharma, S.K.; Metri, B.; Dwivedi, Y.K.; Rana, N.P. Challenges common service centers (CSCs) face in delivering e-government services in rural India. Gov. Inf. Q. 2021, 38, 101573. [Google Scholar] [CrossRef]
- Yenradee, P.; Dangton, R. Implementation sequence of engineering and management techniques for enhancing the effectiveness of production and inventory control system. Int. J. Prod. Res. 2000, 38, 2689–2707. [Google Scholar] [CrossRef]
- Kanungo, S.; Bhatnagar, V.V. Beyond generic models for information system quality: The use of interpretive structural modeling (ISM). Syst. Res. Behav. Sci. 2002, 19, 531–549. [Google Scholar] [CrossRef]
- Raut, R.D.; Narkhede, B.; Gardas, B.B. To identify the critical success factors of sustainable supply chain management practices in the context of oil and gas industries: ISM approach. Renew. Sustain. Energy Rev. 2017, 68, 33–47. [Google Scholar] [CrossRef]
- Kannan, G.; Haq, A.N.; Sasikumar, P.; Arunachalam, S. Analysis and selection of green suppliers using interpretative structural modelling and analytic hierarchy process. Int. J. Manag. Decis. Mak. 2008, 9, 163–182. [Google Scholar] [CrossRef]
- Thomas, T.; Saleeshya, P.G.; Harikumar, P. A combined AHP and ISM-based model to assess the leanness of a manufacturing company. Int. J. Bus. Perform. Manag. 2017, 18, 403–426. [Google Scholar] [CrossRef]
- Saha, R.; Aich, S.; Tripathy, S.; Kim, H.C. Artificial intelligence is reshaping healthcare amid COVID-19: A review in the context of diagnosis & prognosis. Diagnostics 2021, 11, 1604. [Google Scholar] [CrossRef]
- Tang, J.; Liu, X.; Wang, W. COVID-19 medical waste transportation risk evaluation integrating type-2 fuzzy total interpretive structural modeling and Bayesian network. Expert Systems Appl. 2022, 213, 118885. [Google Scholar] [CrossRef]
- Rafiq, M.; Naz, S.; Martins, J.M.; Mata, M.N.; Mata, P.N.; Maqbool, S. A study on emerging management practices of renewable energy companies after the outbreak of COVID-19: Using an interpretive structural modeling (ISM) approach. Sustainability 2021, 13, 3420. [Google Scholar] [CrossRef]
- Singh, N.K.; Singh, P. Identifying consumer resistance of mobile payment during COVID-19: An interpretive structural modeling (ISM) approach. Bus. Manag. Econ. Eng. 2022, 20, 258–285. [Google Scholar] [CrossRef]
- Abbas, H.; Asim, Z.; Ahmed, Z.; Moosa, S. Exploring and establishing the barriers to sustainable humanitarian supply chains using fuzzy interpretive structural modeling and fuzzy MICMAC analysis. Soc. Responsib. J. 2021, 18, 1463–1484. [Google Scholar] [CrossRef]
- Tamtam, F.; Tourabi, A. Interpretive structural modeling of supply chain leagility during COVID-19. IFAC-PapersOnLine 2021, 54, 12–17. [Google Scholar] [CrossRef]
- Agrawal, R.; Wankhede, V.A.; Nair, R.S. Analysis of Drivers of Digital Learning in COVID-19 and Post-COVID-19 Scenario Using an ISM Approach. J. Inst. Eng. Ser. B 2021, 102, 1143–1155. [Google Scholar] [CrossRef]
- Liza, S.A.; Chowdhury, N.R.; Paul, S.K.; Morshed, M.; Morshed, S.M.; Bhuiyan, M.A.T.; Rahim, M.A. Barriers to achieving sustainability in pharmaceutical supply chains in the post-COVID-19 era. Int. J. Emerg. Mark. 2022. [Google Scholar] [CrossRef]
- Narula, S.; Puppala, H.; Kumar, A.; Frederico, G.F.; Dwivedy, M.; Prakash, S.; Talwar, V. Applicability of industry 4.0 technologies in the adoption of global reporting initiative standards for achieving sustainability. J. Clean. Prod. 2021, 305, 127141. [Google Scholar] [CrossRef]
- Visser, M.; van Eck, N.J.; Waltman, L. Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quant. Sci. Stud. 2021, 2, 20–41. [Google Scholar] [CrossRef]
- Belussi, F.; Orsi, L.; Savarese, M. Mapping business model research: A document bibliometric analysis. Scand. J. Manag. 2019, 35, 101048. [Google Scholar] [CrossRef]
- Choudhary, K.; Sangwan, K.S. Green supply chain management pressures, practices and performance: A critical literature review. Benchmarking: Int. J. 2021, 29, 1393–1428. [Google Scholar] [CrossRef]
- Boyack, K.W.; Klavans, R. Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2389–2404. [Google Scholar] [CrossRef]
- Thukral, S.; Shree, D.; Singhal, S. Consumer behaviour towards storage, disposal and recycling of e-waste: Systematic review and future research prospects. Benchmarking Int. J. 2022. (ahead-of-print). [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [Green Version]
- Oladinrin, O.T.; Arif, M.; Rana, M.Q.; Gyoh, L. Interrelations between construction ethics and innovation: A bibliometric analysis using VOSviewer. Constr. Innov. 2022. [Google Scholar] [CrossRef]
- Kuzior, A.; Sira, M. A Bibliometric Analysis of Blockchain Technology Research Using VOSviewer. Sustainability 2022, 14, 8206. [Google Scholar] [CrossRef]
- Guleria, D.; Kaur, G. Bibliometric analysis of ecopreneurship using VOSviewer and RStudio Bibliometrix, 1989–2019. Library Hi Tech 2021, 39, 1001–1024. [Google Scholar] [CrossRef]
- Ramos, E.; Dien, S.; Gonzales, A.; Chavez, M.; Hazen, B. Supply chain cost research: A bibliometric mapping perspective. Benchmarking Int. J. 2020, 28, 1083–1100. [Google Scholar] [CrossRef]
- Sreenivasan, A.; Suresh, M. Future of healthcare start-ups in the era of digitalization: Bibliometric analysis. Int. J. Ind. Eng. Oper. Manag. 2022. (ahead-of-print). [Google Scholar] [CrossRef]
- Kumar, S.; Sahoo, S.; Lim, W.M.; Dana, L.P. Religion as a social shaping force in entrepreneurship and business: Insights from a technology-empowered systematic literature review. Technol. Forecast. Soc. Change 2022, 175, 121393. [Google Scholar] [CrossRef]
- Harju, C. The perceived quality of wooden building materials—A systematic literature review and future research agenda. Int. J. Consum. Stud. 2022, 46, 29–55. [Google Scholar] [CrossRef]
- Thakur, P.; Dhar, R.L. Impact of diversity training on employees and consumers: A review and research agenda. Int. J. Consum. Stud. 2022, 46, 1665–1690. [Google Scholar] [CrossRef]
- Paul, J.; Lim, W.M.; O’Cass, A.; Hao, A.W.; Bresciani, S. Scientific procedures and rationales for systematic literature reviews (SPAR-4-SLR). Int. J. Consum. Stud. 2021, 45, O1–O16. [Google Scholar] [CrossRef]
- Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020, 252, 119869. [Google Scholar] [CrossRef]
- Luthra, S.; Kumar, S.; Kharb, R.; Ansari, M.F.; Shimmi, S.L. Adoption of smart grid technologies: An analysis of interactions among barriers. Renew. Sustain. Energy Rev. 2014, 33, 554–565. [Google Scholar] [CrossRef]
- Hansen, D.; Shneiderman, B.; Smith, M.A. Analyzing social media networks with NodeXL: Insights from a connected world. Int. J. Hum.-Comput. Interact. 2012, 27, 405–408. [Google Scholar]
- Govindan, K.; Palaniappan, M.; Zhu, Q.; Kannan, D. Analysis of third party reverse logistics provider using interpretive structural modeling. Int. J. Prod. Econ. 2012, 140, 204–211. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Sharma, R. Analysis of the driving and dependence power of barriers to adopt industry 4.0 in Indian manufacturing industry. Comput. Ind. 2018, 101, 107–119. [Google Scholar] [CrossRef]
- Kumar, S.; Luthra, S.; Govindan, K.; Kumar, N.; Haleem, A. Barriers in green lean six sigma product development process: An ISM approach. Prod. Plan. Control. 2016, 27, 604–620. [Google Scholar] [CrossRef]
- Lin, D.; Lee, C.K.; Lau, H.; Yang, Y. Strategic response to Industry 4.0: An empirical investigation on the Chinese automotive industry. Ind. Manag. Data Syst. 2018, 118, 589–605. [Google Scholar] [CrossRef] [Green Version]
- Kamble, S.S.; Gunasekaran, A.; Sharma, R. Modeling the blockchain enabled traceability in agriculture supply chain. Int. J. Inf. Manag. 2020, 52, 101967. [Google Scholar] [CrossRef]
- Soni, U.; Jain, V.; Kumar, S. Measuring supply chain resilience using a deterministic modeling approach. Comput. Ind. Eng. 2014, 74, 11–25. [Google Scholar] [CrossRef]
- Diabat, A.; Kannan, D.; Mathiyazhagan, K. Analysis of enablers for implementation of sustainable supply chain management–A textile case. J. Clean. Prod. 2014, 83, 391–403. [Google Scholar] [CrossRef]
- Govindan, K.; Azevedo, S.G.; Carvalho, H.; Cruz-Machado, V. Lean, green and resilient practices influence on supply chain performance: Interpretive structural modeling approach. Int. J. Environ. Sci. Technol. 2015, 12, 15–34. [Google Scholar] [CrossRef] [Green Version]
- Diabat, A.; Govindan, K.; Panicker, V.V. Supply chain risk management and its mitigation in a food industry. Int. J. Prod. Res. 2012, 50, 3039–3050. [Google Scholar] [CrossRef] [Green Version]
- Haleem, A.; Sushil; Qadri, M.A.; Kumar, S. Analysis of critical success factors of world-class manufacturing practices: An application of interpretative structural modelling and interpretative ranking process. Prod. Plan. Control. 2012, 23, 722–734. [Google Scholar] [CrossRef]
- Karmaker, C.L.; Ahmed, T.; Ahmed, S.; Ali, S.M.; Moktadir, M.A.; Kabir, G. Improving supply chain sustainability in the context of COVID-19 pandemic in an emerging economy: Exploring drivers using an integrated model. Sustain. Prod. Consum. 2021, 26, 411–427. [Google Scholar] [CrossRef]
- Priyadarsini, S.L.; Suresh, M.; Huisingh, D. What can we learn from previous pandemics to reduce the frequency of emerging infectious diseases like COVID-19? Glob. Transit. 2020, 2, 202–220. [Google Scholar] [CrossRef]
- SciVal. (1 February 2022). Topic Prominence in Science FAQs—SciVal Support Center. Available online: https://service.elsevier.com/app/answers/detail/a_id/28428/supporthub/scival/p/10961/#panel20b (accessed on 23 December 2022).
- Wang, J.; Shen, L.; Zhou, W. A bibliometric analysis of quantum computing literature: Mapping and evidences from scopus. Technol. Anal. Strateg. Manag. 2021, 33, 1347–1363. [Google Scholar] [CrossRef]
- Prasad, S.; Shankar, R.; Gupta, R.; Roy, S. A TISM modeling of critical success factors of Blockchain based cloud services. J. Adv. Manag. Res. 2018, 15, 434–456. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, X. Analysis of the barriers in implementing environmental management system by interpretive structural modeling approach. Manag. Res. Rev. 2017, 40, 1316–1335. [Google Scholar] [CrossRef]
- Moktadir, M.A.; Dwivedi, A.; Ali, S.M.; Paul, S.K.; Kabir, G.; Madaan, J. Antecedents for greening the workforce: Implications for green human resource management. Int. J. Manpow. 2019, 41, 1135–1153. [Google Scholar] [CrossRef]
- Raut, R.D.; Gardas, B.; Luthra, S.; Narkhede, B.; Mangla, S.K. Analysing green human resource management indicators of automotive service sector. Int. J. Manpow. 2020, 41, 925–944. [Google Scholar] [CrossRef]
- Rajan, R.; Dhir, S. Technology management for innovation in organizations: An argumentation-based modified TISM approach. Benchmarking Int. J. 2020, 28, 1959–1986. [Google Scholar] [CrossRef]
- Crupi, A.; Del Sarto, N.; Di Minin, A.; Phaal, R.; Piccaluga, A. Open innovation environments as knowledge sharing enablers: The case of strategic technology and innovative management consortium. J. Knowl. Manag. 2020, 25, 1263–1286. [Google Scholar] [CrossRef]
- Xu, W.; Xiang, L.; Proverbs, D.; Xiong, S. The influence of COVID-19 on community disaster resilience. Int. J. Environ. Res. Public Health 2021, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.; Mangla, S.K.; Luthra, S.; Rai, D.P. Developing a sustainable smart city framework for developing economies: An Indian context. Sustain. Cities Soc. 2019, 47, 101462. [Google Scholar] [CrossRef]
- Jiang, M.; Gao, Y.; Jin, M.; Liu, S. Sustainable development of the business environment in smart cities: A hierarchical framework. Kybernetes 2020, 50, 1426–1448. [Google Scholar] [CrossRef]
- Tan, T.; Chen, K.; Xue, F.; Lu, W. Barriers to Building Information Modeling (BIM) implementation in China’s prefabricated construction: An interpretive structural modeling (ISM) approach. J. Clean. Prod. 2019, 219, 949–959. [Google Scholar] [CrossRef]
- Saka, A.B.; Chan, D.W.; Siu, F.M. Drivers of sustainable adoption of building information modelling (BIM) in the Nigerian construction small and medium-sized enterprises (SMEs). Sustainability 2020, 12, 3710. [Google Scholar] [CrossRef]
- Petrudi, S.H.H.; Tavana, M.; Abdi, M. A comprehensive framework for analyzing challenges in humanitarian supply chain management: A case study of the Iranian Red Crescent Society. Int. J. Disaster Risk Reduct. 2020, 42, 101340. [Google Scholar] [CrossRef]
- Yadav, D.K.; Barve, A. Modeling post-disaster challenges of humanitarian supply chains: A TISM approach. Glob. J. Flex. Syst. Manag. 2016, 17, 321–340. [Google Scholar] [CrossRef]
- Sindhu, S.; Nehra, V.; Luthra, S. Identification and analysis of barriers in implementation of solar energy in Indian rural sector using integrated ISM and fuzzy MICMAC approach. Renew. Sustain. Energy Rev. 2016, 62, 70–88. [Google Scholar] [CrossRef]
- Kannan, G.; Pokharel, S.; Kumar, P.S. A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resour. Conserv. Recycl. 2009, 54, 28–36. [Google Scholar] [CrossRef]
- Shakeri, H.; Khalilzadeh, M. Analysis of factors affecting project communications with a hybrid DEMATEL-ISM approach (A case study in Iran). Heliyon 2020, 6, e04430. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Singh, S.P. An integrated fuzzy-ANP and fuzzy-ISM approach using blockchain for sustainable supply chain. J. Enterp. Inf. Manag. 2021, 34, 54–78. [Google Scholar] [CrossRef]
- Tavoosi, J.; Suratgar, A.A.; Menhaj, M.B.; Mosavi, A.; Mohammadzadeh, A.; Ranjbar, E. Modeling renewable energy systems by a self-evolving nonlinear consequent part recurrent type-2 fuzzy system for power prediction. Sustainability 2021, 13, 3301. [Google Scholar] [CrossRef]
Authors | Country | TP | TC |
---|---|---|---|
M. Suresh | India | 41 | 997 |
Sushil | India | 36 | 1578 |
Rakesh D Raut | India | 30 | 1068 |
Bhaskar B Gardas | India | 27 | 933 |
Sunil Kuma Luthra | United Kingdom | 24 | 1791 |
Ravi Shankar | India | 24 | 502 |
Balkrishna Eknath Narkhede | India | 24 | 869 |
Abid Haleem | Qatar | 23 | 950 |
Sekar Vinodh | India | 20 | 413 |
Nripendra Pratap Rana | Qatar | 19 | 1116 |
Title | Authors | Citation | SDG Mapping |
---|---|---|---|
“An ISM approach for the barrier analysis in implementing green supply chain management” | [3] | 505 | |
“Industry 4.0, Digitization, and Opportunities for Sustainability” | [54] | 454 | |
“Adoption of smart grid technologies—an analysis of interaction among the barriers” | [55] | 142 |
According to TP | According to TC | ||||||
---|---|---|---|---|---|---|---|
Name | TP | TC | TC/TP | Name | TC | TP | TC/TP |
India | 818 | 21,507 | 26.3 | Denmark | 2411 | 22 | 109.6 |
China | 281 | 4905 | 17.5 | Uruguay | 59 | 1 | 59.0 |
United Kingdom | 89 | 3382 | 38.0 | France | 846 | 16 | 52.9 |
United States | 83 | 3083 | 37.1 | Belgium | 96 | 2 | 48.0 |
Denmark | 22 | 2411 | 109.6 | Netherlands | 388 | 9 | 43.1 |
Iran | 111 | 1474 | 13.3 | Kuwait | 84 | 2 | 42.0 |
Australia | 51 | 1316 | 25.8 | United Kingdom | 3382 | 89 | 38.0 |
United Arab Emirates | 35 | 1272 | 36.3 | Portugal | 486 | 13 | 37.4 |
Taiwan | 65 | 1255 | 19.3 | United States | 3083 | 83 | 37.1 |
France | 16 | 846 | 52.9 | United Arab Emirates | 1272 | 35 | 36.3 |
According to TP | ||||
---|---|---|---|---|
Journal Name | TP | TC | TC/TP | Impact Factor (2021) |
Benchmarking An International Journal | 54 | 1586 | 29.37 | 2.6 |
Sustainability | 51 | 864 | 16.94 | 3.9 |
Journal of Modelling in Management | 51 | 671 | 13.16 | 2.8 |
Journal of Cleaner Production | 45 | 3999 | 88.87 | 9.3 |
International Journal of System Assurance Engineering and Management | 28 | 562 | 20.07 | 2.0 |
According to TC | ||||
Journal of Cleaner Production | 45 | 3999 | 88.87 | 9.3 |
Global Journal of Flexible Systems Management | 27 | 1682 | 62.30 | 4.9 |
Benchmarking: An International Journal | 54 | 1586 | 29.37 | 2.6 |
International Journal of Production Research | 18 | 1160 | 64.44 | 8.6 |
Production Planning & Control | 15 | 1049 | 69.93 | 6.8 |
University | Country | TP | TC |
---|---|---|---|
Indian Institute of Technology Delhi | India | 130 | 4226 |
Amity University | India | 48 | 906 |
Amrita Vishwa Vidyapeetham University | India | 44 | 1012 |
National Institute of Industrial Engineering | India | 37 | 1725 |
Indian Institute of Technology Roorkee | India | 34 | 1285 |
Birla Institute of Technology and Science, Pilani | India | 29 | 399 |
National Institute of Technology Tiruchirappalli | India | 28 | 1149 |
University of Mumbai | India | 28 | 1126 |
Dalian University of Technology | China | 24 | 756 |
Jamia Millia Islamia | India | 22 | 817 |
Cluster 1 (Red) | Cluster 2 (Purple) | Cluster 3 (Green) | Cluster 4 (Yellow) | |
---|---|---|---|---|
Cluster theme | Integration of ISM with MICMAC/TISM/AHP/fuzzy logic and alignment to sustainability | Framing strategies for various stakeholders by using the ISM technique | Decision-related matters using the ISM technique in various fields | Evaluation of various risks by using the ISM approach |
Top keywords | ISM MICMAC Analytical Hierarchy Process TISM Fuzzy Logic Industry 4.0 Technology Adoption Driving Power Decision Theory Multicriteria Decision-Making Blockchain Sustainable Development | Competition Surveys Design/Methodology/Approach Structural Analysis Contextual Relationships Industrial Research Agile Manufacturing Product Design Automotive Industry Green Supply Chain Environmental Management | Supply Chain Enablers Commerce Planning DEMATEL Decision-Making Trial and Evaluation Laboratories Managerial Implications AgricultureInternet of Things Big Data Traceability Lean Manufacturing | Critical Success Factors Risk Assessment Numerical Model Risk Management Project Management Risk Analysis Integrated Approach Construction Industry Investments Energy Efficiency |
TP | 1434 | 282 | 425 | 265 |
TC | 29335 | 6724 | 13475 | 5322 |
TC/TP | 20.5 | 23.8 | 31.7 | 20.1 |
Article | Authors | Citation |
---|---|---|
“An ISM approach for the barrier analysis in implementing green supply chain management” | [3] | 522 |
“Industry 4.0, digitization, and opportunities for sustainability” | [54] | 406 |
“Analysis of the third-party reverse logistics provider using interpretive structural modeling” | [57] | 323 |
Article | Authors | Citation |
---|---|---|
“Analysis of the driving and dependence power of barriers to adopt industry 4.0 in Indian manufacturing industry” | [58] | 276 |
“Barriers in green lean six sigma product development process: An ISM approach” | [59] | 169 |
“Strategic response to Industry 4.0: an empirical investigation on the Chinese automotive industry” | [60] | 145 |
Article | Authors | Citation |
---|---|---|
“Modeling the blockchain-enabled traceability in the agriculture supply chain” | [61] | 305 |
“Measuring supply chain resilience using a deterministic modeling approach” | [62] | 241 |
“Analysis of enablers for implementation of sustainable supply chain management—a textile case” | [63] | 220 |
Article | Authors | Citation |
---|---|---|
“Lean, green and resilient practices influence on supply chain performance: an interpretive structural modeling approach” | [64] | 205 |
“Supply chain risk management and its mitigation in a food industry” | [65] | 197 |
“Analysis of critical success factors of world-class manufacturing practices: An application of interpretative structural modelling and interpretative ranking process” | [66] | 177 |
Name | TP | TC |
---|---|---|
M. Suresh | 11 | 248 |
Tehmina Fiaz Qazi | 6 | 38 |
Abdul Aziz Khan Niazi | 6 | 38 |
Article | Author | Citation |
---|---|---|
“Improving supply chain sustainability in the context of the COVID-19 pandemic in an emerging economy: Exploring drivers using an integrated model” | [67] | 159 |
“Factors influencing the epidemiological characteristics of pandemic COVID 19: A TISM approach” | [20] | 140 |
“What can we learn from previous pandemics to reduce the frequency of emerging infectious diseases like COVID-19” | [68] | 49 |
Topics | Prominence Percentile |
---|---|
Blockchain; Internet of Things; cloud computing | 99.982 |
Sustainability; environmental management systems | 99.947 |
Technology management; innovation; productivity | 99.928 |
Climate change adaptation; urban climate; resilience | 99.878 |
Smart cities; sustainable development | 99.863 |
Information modeling; facilities management; construction industry | 99.836 |
Humanitarian logistics; disaster relief; disaster | 99.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sreenivasan, A.; Ma, S.; Nedungadi, P.; Sreedharan, V.R.; Raman, R.R. Interpretive Structural Modeling: Research Trends, Linkages to Sustainable Development Goals, and Impact of COVID-19. Sustainability 2023, 15, 4195. https://doi.org/10.3390/su15054195
Sreenivasan A, Ma S, Nedungadi P, Sreedharan VR, Raman RR. Interpretive Structural Modeling: Research Trends, Linkages to Sustainable Development Goals, and Impact of COVID-19. Sustainability. 2023; 15(5):4195. https://doi.org/10.3390/su15054195
Chicago/Turabian StyleSreenivasan, Aswathy, Suresh Ma, Prema Nedungadi, V. Raja Sreedharan, and R. Raghu Raman. 2023. "Interpretive Structural Modeling: Research Trends, Linkages to Sustainable Development Goals, and Impact of COVID-19" Sustainability 15, no. 5: 4195. https://doi.org/10.3390/su15054195
APA StyleSreenivasan, A., Ma, S., Nedungadi, P., Sreedharan, V. R., & Raman, R. R. (2023). Interpretive Structural Modeling: Research Trends, Linkages to Sustainable Development Goals, and Impact of COVID-19. Sustainability, 15(5), 4195. https://doi.org/10.3390/su15054195