Predicting the Impact of Climate Change on the Distribution of Rhipicephalus sanguineus in the Americas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Presence Records
2.3. Bioclimatic Predictor Variables
2.4. Model Construction
2.5. Model Evaluation
2.6. Final Model
2.7. Calculating Percent Change of Geographic Distribution and Model Evaluation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Sayed, A.; Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. Int. 2020, 27, 22336–22352. [Google Scholar] [CrossRef] [PubMed]
- Jongejan, F.; Uilenberg, G. The global importance of ticks. Parasitology 2004, 129 (Suppl. S1), S3–S14. [Google Scholar] [CrossRef] [PubMed]
- Dumic, I.; Severnini, E. “Ticking bomb”: The impact of climate change on the incidence of Lyme disease. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 5719081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gondard, M.; Cabezas-Cruz, A.; Charles, R.A.; Vayssier-Taussat, M.; Albina, E.; Moutailler, S. Ticks and tick-borne pathogens of the Caribbean: Current understanding and future directions for more comprehensive surveillance. Front. Cell Infect. Microbiol. 2017, 7, 490. [Google Scholar] [CrossRef] [PubMed]
- Randolph, S.; Rogers, D. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc. Biol. Sci. 2000, 267, 1741–1744. [Google Scholar] [CrossRef] [Green Version]
- Ogden, N.; Lindsay, L. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different. Trends Parasitol. 2016, 32, 646–656. [Google Scholar] [CrossRef]
- Gray, J.; Dantas-Torres, F.; Estrada-Peña, A.; Levine, M. Systematics and ecology of the brown dog tick, Rhipicephalus sanguineus. Ticks Tick Borne Dis. 2013, 4, 171–180. [Google Scholar] [CrossRef]
- Pascoe, E.; Nava, S.; Labruna, M.; Paddock, C.; Levin, M.; Marcantonio, M.; Foley, J. Predicting the northward expansion of tropical lineage Rhipicephalus sanguineus sensu lato ticks in the United States and its implications for medical and veterinary health. PLoS ONE 2022, 17, e0271683. [Google Scholar] [CrossRef]
- Moraes-Filho, J.; Krawczak, F.; Costa, F.; Soares, J.; Labruna, M. Comparative Evaluation of the Vector Competence of Four South American Populations of the Rhipicephalus sanguineus Group for the Bacterium Ehrlichia canis, the Agent of Canine Monocytic Ehrlichiosis. PLoS ONE 2015, 10, e0139386. [Google Scholar] [CrossRef]
- Nava, S.; Mastropaolo, M.; Venzal, J.; Mangold, A.; Guglielmone, A. Mitochondrial DNA analysis of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) in the Southern Cone of South America. Vet. Parasitol. 2012, 190, 547–555. [Google Scholar] [CrossRef]
- Backus, L.; López-Pérez, A.; Foley, J. Effect of Temperature on Host Preference in Two Lineages of the Brown Dog Tick, Rhipicephalus sanguineus. Am. J. Trop. Med. Hyg. 2021, 104, 2305–2311. [Google Scholar] [CrossRef]
- Alkishe, A.; Raghavan, R.; Peterson, A. Likely Geographic Distributional Shifts among Medically Important Tick Species and Tick-Associated Diseases under Climate Change in North America: A Review. Insects 2021, 12, 225. [Google Scholar] [CrossRef]
- Álvarez-Hernández, G.; González-Roldán, J.; Hernández-Milán, N.; Lash, R.; Behravesh, C.; Paddock, C. Rocky Mountain spotted fever in Mexico: Past, present and future. Lancet Infect. Dis. 2017, 17, e189–e196. [Google Scholar] [CrossRef]
- Hausfather, Z. CMIP6: The Next Generation of Climate Models Explained. Carbon Brief. 2021. Available online: https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained/ (accessed on 13 January 2023).
- Swart, N.; Cole, J.; Kharin, V.; Lazare, M.; Scinocca, J.; Gillett, N.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. Canadian Earth System model version 5 (CanESM 5.0.3). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.; Kram, T.; Krey, V.; Lamarque, J.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. Bioscience 2017, 67, 534–545. [Google Scholar] [CrossRef]
- Konowalik, K.; Nosol, A. Evaluation metrics and validation of presence-only species distribution models based on distributional maps with varying coverage. Sci. Rep. 2021, 11, 1482. [Google Scholar] [CrossRef]
- CONAGUA. Available online: https://www.gob.mx/conagua (accessed on 25 September 2022).
- Akinwande, M.O.; Dikko, H.; Samson, A. Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis. Open J. Stat. 2015, 5, 754–767. [Google Scholar] [CrossRef] [Green Version]
- Cobos, M.; Peterson, A.; Barve, N.; Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [Green Version]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project 2023. Available online: https://www.qgis.org/es/site/ (accessed on 11 July 2022).
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Oxford, UK, 2012; pp. 521–536. [Google Scholar]
- Alkishe, A.; Cobos, M.E.; Peterson, A.T.; Samy, A.M. Recognizing sources of uncertainty in disease vector ecological niche models: An example with the tick Rhipicephalus sanguineus sensu lato. Perspect. Ecol. Conserv. 2020, 18, 91–102. [Google Scholar] [CrossRef]
- Clarke-Crespo, E.; Moreno-Arzate, C.N.; López-González, C.A. Ecological Niche Models of Four Hard Tick Genera (Ixodidae) in Mexico. Animals 2020, 10, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demma, L.; Traeger, M.; Nicholson, W.; Paddock, C.; Blau, D.; Eremeeva, M.; Dasch, G.; Levin, M.L.; Singleton, J., Jr.; Zaki, S.R.; et al. Rocky Mountain Spotted Fever from an Unexpected Tick Vector in Arizona. N. Engl. J. Med. 2005, 353, 587–594. [Google Scholar] [CrossRef] [PubMed]
- López-Pérez, A.; Sanchez-Montes, S.; Foley, J.; Guzmán-Cornejo, C.; Colunga-Salas, P.; Pascoe, E.; Becker, I.; Delgado-de la Mora, J.; Licona-Enriquez, J.; Suzan, G. Molecular evidence of Borrelia burgdorferi sensu stricto and Rickettsia massiliae in ticks collected from a domestic-wild carnivore interface in Chihuahua, Mexico. Ticks Tick Borne Dis. 2019, 10, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Zazueta, O.; Armstrong, P.; Márquez-Elguea, A.; Hernández, N.; Peterson, A.; Ovalle-Marroquín, D.; Fierro, M.; Arroyo-Machado, R.; Rodriguez-Lomeli, M.; Trejo-Dozal, G.; et al. Rocky Mountain Spotted Fever in a Large Metropolitan Center, Mexico–United States Border, 2009–2019. Emerg. Infect. Dis. 2021, 27, 1567–1576. [Google Scholar] [CrossRef]
- Álvarez-López, D.; Ochoa-Mora, E.; Heitman, K.; Binder, A.; Álvarez-Hernández, G.; Armstrong, P. Epidemiology and Clinical FeatuRes. of Rocky Mountain Spotted Fever from Enhanced Surveillance, Sonora, Mexico: 2015–2018. Am. J. Trop. Med. Hyg. 2021, 104, 190–197. [Google Scholar] [CrossRef]
- Karl, T.; Melillo, J.; Peterson, T.; Hassol, S. Global Climate Change Impacts in the United States; Cambridge University Press: Cambridge, UK, 2009; 189p. [Google Scholar]
- Silveira, J.; Passos, L.; Ribeiro, M. Population dynamics of Rhipicephalus sanguineus (Latrielle, 1806) in Belo Horizonte, Minas Gerais state, Brazil. Vet. Parasitol. 2009, 161, 270–275. [Google Scholar] [CrossRef]
- Dantas-Torres, F.; Giannelli, A.; Figueredo, L.; Otranto, D. Effects of prolonged exposure to low temperature on eggs of the brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae). Vet. Parasitol. 2010, 171, 327–330. [Google Scholar] [CrossRef]
- Sosa-Gutiérrez, C.; Vargas-Sandoval, M.; Torres, J.; Gordillo-Pérez, G. Tick-borne rickettsial pathogens in questing ticks, removed from humans and animals in Mexico. J. Vet. Sci. 2016, 17, 353–360. [Google Scholar] [CrossRef]
- Walker, J.; Keirans, J.; Horak, I. The Transmission of Tick-Borne Diseases of Animals and Humans by Rhipicephalus Species. The Genus Rhipicephalus (Acari, Ixodidae): A Guide to the Brown Ticks of the World; Cambridge University Press: Cambridge, UK, 2000; pp. 610–627. [Google Scholar]
- Zemtsova, G.; Apanaskevich, D.; Reeves, W.; Hahn, M.; Snellgrove, A.; Levin, M. Phylogeography of Rhipicephalus sanguineus sensu lato and its relationships with climatic factors. Exp. Appl. Acarol. 2016, 69, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Cicuttin, G.; Brambati, D.; Rodríguez, J.; Lebrero, C.; de Salvo, M.; Beltrán, F.; Gury, F.; Jado, I.; Anda, P. Molecular characterization of Rickettsia massiliae and Anaplasma platys infecting Rhipicephalus sanguineus ticks and domestic dogs. Buenos Aires. (Argentina). Ticks Tick Borne Dis. 2014, 5, 484–488. [Google Scholar] [CrossRef]
- Šlapeta, J.; Chandra, S.; Halliday, B. The “tropical lineage” of the brown dog tick Rhipicephalus sanguineus sensu lato identified as Rhipicephalus linnaei. Int. J. Parasitol. 2021, 51, 431–436. [Google Scholar] [CrossRef]
Bioclimatic Variables | Code | VIF |
---|---|---|
Mean Diurnal Range | BIO02 | 1.962970 |
Isothermality | BIO03 | 2.581188 |
Mean Temperature of Warmest Quarter | BIO10 | 1.191631 |
Precipitation of Wettest Month | BIO13 | 4.735302 |
Precipitation of Driest Month | BIO14 | 3.929649 |
Precipitation Seasonality | BIO15 | 3.774791 |
Precipitation of Warmest Quarter | BIO18 | 3.257963 |
Precipitation of Coldest Quarter | BIO19 | 2.930041 |
Pathway | Model | Partial ROC | Omision 5% | Delta AICc |
---|---|---|---|---|
2050_SSP2-4.5 | M_0.4_F_l_Set_2 | 1.3367 | 0.0454 | 0.0000 |
2050_SSP5-8.5 | M_0.9_F_l_Set_2 | 1.3856 | 0.0303 | 0.0000 |
2070_SSP2-4.5 | M_0.4_F_l_Set_1 | 1.2829 | 0.0909 | 0.0000 |
2070_SSP5-8.5 | M_0.4_F_l_Set_1 | 1.3637 | 0.0454 | 0.0000 |
Observed | CanESM5 | CanESM5 | ||
---|---|---|---|---|
2050 SSP2-4.5 | 2050 SSP5-8.5 | 2070 SSP2-4.5 | 2070 SSP5-8.5 | |
Increase | 5.3 | 5.35 | 5.37 | 5.33 |
Persistence Presence | 30.1 | 30.2 | 30.43 | 29.5 |
Persistence Absence | 58.9 | 58.94 | 58.92 | 58.97 |
Reduction | 5.6 | 5.51 | 5.28 | 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Pérez, M.; Feria Arroyo, T.P.; Venegas Barrera, C.S.; Sosa-Gutiérrez, C.; Torres, J.; Brown, K.A.; Gordillo Pérez, G. Predicting the Impact of Climate Change on the Distribution of Rhipicephalus sanguineus in the Americas. Sustainability 2023, 15, 4557. https://doi.org/10.3390/su15054557
Sánchez Pérez M, Feria Arroyo TP, Venegas Barrera CS, Sosa-Gutiérrez C, Torres J, Brown KA, Gordillo Pérez G. Predicting the Impact of Climate Change on the Distribution of Rhipicephalus sanguineus in the Americas. Sustainability. 2023; 15(5):4557. https://doi.org/10.3390/su15054557
Chicago/Turabian StyleSánchez Pérez, Marcos, Teresa Patricia Feria Arroyo, Crystian Sadiel Venegas Barrera, Carolina Sosa-Gutiérrez, Javier Torres, Katherine A. Brown, and Guadalupe Gordillo Pérez. 2023. "Predicting the Impact of Climate Change on the Distribution of Rhipicephalus sanguineus in the Americas" Sustainability 15, no. 5: 4557. https://doi.org/10.3390/su15054557
APA StyleSánchez Pérez, M., Feria Arroyo, T. P., Venegas Barrera, C. S., Sosa-Gutiérrez, C., Torres, J., Brown, K. A., & Gordillo Pérez, G. (2023). Predicting the Impact of Climate Change on the Distribution of Rhipicephalus sanguineus in the Americas. Sustainability, 15(5), 4557. https://doi.org/10.3390/su15054557