How the Distribution of Photon Delivery Impacts Crops in Indoor Plant Environments: A Review
Abstract
:1. Introduction
2. Overview of Lighting and Photobiology in Indoor Plant Environments
3. Light Tuning in Closed Environment Plant Production
3.1. Photoperiodic and Intensity Effects under Constant Daily Light Integral
Photoperiod (h) and PPFD (µmol·m−2·s−1), Respectively | DLI (mol·m−2·d−1) | Crop and Cultivar | Light Source and Spectrum | Crop Response to Longer Photoperiod—Lower Intensity | Reference |
---|---|---|---|---|---|
10, 12, 14, 16, 18, 20 h 444, 370, 318, 278, 247, 222 µmol·m−2·s−1 | 16 | Lettuce (Lactuca sativa ‘Little gem’) Mizuna (Brassica rapa ‘japonica’) | Full-spectrum white LED | Light interception ↑ Chlorophyll content index ↑ Quantum yield of PSII ↑ Aerial biomass (dry) ↑ Instantaneous CO2 assimilation ↓ Total leaf area Δ Area per leaf Δ | [35] |
12, 15, 18, 21 h 278, 222, 185, 159 µmol·m−2·s−1 | 12 | Rudbeckia (Rudbeckia fulgida ‘Goldsrum’) seedlings | Sunlight and supplemental cool white LED | Shoot dry mass ↑ Root dry mass ↑ Leaf area ↑ Chlorophyll content index ↑ Specific leaf area ↓ | [32] |
8, 12, 16, 24 h 350, 230, 175, 115 µmol·m−2·s−1 | 10 | Strawberry (fragaria x ananassa ‘Elan’ and ‘Yotsuboshi’) | Sunlight or LED | Dry mass ↑ Leaf area ↑ Time to flower bud initiation (‘Elan’ only) ↓ | [38] |
12, 16 h 200, 150 µmol·m−2·s−1 | 8.64 | Lettuce (Lactuca sativa ‘Ziwei’) | Fluorescent and LED (R:B 1.2, 1.8, 2.2) | Root fresh mass ↑ Root dry mass ↑ Soluble sugar content Δ | [36] |
7, 10, 13, 16, 19, 21 h 457, 320, 246, 200, 168, 145 µmol·m−2·s−1 | 11.5 | Cucumber (Cucumis sativus ‘Tianjiao No 5′) seedlings | Full-spectrum white LED | Pigment content ↑ Fresh and dry mass ↑ Cellulose content ↑ Plant height ↓ Hypocotyl length ↓ Specific leaf area ↓ Sucrose content ↑, peaked at 16 h | [39] |
16, 20, 24 h 144, 180, 120 µmol·m−2·s−1 | 10.4 | Lettuce (Lactuca sativa ‘Rex’ and ‘Rouxai’) | Warm white and red LEDs | Leaf length (‘Rex’ only) ↓ SPAD (‘Rouxai’ only) ↑ | [44] |
7, 10, 13, 16, 19, 21 h 595, 416, 230, 260, 219, 189 µmol·m−2·s−1 (DLI 15 mol·m−2·d−1) 794, 555, 427, 347, 292, 252 µmol·m−2·s−1 (DLI 20 mol·m−2·d−1) | 15 20 | Lettuce (Lactuca sativa ‘Green towers’) | Cool white LED | Quantum yield of PSII ↑ Daily photochemical integral ↑ | [46] |
12, 16 h 200, 150 µmol·m−2·s−1 | 8.64 | Lettuce (Lactuca sativa ‘Coastal Star’) | LED (R:B 2:1) | Fresh and dry mass ↑ SPAD ↑ PN max ↑ | [40] |
10, 12, 14, 16 h 176, 146, 125, 111 µmol·m−2·s−1 | 6.35 | Cucumber (Cucumis sativus ‘Yuexiu No. 3′) seedlings | LED (R:B 1:1) | Shoot fresh mass Δ Shoot dry mass ↑ Root fresh and dry mass ↑ Leaf area ratio ↓ Soluble sugar content ↑ Soluble protein content ↓ | [47] |
8, 12, 16 h 249, 165, 125 µmol·m−2·s−1 | 7.2 | Stevia (Stevia rebaudiana cv ns) | LED (R:B:G 4:1:1) | Leaf and stem fresh mass ↑, lowest at 12 h Photon conversion efficiency ↑ Metabolite yield ↑ | [34] |
12, 16, 20, 24 h 266, 200, 160, 133 µmol·m−2·s−1 | 11.52 | Watercress (Nasturtium officinale cv ns) | LED (R:B 7:3) | Shoot fresh and dry mass, reduced only in 24 h Stem length Δ SPAD Δ Net photosynthetic rate ↓ Stomatal conductance ↓ | [41] |
10, 14, 18, 22 h 280, 200, 155, 127 µmol·m−2·s−1 | 10 | leaf mustard (Brassica juncea ‘Czern’) red mustard (Brassica juncea cv ns) kale (Brassica oleracea ‘Red Russian’) | White fluorescent | Shoot fresh weight Δ (all) Leaf number ↓ (peaked at 14, red mustard and kale) Leaf area Δ (all) | [42] |
3.2. Cyclic Lighting Regimes
Light/Dark Cycles (h/h) | Light Intensity and Spectrum | Crop and Cultivar | Crop Response to Longer Light Cycles/Fewer L/D Cycles | Reference |
---|---|---|---|---|
12/12, 6/6, 3/3 | 250 µmol·m−2·s−1 R:B (83:17) | Romaine lettuce (Lactuca sativa cv ns) | Response to a longer light cycle Electron transfer potential ↑ Chlorophyll content ↑ Leaf area ↑ Biomass ↑ Root/shoot ratio ↓ Specific leaf area ↓ Light saturated net photosynthetic rate ↑ Light saturation point ↑ Light compensation point↑ | [51] |
18/6, 9/3, 6/2 | 732 µmol·m−2·s−1 LED (R:B 5:2) | Tomato (Solanum lycopersicum ‘Caniles’) Cucumber (Cucumis sativys ‘Litoral’) | To longer light cycle: Tomato: Chlorophyll content ↓ Cucumber: Dry yield ↓ Chlorophyll content ↓ | [54] |
12/12, 6/6, 3/3 | 200 µmol·m−2·s−1 LED R:B (83:17) | Lettuce (Lactuca sativa ‘Adriana’ and ‘Coastal Star’) | Longer light-dark cycle: Biomass ↑ Leaf area ↑ Leaf L:W ratio ↑ Photosynthetic rate ↑ Stomatal conductance ↑ | [50] |
18/6, 9/3, 6/2 | 200–290 µmol·m−2·s−1 LED R:B:W (8:1:1) | Lettuce (Lactuca sativa ‘Hongyeom Jeockchukmyeon’) | Low intensity, response to longer photoperiod: Dry yield ↑ Anthocyanin content ↑ Leaf length ↓ Photosynthetic rate ↑ High intensity, response to longer photoperiod: Anthocyanin content ↓ Photosynthetic rate ↑ | [48] |
8/4, 16/8 | 200 µmol·m−2·s−1 LED (R:B 4:1) | Lettuce (Lactuca sativa ‘Yidali’) | Response to longer photoperiod, fewer L/D cycles Fresh shoot and root mass ↓ Dry root and shoot mass ↓ Leaf area ↓ Specific leaf mass Δ Chlorophyll content ↓ Soluble sugars ↓ Soluble proteins Δ | [62] |
5.3/2.7, 16/8 | 125 µmol·m−2·s−1 LED (R:B:G 4:1:1) | Stevia (Stevia rebaudiana cv ns) | Response to longer photoperiod, fewer L/D cycles Leaf and stem fresh mass ↑ Leaf dry mass Δ Photon conversion efficiency ↑ Biomass EUE ↑ Metabolite EUE ↑ Metabolite yield ↑ | [34] |
3.3. Intermittent and Fluctuating Lighting Regimes
Light Treatment | DLI (mol·m−2·d−1), Quality, and Duration | Crop | Impact of Fluctuating Treatment Compared to Control | Reference | |
---|---|---|---|---|---|
Intermittent | 15 min light/dark intervals over 16 h: 200/200 (control), 240/160, 280/120, 320/80, 360/40, 400/0 µmol·m−2·s−1 | 11.5 mol·m−2·d−1 LED full spectrum 6 weeks | Lettuce (Lactuca sativa ‘Little Gem’ and ‘Green Salad’) | Chlorophyll content index ↓ Leaf area ↓ Dry mass ↓ Specific leaf area Net assimilation rate ↓ | [63] |
[4 h light × 1, 10 min light/50 min dark × 4] × 3 16/8 control | 25 (intermittent), 29 (control) mol·m−2·d−1 LED (R:B 2:1) 24 days | Genovese basil (Ocimum basilicum cv ns) | Net photosynthetic rate ↓ Dry mass ↑ Chlorophyll content index Δ | [64] | |
60 min light 200 µmol·m−2·s−1/30 min dark over 24 h ·16/8 @ 200 µmol·m−2·s−1 control | 11.5 mol·m−2·d−1 LED (R:B 9:1) 60 days | Lettuce (Lactuca sativa ‘Green Oak Leaf’) | Fresh mass ↑ Dry mass↑ Plant height ↑ Leaf number Δ Chlorophyll content Δ Soluble sugar Δ | [52] | |
Fluctuating | Low and high intensity dynamic fluctuations (mimic daylight) low: 100–750 (mean 230) µmol·m−2·s−1, over 12 h high: 100–1500, (mean 460) µmol·m−2·s−1, over 12 h control: 460 µmol·m−2·s−1 constant 12 h 230 µmol·m−2·s−1 constant 12 h | 10 (low), 20 (high) mol·m−2·d−1 Full spectrum white LED 27 days | Arabidopsis Arabidopsis thaliana) | Specific leaf area ↑ Light absorption ↓ Leaf area ↓ Dry mass ↓ Photosynthetic rate/leaf area Δ | [66] |
[1 min 900, 4 min 90 (mean 252 µmol·m−2·s−1)] over 12 h 250 µmol·m−2·s−1 over 12 h | 10 mol·m−2·d−1 Full-spectrum white LED 14 days | Arabidopsis Arabidopsis thaliana) | Projected leaf area ↓ Operating efficiency of PSII ↓ | [67] | |
Random 3–6 min ranging from 90–420 (avg 180) µmol·m−2·s−1 over 12 h · 180 µmol·m−2·s−1 over 12 h | 10.4 mol·m−2·d−1 LED spectrum not specified 28 days | Basil (Ocimum basilicum ‘Aroma 2′) Lettuce (Lactuca sativa ‘Galiano’) | Lettuce Fresh and dry mass ↓ Leaf number ↓ Basil Dry mass ↓ | [65] | |
[15 h 150 µmol·m−2·s−1, 60 min 500 µmol·m−2·s−1] × 1, 8 h dark [5 h 150 µmol·m−2·s−1, 20 min 500 µmol·m−2·s−1] × 3, 8 h dark [2.5 h 150 µmol·m−2·s−1, 10 min 500 µmol·m−2·s−1] × 6, 8 h dark [1.25 h 150 µmol·m−2·s−1, 5 min 500 µmol·m−2·s−1] × 12, 8 h dark Control 170 µmol·m−2·s−1 16 h, 8 h dark | 9.79 mol·m−2·d−1 LED (R:B 4:1) 20 days | Lettuce (Lactuca sativa ‘Zishan’) | Fresh root and shoot mass Δ Dry root and shoot mass Δ Soluble sugars ↓ Soluble protein Δ | [69] |
4. Impact on Capital and Operational Expenditure
4.1. Impact on Capital Expenditure (CAPEX)
4.2. Impact on Operational Expenditure
5. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Population to Reach 8 Billion on 15 November 2022. Available online: https://www.un.org/en/desa/world-population-reach-8-billion-15-november-2022 (accessed on 27 December 2022).
- Statistics Canada. Table 32-10-0456-01 Production and Value of Greenhouse Fruits and Vegetables. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210045601 (accessed on 17 June 2022).
- Milanes, C.; Kadir, T.; Lock, B.; Miller, G.; Monserrat, L.; Randles, K. Indicators of Climate Change in California; California Environmental Protection Agency: Sacramento, CA, USA, 2022.
- Fortune Business Insights. Vertical Farming Market Size, Share & COVID-19 Impact Analysis, by Type (Hydroponics, Aeroponic(Building-Based Vertical Farm and Shipping-Container Vertical Farm), by Component (Lighting SysteClimate Control, Sensors, and Others), and Regional Forecast, 2022–2029. 2021. Available online: https://www.fortunebusinessinsights.com/industry-reports/vertical-farming-market-101958 (accessed on 27 December 2022).
- Kikuchi, Y. Life Cycle Assessment. In Plant Factory; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 321–329. [Google Scholar] [CrossRef]
- Graamans, L.; Baeza, E.; van den Dobbelsteen, A.; Tsafaras, I.; Stanghellini, C. Plant factories versus greenhouses: Comparison of resource use efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Kozai, T. Terms related to PFALs. In Plant Factory Basics, Applications and Advances; Kozai, T., Niu, G., Masabni, J., Eds.; Academic Press: San Diego, CA, USA, 2022; pp. 11–23. [Google Scholar] [CrossRef]
- Eaves, J.; Eaves, S. Comparing the Profitability of a Greenhouse to a Vertical Farm in Quebec. Can. J. Agric. Econ./Rev. Can. D’agroeconomie 2018, 66, 43–54. [Google Scholar] [CrossRef]
- Wu, B.-S.; Hitti, Y.; MacPherson, S.; Orsat, V.; Lefsrud, M.G. Comparison and perspective of conventional and LED lighting for photobiology and industry applications. Environ. Exp. Bot. 2020, 171, 103953. [Google Scholar] [CrossRef]
- Kusuma, P.; Pattison, P.M.; Bugbee, B. From physics to fixtures to food: Current and potential LED efficacy. Hortic. Res. 2020, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Zhen, S.; Kusuma, P.; Bugbee, B. Toward an optimal spectrum for photosynthesis and plant morphology in LED-based crop cultivation. In Plant Factory Basics, Applications and Advances; Kozai, T., Niu, G., Masabni, J., Eds.; Academic Press: San Diego, CA, USA, 2022; pp. 309–327. [Google Scholar] [CrossRef]
- Wu, B.-S.; Rufyikiri, A.-S.; Orsat, V.; Lefsrud, M.G. Re-interpreting the photosynthetically action radiation (PAR) curve in plants. Plant Sci. 2019, 289, 110272. [Google Scholar] [CrossRef]
- Zhen, S.; van Iersel, M.; Bugbee, B. Why Far-Red Photons Should Be Included in the Definition of Photosynthetic Photons and the Measurement of Horticultural Fixture Efficacy. Front. Plant Sci. 2021, 12, 693445. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Yu-Xin, T.; Qi-Chang, Y. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. S. Afr. J. Bot. 2020, 130, 75–89. [Google Scholar] [CrossRef]
- Dou, H.; Niu, G. Plant responses to light. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 153–166. [Google Scholar] [CrossRef]
- Albright, L.; Both, A.J.; Chiu, A.J. Controlling greenhouse light to a consistent daily integral. Trans. ASAE 2000, 43, 421–431. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Fundamentals of Plant Physiology; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Zhou, J.; Li, P.; Wang, J. Effects of light intensity and temperature on the photosynthesis characteristics and yield of lettuce. Horticulturae 2022, 8, 178. [Google Scholar] [CrossRef]
- Wareing, P.F.; Khalifa, M.M.; Treharne, K.J. Rate-limiting processes in photosynthesis at saturating light intensities. Nature 1968, 220, 453–457. [Google Scholar] [CrossRef]
- Ruban, A.V.; Johnson, M.P.; Duffy, C.D.P. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta (BBA)—Bioenerg. 2012, 1817, 167–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafiq, I.; Hussain, S.; Raza, M.A.; Iqbal, N.; Asghar, M.A.; Raza, A.; Fan, Y.-F.; Mumtaz, M.; Shoaib, M.; Ansar, M.; et al. Crop photosynthetic response to light quality and light intensity. J. Integr. Agric. 2021, 20, 4–23. [Google Scholar] [CrossRef]
- Kami, C.; Lorrain, S.; Hornitschek, P.; Fankhauser, C. Light-regulated plant growth and development. Curr. Top. Dev. Biol. 2010, 91, 29–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefsrud, M.G.; Kopsell, D.A.; Kopsell, D.E.; Curran-Celentano, J. Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment. Physiol. Plant. 2006, 127, 624–631. [Google Scholar] [CrossRef]
- Gao, W.; He, D.; Ji, F.; Zhang, S.; Zheng, J. Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach. Agronomy 2020, 10, 1082. [Google Scholar] [CrossRef]
- Silva, L.M.; Cruz, L.P.; Pacheco, V.S.; Machado, E.C.; Purquerio, L.F.V.; Ribeiro, R.V. Energetic efficiency of biomass production is affected by photoperiod in indoor lettuce cultivation. Theor. Exp. Plant Physiol. 2022, 34, 265–276. [Google Scholar] [CrossRef]
- Bailey, S.; Walters, R.G.; Jansson, S.; Horton, P. Acclimation of Arabidopsis thaliana to the light environment: The existence of separate low light and high light responses. Planta 2001, 213, 794–801. [Google Scholar] [CrossRef]
- Cheng, M.-C.; Kathare, P.K.; Paik, I.; Huq, E. Phytochrome Signaling Networks. Annu. Rev. Plant Biol. 2021, 72, 217–244. [Google Scholar] [CrossRef]
- Walters, R.G. Towards an understanding of photosynthetic acclimation. J. Exp. Bot. 2004, 56, 435–447. [Google Scholar] [CrossRef]
- Evans, J.R.; Poorter, H. Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 2001, 24, 755–767. [Google Scholar] [CrossRef]
- Galieni, A.; Stagnari, F.; Speca, S.; Pisante, M. Leaf traits as indicators of limiting growing conditions for lettuce (Lactuca sativa). Ann. Appl. Biol. 2016, 169, 342–356. [Google Scholar] [CrossRef]
- Milford, G.F.J.; Lenton, J.R. Effect of photoperiod on growth of sugar beet. Ann. Bot. 1976, 40, 1309–1315. [Google Scholar] [CrossRef]
- Elkins, C.; van Iersel, M.W. Longer photoperiods with the same daily light integral improve growth of rudbeckia seedlings in a greenhouse. HortScience 2020, 55, 1676–1682. [Google Scholar] [CrossRef]
- Weaver, G.; van Iersel, M.W. Longer Photoperiods with Adaptive Lighting Control Can Improve Growth of Greenhouse-grown ‘Little Gem’ Lettuce (Lactuca sativa). HortScience 2020, 55, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Rengasamy, N.; Othman, R.Y.; Che, H.S.; Harikrishna, J.A. Artificial Lighting Photoperiod Manipulation Approach to Improve Productivity and Energy Use Efficacies of Plant Factory Cultivated Stevia rebaudiana. Agronomy 2022, 12, 1787. [Google Scholar] [CrossRef]
- Palmer, S.; van Iersel, M.W. Increasing growth of lettuce and mizuna under sole-source LED lighting using longer photoperiods with the same daily light integral. Agronomy 2020, 10, 1659. [Google Scholar] [CrossRef]
- Zhang, X.; He, D.; Niu, G.; Yan, Z.; Song, J. Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agric. Biol. Eng. 2018, 11, 33–40. [Google Scholar] [CrossRef]
- Xu, W.; Lu, N.; Kikuchi, M.; Takagaki, M. Continuous lighting and high daily light integral enhance yield and quality of mass-produced nasturtium (tropaeolum majus L.) in plant factories. Plants 2021, 10, 1203. [Google Scholar] [CrossRef]
- Tsuruyama, J.; Shibuya, T. Growth and flowering responses of seed-propagated strawberry seedlings to different photoperiods in controlled environment chambers. HortTechnology 2018, 28, 453–458. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, L.; Dai, J.; Liu, Y.; Lin, D.; Yang, Y. Morphological and physiological responses of cucumber seedlings to different combinations of light intensity and photoperiod with the same daily light integral. HortScience 2021, 56, 1430–1438. [Google Scholar] [CrossRef]
- Mao, H.; Hang, T.; Zhang, X.; Lu, N. Both multi-segment light intensity and extended photoperiod lighting strategies, with the same daily light integral, promoted lactuca sativa L. growth and photosynthesis. Agronomy 2019, 9, 857. [Google Scholar] [CrossRef] [Green Version]
- Lam, V.P.; Choi, J.Y.; Park, J. Enhancing Growth and Glucosinolate Accumulation in Watercress (Nasturtium officinale L.) by Regulating Light Intensity and Photoperiod in Plant Factories. Agriculture 2021, 11, 723. [Google Scholar] [CrossRef]
- Kim, S.; Bok, G.J.; Shin, J.; Park, J.W. Effects of Photoperiod and Light Intensity on the Growth and Glucosinolates Content of Three Brassicaceae Species in a Plant Factory. J. Bio-Environ. Control 2022, 31, 416–422. [Google Scholar] [CrossRef]
- Cho, J.Y.; Yoo, K.S.; Kim, J.; Choi, B.J.; Oh, W. Growth and bioactive compounds of lettuce as affected by light intensity and photoperiod in a plant factory using external electrode fluorescent lamps. Hortic. Sci. Technol. 2020, 31, 645–649. [Google Scholar] [CrossRef]
- Kelly, N.; Choe, D.; Meng, Q.; Runkle, E.S. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Sci. Hortic. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Fan, X.-X.; Xu, Z.-G.; Liu, X.-Y.; Tang, C.-M.; Wang, L.-W.; Han, X.-L. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 2013, 153, 50–55. [Google Scholar] [CrossRef]
- Elkins, C.; van Iersel, M.W. Longer photoperiods with the same daily light integral increase daily electron transport through photosystem ii in lettuce. Plants 2020, 9, 1172. [Google Scholar] [CrossRef]
- Cui, J.; Song, S.; Yu, J.; Liu, H. Effect of Daily Light Integral on Cucumber Plug Seedlings in Artificial Light Plant Factory. Horticulturae 2021, 7, 139. [Google Scholar] [CrossRef]
- Kang, J.H.; KrishnaKumar, S.; Atulba, S.L.S.; Jeong, B.R.; Hwang, S.J. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol. 2013, 54, 501–509. [Google Scholar] [CrossRef]
- Ishii, M.; Ito, T.; Maruo, T.; Suzuki, K.; Matsuo, K. Plant growth and physiological characters of lettuce plants grown under artificial light of different irradiating cycles. Environ. Control Biol. 1995, 33, 143–149. (In Japanese) [Google Scholar] [CrossRef]
- Hang, T.; Lu, N.; Takagaki, M.; Mao, H. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles. Sci. Hortic. 2019, 252, 113–120. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J.Z.; Hang, T.; Li, P.P. Photosynthetic characteristics and growth performance of lettuce (Lactuca sativa L.) under different light/dark cycles in mini plant factories. Photosynthetica 2020, 58, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-L.; Yang, Q.-C. Effects of intermittent light exposure with red and blue light emitting diodes on growth and carbohydrate accumulation of lettuce. Sci. Hortic. 2018, 234, 220–226. [Google Scholar] [CrossRef]
- Chi, S.-H. Effect of photoperiod shortening on the nutrient uptake and carbon metabolism of tomato and hot pepper seedlings grown hydroponically. J. Bio-Environ. Control 2003, 12, 121–126. [Google Scholar]
- García-Caparrós, P.; Sabio, F.; Barbero, F.J.; Chica, R.M.; Lao, M.T. Physiological responses of tomato and cucumber seedlings under different light–dark cycles. Agronomy 2020, 10, 945. [Google Scholar] [CrossRef]
- Kimura, H.; Hashimoto-Sugimoto, M.; Iba, K.; Terashima, I.; Yamori, W. Improved stomatal opening enhances photosynthetic rate and biomass production in fluctuating light. J. Exp. Bot. 2020, 71, 2339–2350. [Google Scholar] [CrossRef]
- Pearcy, R.W. Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Biol. 1990, 41, 421–453. [Google Scholar] [CrossRef]
- Kaiser, E.; Morales, A.; Harbinson, J.; Heuvelink, E.; Marcelis, L.F.M. High stomatal conductance in the tomato flacca mutant allows for faster photosynthetic induction. Front. Plant Sci. 2020, 11, 1317. [Google Scholar] [CrossRef]
- Dodd, A.N.; Salathia, N.; Hall, A.; Kevei, E.; Toth, R.; Nagy, F.; Hibberd, J.M.; Millar, A.J.; Webb, A.A. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 2005, 309, 630–633. [Google Scholar] [CrossRef] [Green Version]
- Urairi, C.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Optimization of light-dark cycles of Lactuca sativa L. in plant factory. Environ. Control Biol. 2017, 55, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Higashi, T.; Kamitamari, A.; Okamura, N.; Ukai, K.; Okamura, K.; Tezuka, T.; Fukuda, H. Characterization of Circadian Rhythms Through a Bioluminescence Reporter Assay in Lactuca sativa L. Environ. Control Biol. 2014, 52, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-L.; Li, Y.-L.; Wang, L.-C.; Yang, Q.-C.; Guo, W.-Z. Responses of butter leaf lettuce to mixed red and blue light with extended light/dark cycle period. Sci. Rep. 2022, 12, 6924. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Liu, W.; Zha, L.; Zhou, C.; Zhang, Y.; Li, B. Altering light–dark cycle at pre-harvest stage regulated growth, nutritional quality, and photosynthetic pigment content of hydroponic lettuce. Acta Physiol. Plant. 2021, 43, 9. [Google Scholar] [CrossRef]
- Bhuiyan, R.; van Iersel, M.W. Only extreme fluctuations in light levels reduce lettuce growth under sole source lighting. Front. Plant Sci. 2021, 12, 619973. [Google Scholar] [CrossRef] [PubMed]
- Avgoustaki, D.D.; Li, J.; Xydis, G. Basil plants grown under intermittent light stress in a small-scale indoor environment: Introducing energy demand reduction intelligent technologies. Food Control 2020, 118, 107389. [Google Scholar] [CrossRef]
- Bochenek, G.M.; Fällström, I. The effect of diurnal light intensity distribution on plant productivity in a controlled environment. Acta Hortic. 2016, 155–162. [Google Scholar] [CrossRef]
- Vialet-Chabrand, S.; Matthews, J.S.A.; Simkin, A.J.; Raines, C.A.; Lawson, T. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol. 2017, 173, 2163–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, E.; Walther, D.; Armbruster, U. Growth under fluctuating light reveals large trait variation in a tanel of Arabidopsis accessions. Plants 2020, 9, 316. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.; Kaiser, E. Photosynthetic Accliation to Fluctuating Irradiance in Plants. Front. Plant Sci. 2020, 11, 268. [Google Scholar] [CrossRef] [Green Version]
- Shao, M.; Liu, W.; Zha, L.; Zhou, C.; Zhang, Y.; Li, B. Effects of constant versus fluctuating red–blue LED radiation on yield and quality of hydroponic purple-leaf lettuce. Hortic. Environ. Biotechnol. 2020, 61, 989–997. [Google Scholar] [CrossRef]
- Zeidler, C.; Schubert, D. From Bioregenerative Life Support Systems for Space to Vertical Farming on Earth—The 100% Spin-off. In Proceedings of the Life in Space for Life on Earth Symposium, Waterloo, ON, Canada, 15–20 June 2014. [Google Scholar]
- Van Iersel, M.W.; Gianino, D. An Adaptive Control Approach for Light-emitting Diode Lights Can Reduce the Energy Costs of Supplemental Lighting in Greenhouses. HortScience 2017, 52, 72–77. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Xydis, G. Energy cost reduction by shifting electricity demand in indoor vertical farms with artificial lighting. Biosyst. Eng. 2021, 211, 219–229. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Xydis, G. Plant factories in the water-food-energy Nexus era: A systematic bibliographical review. Food Secur. 2020, 12, 253–268. [Google Scholar] [CrossRef]
- Shamshiri, R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z.M. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 11. [Google Scholar] [CrossRef]
- Paucek, I.; Appolloni, E.; Pennisi, G.; Quaini, S.; Gianquinto, G.; Orsini, F. LED Lighting Systems for Horticulture: Business Growth and Global Distribution. Sustainability 2020, 12, 7516. [Google Scholar] [CrossRef]
- Nelson, J.A.; Bugbee, B. Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures. PLoS ONE 2014, 9, e99010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondrateva, N.; Filatov, D.; Bolshin, R.; Krasnolutskaya, M.; Shishov, A.; Ovchukova, S.; Mikheev, G. Determination of the effective operating hours of the intermittent lighting system for growing vegetables. IOP Conf. Ser. Earth Environ. Sci. 2021, 935, 012004. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warner, R.; Wu, B.-S.; MacPherson, S.; Lefsrud, M. How the Distribution of Photon Delivery Impacts Crops in Indoor Plant Environments: A Review. Sustainability 2023, 15, 4645. https://doi.org/10.3390/su15054645
Warner R, Wu B-S, MacPherson S, Lefsrud M. How the Distribution of Photon Delivery Impacts Crops in Indoor Plant Environments: A Review. Sustainability. 2023; 15(5):4645. https://doi.org/10.3390/su15054645
Chicago/Turabian StyleWarner, Rachael, Bo-Sen Wu, Sarah MacPherson, and Mark Lefsrud. 2023. "How the Distribution of Photon Delivery Impacts Crops in Indoor Plant Environments: A Review" Sustainability 15, no. 5: 4645. https://doi.org/10.3390/su15054645
APA StyleWarner, R., Wu, B. -S., MacPherson, S., & Lefsrud, M. (2023). How the Distribution of Photon Delivery Impacts Crops in Indoor Plant Environments: A Review. Sustainability, 15(5), 4645. https://doi.org/10.3390/su15054645