Water Conservation and Ecological Water Requirement Prediction of Mining Area in Arid Region Based on RS-GIS and InVEST: A Case Study of Bayan Obo Mine in Baotou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. InVEST Model
2.3.1. Water Yield
2.3.2. Water Conservation Model
2.4. Natural Ecological Water Demand Model
2.4.1. Reference Plant Evapotranspiration
2.4.2. Growing Season Plant Coefficient
2.4.3. Area of Various Vegetation
2.5. Artificial Ecological Water Demand Calculation Model
2.5.1. Ecological Water Demand in Artificial Green Land
2.5.2. Ecological Water Demand in Artificial Lakes
2.6. Ecological Water Demand Prediction Model
2.6.1. Qualitative Prediction
2.6.2. Quantitative Prediction
2.6.3. Quota Method Forecasting
2.7. Statistical Analysis
3. Results and Discussion
3.1. Water Yield and Water Conservation in the Bayan Obo Mine
3.2. Estimation of the Ecological Water Demand in the Bayan Obo Mining Area
3.2.1. Estimation of the Natural Ecological Water Demand
3.2.2. Estimations of the Artificial and Total Ecological Water Demand
3.3. Ecological Water Demand Prediction
3.3.1. Prediction of Natural Ecological Water Demand
3.3.2. Predictions of the Artificial and Total Ecological Water Demand
4. Conclusions and Suggestions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, K.; Fu, Q.; Meng, J.; Li, T.X.; Pei, W. Analysis of the spatial variation and identification of factors affecting the water resources carrying capacity based on the cloud model. Water Resour. Manag. 2018, 32, 2767–2781. [Google Scholar] [CrossRef]
- Hu, Q.; Huang, G.H.; Cai, Y.P.; Sun, W. Planning of electric power generation systems under multiple uncertainties and constraint-violation levels. J. Environ. Inform. 2014, 23, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Water Resources of the People’s Republic of China. China Water Resources Bulletin; China Water & Power Press: Beijing, China, 2010.
- Ministry of Water Resources of the People’s Republic of China. China Water Resources Bulletin; China Water & Power Press: Beijing, China, 2019.
- Naghdi, S.; Bozorg-Haddad, O.; Khorsandi, M.; Chu, X. Multi-objective optimization for allocation of surface water and groundwater resources. Sci. Total Environ. 2021, 776, 146026. [Google Scholar] [CrossRef]
- Armentrout, G.W.; Wilson, J.F. Assessment of low flows in streams in northeastern Wyoming. USGS Water Resour. Investig. Rep. 1987, 4, 533–538. [Google Scholar]
- Mei, H.; Yang, X.Y.; Liu, Y.; Du, H. The research progress of ecological water requirement in China and abroad. Procedia Environ. Sci. 2010, 2, 1904–1911. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Lu, Y.Y.; Zhou, Q.; Wu, F. Optimal water allocation scheme based on trade-offs between economic and ecological water demands in the Heihe River Basin of Northwest China. Sci. Total Environ. 2019, 703, 134958. [Google Scholar] [CrossRef] [PubMed]
- Sajedipour, S.; Zarei, H.; Oryan, S. Estimation of environmental water requirements via an ecological approach: A case study of Bakhtegan Lake, Iran. Ecol. Eng. 2017, 100, 246–255. [Google Scholar] [CrossRef]
- Zhang, C.; Wan, Z.Y.; Jing, Z.; Zhang, S.H.; Zhao, Y. Calculation of ecological water requirements of urban rivers using a hydrological model: A case study of Beiyun River. J. Clean. Prod. 2020, 262, 121368. [Google Scholar] [CrossRef]
- Chi, D.K.; Wang, H.; Li, X.B.; Liu, H.H.; Li, X.H. Estimation of the ecological water requirement for natural vegetation in the Ergune River basin in Northeastern China from 2001 to 2014. Ecol. Indic. 2018, 92, 141–150. [Google Scholar] [CrossRef]
- Huang, F.; Ochoa, C.G.; Chen, X.; Zhang, D.R. Modeling oasis dynamics driven by ecological water diversion and implications for oasis restoration in arid endorheic basins. J. Hydrol. 2020, 593, 125774. [Google Scholar] [CrossRef]
- Dévai, G.; Gyöngy, M.; Berta, C.; Bogár, F.; Bogár, I.; Varga, G.; Zoltán, L.; József, S.L.; Somlyai, I.; Nagy, S.A.; et al. Long-term analysis of River Tisza water level data with regard to the ecological water demand of floodplain water bodies. Landscape Environ. 2021, 15, 16–32. [Google Scholar] [CrossRef]
- Barton, L.; Flottmann, S.J.; Stefanovia, K.T.; Colmer, T.D. Approaches to scheduling water allocations to kikuyugrass grown on a water repellent soil in a drying-climate. Agric. Water Manag. 2020, 230, 105957. [Google Scholar] [CrossRef]
- Wang, L.Q.; Liang, T.; Zhang, Q.; Li, K.X. Rare earth element components in atmospheric particulates in the Bayan Obo mine region. Environ. Res. 2014, 131, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Li, K.X.; Liang, T.; Wang, L.Q.; Yang, Z.P. Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China. J Geogr. Sci. 2015, 25, 1439–1451. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.H.; Liang, T.; Li, K.X.; Wang, L.Q. Source and path identification of metals pollution in a mining area by PMF and rare earth element patterns in road dust. Sci. Total Environ. 2018, 633, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Luo, Y.F.; Zheng, C.L.; An, C.J.; Mi, Z.S. Spatial distribution, source identification, and risk assessment of heavy metals in the soils from a mining region: A case study of Bayan Obo in northwestern China. Hum. Ecol. Risk Assess. 2021, 27, 1276–1295. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Nie, L.; Mckinley, J.M.; Han, Z. Geochemical background and dispersion pattern of the world’s largest REE deposit of Bayan Obo, China. J. Geochem. Explor. 2020, 215, 106545. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop requirements. In Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar] [CrossRef]
- Shahid, S. Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh. Clim. Change 2011, 105, 433–453. [Google Scholar] [CrossRef]
- Paredes, P.; Pereira, L.S.; Almorox, J.; Darouich, H. Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables. Agric. Water Manag. 2020, 240, 106210. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.B.; Han, R.B.; Ge, Y.Q. Variability of vegetation growth season in different latitudinal zones of North China: A monitoring by NOAA NDVI and MSAVI. J. Appl. Ecol. 2006, 17, 2236–2240. [Google Scholar]
- Chen, C.; He, B.; Guo, L.L.; Zhang, Y.F.; Xie, X.M.; Chen, Z.Y. Identifying critical climate periods for vegetation growth in the northern hemisphere. J. Geophys. Res. Biogeosci. 2018, 123, 2541–2552. [Google Scholar] [CrossRef]
- Linacre, E.T. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric. Meteorol. 1977, 18, 409–424. [Google Scholar] [CrossRef]
- Ethier, S.N.; Kurtz, T.G. Markov processes: Characterization and convergence. Biometrics 1986, 43, 113–122. [Google Scholar] [CrossRef]
- Zhang, W.P.; Chen, J.P.; Yu, Q.Q.; Gu, X.L. Corrosion evolution of steel bars in RC structures based on Markov chain modeling. Struct. Saf. 2021, 88, 102037. [Google Scholar] [CrossRef]
- Wu, F.; Chen, F.L.; Zhang, Z.J.; Long, A.H.; He, X.L. Water demand forecast in Shihezi City based on the improved grey model. J. Pop. Water Eng. 2020, 31, 76–82. [Google Scholar] [CrossRef]
- Yousuf, M.U.; Al-Bahadly, I.; Avci, E. A modified GM(1,1) model to accurately predict wind speed. Sustain. Energy Technol. Assess. 2021, 43, 100905. [Google Scholar] [CrossRef]
- Wang, Y.H.; Dang, Y.G.; Li, Y.Q.; Liu, S.F. An approach to increase prediction precision of GM(1,1) model based on optimization of the initial condition. Expert Syst. Appl. 2010, 37, 5640–5644. [Google Scholar] [CrossRef]
- Tsai, S.B.; Xue, Y.Z.; Zhang, J.Y.; Chen, Q.; Liu, Y.B.; Zhou, J.; Dong, W.W. Models for forecasting growth trends in renewable energy. Renew. Sust. Energy Rev. 2017, 77, 1169–1178. [Google Scholar] [CrossRef]
- Gao, G.; Chen, D.; Ren, G.; Chen, Y.; Liao, Y. Trend of potential evapotranspiration over China during 1956 to 2000. Geogr. Res. 2006, 25, 378–387. Available online: http://d.wanfangdata.com.cn/periodical/dlyj200603002 (accessed on 22 February 2023).
- Nan, J.; Xiao, J.; Liu, Z. Research on reference crop evaporation’s variation with time series in Northeast Region. Water Sav. Irrig. 2012, 37, 15–17. Available online: http://www.cnki.com.cn/Article/CJFDTotal-JSGU201201006.htm (accessed on 22 February 2023).
- Hu, X.H.; Chen, M.T.; Liu, D.; Li, D.; Jin, L.; Liu, S.H.; Cui, Y.L.; Dong, B.; Khan, S.; Luo, Y.F. Reference evapotranspiration change in Heilongjiang Province, China from 1951 to 2018: The role of climate change and rice area expansion. Agric. Water Manag. 2021, 253, 106912. [Google Scholar] [CrossRef]
- Lin, S.; Wang, G.; Hu, Z.; Huang, K.; Sun, J.; Sun, X. Spatiotemporal variability and driving factors of Tibetan plateau water use efficiency. J. Geophys. Res. Atmos. 2020, 125, e2020JD032642. [Google Scholar] [CrossRef]
Year | Water Yield (m3) | Volume Per Unit Area (m3/km2) | Water Conservation (m3) | Volume Per Unit Area (m3/km2) |
---|---|---|---|---|
1990 | 5.5 × 104 | 619.76 | −6.96 × 106 | −7.8 × 104 |
2000 | 4.9 × 104 | 549.79 | −7.72 × 106 | −8.7 × 104 |
2010 | 3.6 × 104 | 399.84 | −10.26 × 106 | −11.5 × 104 |
2020 | 1.7 × 104 | 189.93 | −13.01 × 106 | −14.6 × 104 |
Natural Ecological Water Demand (m3) | Artificial Ecological Water Demand (m3) | Total Ecological Water Demand (m3) | |||
---|---|---|---|---|---|
Arbors | Shrubs | Grassland | Artificial Green Land | Artificial Lake | |
1.93 × 106 | 2.89 × 106 | 1.50 × 108 | 3.74 × 106 | 9.7 × 104 | |
1.54 × 108 | 3.84 × 106 | 1.58 × 108 |
Years | Natural Ecological Water Demand (m3) | Artificial Ecological Water Demand (m3) | Total Ecological Water Demand (m3) | |||
---|---|---|---|---|---|---|
Arbors | Shrubs | Grassland | Artificial Green Land | Artificial Lake | ||
2025 | 2.36 × 106 | 3.32 × 106 | 1.40 × 108 | 4.03 × 106 | 9.7 × 104 | 1.50 × 108 |
2030 | 2.68 × 106 | 3.07 × 106 | 1.33 × 108 | 4.61 × 106 | 9.7 × 104 | 1.43 × 108 |
2035 | 3.05 × 106 | 2.84 × 106 | 1.26 × 108 | 5.47 × 106 | 9.7 × 104 | 1.37 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.-Q.; Geng, C.-X.; Wang, L.; Zheng, T.-T.; Jiang, Q.-H.; Yang, T.; Liu, Y.-Q.; Wang, Z. Water Conservation and Ecological Water Requirement Prediction of Mining Area in Arid Region Based on RS-GIS and InVEST: A Case Study of Bayan Obo Mine in Baotou, China. Sustainability 2023, 15, 4238. https://doi.org/10.3390/su15054238
Wang Q-Q, Geng C-X, Wang L, Zheng T-T, Jiang Q-H, Yang T, Liu Y-Q, Wang Z. Water Conservation and Ecological Water Requirement Prediction of Mining Area in Arid Region Based on RS-GIS and InVEST: A Case Study of Bayan Obo Mine in Baotou, China. Sustainability. 2023; 15(5):4238. https://doi.org/10.3390/su15054238
Chicago/Turabian StyleWang, Qian-Qian, Cheng-Xin Geng, Lu Wang, Ting-Ting Zheng, Qing-Hong Jiang, Tong Yang, Yong-Qi Liu, and Zhe Wang. 2023. "Water Conservation and Ecological Water Requirement Prediction of Mining Area in Arid Region Based on RS-GIS and InVEST: A Case Study of Bayan Obo Mine in Baotou, China" Sustainability 15, no. 5: 4238. https://doi.org/10.3390/su15054238
APA StyleWang, Q. -Q., Geng, C. -X., Wang, L., Zheng, T. -T., Jiang, Q. -H., Yang, T., Liu, Y. -Q., & Wang, Z. (2023). Water Conservation and Ecological Water Requirement Prediction of Mining Area in Arid Region Based on RS-GIS and InVEST: A Case Study of Bayan Obo Mine in Baotou, China. Sustainability, 15(5), 4238. https://doi.org/10.3390/su15054238