Optimal Time Phase Identification for Apple Orchard Land Recognition and Spatial Analysis Using Multitemporal Sentinel-2 Images and Random Forest Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Data Processing
Index | Equation | Reference |
---|---|---|
NDVI (Normalized Difference Vegetation Index) | (B8−B4)/(B8 + B4) | [38] |
SAVI (Soil-Adjusted Vegetation Index) | (1 + L)(B8−B4)/(B8 + B4 + L) L = 0.5 | [39] |
DVI (Difference Vegetation Index) | B8−B4 | [40] |
RVI (Ratio Vegetation Index) | B8/B4 | [39] |
SNDBI (Similar Normalized Difference Building Index) | (B11−B8)/(B11 + B8) | [41] |
SNDWI (Similar Normalized Difference Water Index) | (B4−B8A)/(B4 + B8A) | [42] |
2.4. Verification
2.5. Spatial Analysis Methods
3. Results
3.1. Optimal Time Phase Selection
3.2. Verification of Apple Orchard Land Identification
3.3. Spatial Distribution of Apple Orchard Land
3.4. Moran’s I and Getis-Ord GI* Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frolking, S.; Qiu, J.; Boles, S.; Xiao, X.; Liu, J.; Zhuang, Y.; Li, C.; Qin, X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 2002, 16, 38-1–38-10. [Google Scholar] [CrossRef] [Green Version]
- Nabi, F.; Jamwal, S.; Padmanbh, K. Wireless sensor network in precision farming for forecasting and monitoring of apple disease: A survey. Int. J. Inf. Technol. 2020, 14, 769–780. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Liu, L.; Wu, X.; Qin, Y.; Steiner, J.L.; Dong, J. Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images. Remote Sens. Environ. 2020, 247, 111951. [Google Scholar] [CrossRef]
- Ruscica, R.C.; Polcher, J.; Salvia, M.M.; Sörensson, A.A.; Piles, M.; Jobbágy, E.G.; Karszenbaum, H. Spatio-temporal soil drying in southeastern South America: The importance of effective sampling frequency and observational errors on drydown time scale estimates. Int. J. Remote. Sens. 2020, 41, 7958–7992. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; del Campo, A.; Moreno, M.A. Combined use of agro-climatic and very high-resolution remote sensing information for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 66–75. [Google Scholar] [CrossRef]
- Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Benediktsson, J.A. Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6–39. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanian, A.; Ahmadi, S.A.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Application of Artificial Neural Networks for Mangrove Mapping Using Multi-Temporal and Multi-Source Remote Sensing Imagery. Water 2022, 14, 244. [Google Scholar] [CrossRef]
- Reuß, F.; Greimeister-Pfeil, I.; Vreugdenhil, M.; Wagner, W. Comparison of long short-term memory networks and random forest for sentinel-1 time series based large scale crop classification. Remote Sens. 2021, 13, 5000. [Google Scholar] [CrossRef]
- Meshram, P.; Ray, S.S. Field-level crop classification using an optimal dataset of multi-temporal sentinel-1 and polarimetric RADARSAT-2 SAR data with machine learning algorithms. J. Indian Soc. Remote Sens. 2021, 49, 2945–2958. [Google Scholar]
- Zhang, X.; Xiong, Q.; Di, L.; Tang, J.; Yang, J.; Wu, H.; Qin, Y.; Su, R.; Zhou, W. Phenological metrics-based crop classification using HJ-1 CCD images and Landsat 8 imagery. Int. J. Digit. Earth 2018, 11, 1219–1240. [Google Scholar] [CrossRef]
- Qiu, B.; Luo, Y.; Tang, Z.; Chen, C.; Lu, D.; Huang, H.; Chen, Y.; Chen, N.; Xu, W. Winter wheat mapping combining variations before and after estimated heading dates. ISPRS J. Photogramm. Remote. Sens. 2017, 123, 35–46. [Google Scholar] [CrossRef]
- Moumni, A.; Oujaoura, M.; Ezzahar, J.; Lahrouni, A. A new synergistic approach for crop discrimination in a semi-arid region using Sentinel-2 time series and the multiple combination of machine learning classifiers. J. Physics Conf. Ser. 2021, 1743, 012026. [Google Scholar] [CrossRef]
- Pluto-Kossakowska, J.; Pilarska, M.; Bartkowiak, P. Automatic detection of dominant crop types in poland based on satellite images. Artif. Satell. 2020, 55, 185–208. [Google Scholar] [CrossRef]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- D’Amico, G.; Francini, S.; Giannetti, F.; Vangi, E.; Travaglini, D.; Chianucci, F.; Mattioli, W.; Grotti, M.; Puletti, N.; Corona, P.; et al. A deep learning approach for automatic mapping of poplar plantations using Sentinel-2 imagery. GIScience Remote Sens. 2021, 58, 1352–1368. [Google Scholar] [CrossRef]
- Yue, J.; Wang, Z.; Feng, Z. Remote sensing identification of fruit tree species in Southern Xinjiang Basin based on spectral and texture characteristics. J. Xinjiang Agric. Univ. 2015, 38, 326–333. [Google Scholar]
- Qin, Q.; Wang, B.; Li, F.; Wang, H.; Zhao, H.; Shu, M. Object-oriented Remote sensing extraction of apple tree planting area from GF-1 satellite image: A case study of Qixia City in hilly region. Meteorol. Desert Oasis 2020, 2, 129–136. [Google Scholar]
- Dai, J. Apple orchard extraction based on high score and multi-temporal image segmentation. Agric. Resour. Reg. China 2022, 8, 140–148. [Google Scholar]
- Paul, S.; Kumar, D.N. Evaluation of feature selection and feature extraction techniques on multi-temporal landsat-8 images for crop classification. Remote Sens. Earth Syst. Sci. 2019, 2, 197–207. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Giri, C. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Tuvdendorj, B.; Zeng, H.; Wu, B.; Elnashar, A.; Zhang, M.; Tian, F.; Natsagdorj, N. Performance and the optimal integration of sentinel-1/2 time-series features for crop classification in northern mongolia. Remote Sens. 2022, 14, 1830. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Zhang, L.; Han, J.; Cao, J.; Zhang, J. Developing high-resolution crop maps for major crops in the european union based on transductive transfer learning and limited ground data. Remote Sens. 2022, 14, 1809. [Google Scholar] [CrossRef]
- Bangira, T.; Alfieri, S.M.; Menenti, M.; van Niekerk, A. Comparing thresholding with machine learning classifiers for mapping complex water. Remote Sens. 2019, 11, 1351. [Google Scholar] [CrossRef] [Green Version]
- Rani, A.; Kumar, N.; Sinha, N.K.; Kumar, J. Identification of salt-affected soils using remote sensing data through random forest technique: A case study from India. Arab. J. Geosci. 2022, 15, 381. [Google Scholar] [CrossRef]
- Hamimeche, M.; Niculescu, S.; Billey, A.; Moulaï, R. Identification and mapping of Algerian island vegetation using high-resolution images (Pléiades and SPOT 6/7) and random forest modeling. Environ. Monit. Assess. 2021, 193, 617. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Song, Y.; Rong, X. Facial expression recognition based on random forest and convolutional neural network. Information 2019, 10, 375. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.-F.; Xiong, L.-Y.; Ding, H.; Tang, G.-A. Automatic recognition of loess landforms using Random Forest method. J. Mt. Sci. 2017, 14, 885–897. [Google Scholar] [CrossRef]
- Lebourgeois, V.; Dupuy, S.; Vintrou, É.; Ameline, M.; Butler, S.; Bégué, A. A combined random forest and OBIA classification scheme for mapping smallholder agriculture at different nomenclature levels using multisource data (simulated Sentinel-2 time series, VHRS and DEM). Remote Sens. 2017, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Ok, A.O.; Akar, O.; Gungor, O. Evaluation of random forest method for agricultural crop classification. Eur. J. Remote Sens. 2012, 45, 421–432. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Bargellini, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Huete, A. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, X.; Yu, J. Twin support vector machines based on fruit fly optimization algorithm. Int. J. Mach. Learn. Cybern. 2016, 7, 193–203. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 1999. [Google Scholar]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Perry, C.R., Jr.; Lautenschlager, L.F. Functional Equivalence of Spectral Vegetation Indices; Johnson Space Center: Houston, TX, USA, 1983. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- DeMets, S.A.; Ziemann, A.; Manore, C.; Russell, C. Too Big, too Small, or just Right? The influence of multispectral image size on mosquito population predictions in the greater Toronto area. In Proceedings of the Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXVI, Online, 12–16 May 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11392, pp. 224–231. [Google Scholar]
- Gongal, A.; Silwal, A.; Amatya, S.; Karkee, M.; Zhang, Q.; Lewis, K. Apple crop-load estimation with over-the-row machine vision system. Comput. Electron. Agric. 2016, 120, 26–35. [Google Scholar] [CrossRef]
- Tung, F.; LeDrew, E. The determination of optimal threshold levels for change detection using various accuracy indexes. Photogramm. Eng. Remote Sens. 1988, 54, 1449–1454. [Google Scholar]
- Rosenfield, G.H.; Fitzpatrick-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. In Perspectives on Spatial Data Analysis; Springer: Berlin/Heidelberg, Germany, 2009; pp. 127–145. [Google Scholar]
- Qixia Municipal Bureau of Statistics. Qixia Statistical Yearbook for the Year 2021; Qixia Bureau of Statistics: Qixia, China, 2022.
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.-T. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Dong, F.; Zhao, G.; Wang, L.; Zhu, X.; Lei, T. Remote sensing extraction technique for apple orchards based on hybrid image element decomposition of measured spectra. J. Appl. Ecol. 2012, 23, 3361–3368. [Google Scholar]
- Xu, L.; Lv, J. Recognition method for apple fruit based on SUSAN and PCNN. Multimed. Tools Appl. 2018, 77, 7205–7219. [Google Scholar] [CrossRef]
- Wei, S.; Wang, S. Effects of bagging on aroma of qixia pear fruit. Agric. Sci. Technol. 2015, 16, 1676. [Google Scholar]
- Liu, Z.; Ma, P.; Zhai, B.; Zhou, J. Soil moisture decline and residual nitrate accumulation after converting cropland to apple orchard in a semiarid region: Evidence from the loess plateau. Catena 2019, 181, 104080. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Liu, Z. Spatio-temporal patterns of cropland conversion in response to the “grain for green project” in China’s loess hilly region of Yanchuan County. Remote Sens. 2013, 5, 5642–5661. [Google Scholar] [CrossRef] [Green Version]
- Alizamir, M.; Sobhanardakani, S. An artificial neural network-particle swarm optimization (ANN-PSO) approach to predict heavy metals contamination in groundwater resources. Jundishapur J. Health Sci. 2018, 10, e67544. [Google Scholar] [CrossRef]
- Senoro, D.B.; de Jesus, K.L.M.; Mendoza, L.C.; Apostol, E.M.D.; Escalona, K.S.; Chan, E.B. Groundwater quality monitoring using in-situ measurements and hybrid machine learning with empirical bayesian kriging interpolation method. Appl. Sci. 2021, 12, 132. [Google Scholar] [CrossRef]
- Chen, B.; Xia, M.; Qian, M.; Huang, J. MANet: A multi-level aggregation network for semantic segmentation of high-resolution remote sensing images. Int. J. Remote Sens. 2022, 43, 5874–5894. [Google Scholar] [CrossRef]
- Gao, J.; Weng, L.; Xia, M.; Lin, H. MLNet: Multichannel feature fusion lozenge network for land segmentation. J. Appl. Remote Sens. 2022, 16, 016513. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
Band | Name | Central Wavelength (nm) | Wavelength Range (nm) | Spatial Resolution (m) |
---|---|---|---|---|
1 | Coastal aerosol | 0.443 | 433–453 | 60 |
2 | Blue | 0.490 | 458–523 | 10 |
3 | Green | 0.560 | 543–578 | 10 |
4 | Red | 0.665 | 650–680 | 10 |
5 | Vegetation red edge 1 | 0.705 | 698–713 | 20 |
6 | Vegetation red edge 2 | 0.740 | 733–748 | 20 |
7 | Vegetation red edge 3 | 0.783 | 773–793 | 20 |
8 | NIR | 0.842 | 785–865 | 10 |
8A | Vegetation red edge 4 | 0.865 | 965–900 | 20 |
9 | Water vapor | 0.945 | 935–955 | 60 |
10 | SWIR-cirrus | 1.375 | 1360–1390 | 60 |
11 | SWIR 1 | 1.610 | 1565–1655 | 20 |
12 | SWIR 2 | 2.190 | 2100–2280 | 20 |
Month | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sept. | Oct. |
---|---|---|---|---|---|---|---|---|
Stage | Budding | Blossom | Young fruit | Fruit expansion | Fruit coloring | Fruit maturity |
AO | OO | AL | FG | CL | WT | Total | PA/% | |
---|---|---|---|---|---|---|---|---|
AO | 27 | 0 | 1 | 1 | 0 | 0 | 29 | 93.1 |
OO | 1 | 14 | 2 | 1 | 0 | 0 | 18 | 77.8 |
AL | 4 | 2 | 34 | 0 | 0 | 1 | 41 | 82.9 |
FG | 0 | 2 | 0 | 41 | 0 | 1 | 44 | 93.2 |
CL | 0 | 0 | 3 | 0 | 34 | 1 | 38 | 89.5 |
WT | 0 | 0 | 0 | 0 | 1 | 39 | 40 | 97.5 |
Total | 32 | 18 | 40 | 43 | 35 | 42 | 210 | |
UA/% | 84.4 | 77.8 | 85 | 95.5 | 97.1 | 92.9 | ||
OA = 90% | Kappa = 0.88 |
AO | OO | AL | FG | CL | WT | Total | PA/% | |
---|---|---|---|---|---|---|---|---|
AO | 23 | 3 | 1 | 4 | 0 | 0 | 31 | 74.2 |
OO | 5 | 13 | 5 | 0 | 0 | 0 | 23 | 56.5 |
AL | 4 | 3 | 26 | 0 | 1 | 1 | 35 | 74.3 |
FG | 1 | 1 | 0 | 39 | 1 | 1 | 43 | 90.7 |
CL | 0 | 1 | 1 | 0 | 35 | 2 | 39 | 89.7 |
WT | 0 | 0 | 0 | 0 | 2 | 37 | 39 | 94.9 |
Total | 33 | 21 | 33 | 43 | 39 | 41 | 210 | |
UA/% | 70 | 61.9 | 78.7 | 90.7 | 89.7 | 90.2 | ||
OA = 82.4% | Kappa = 0.79 |
Town | Slope Grade | Total (km2) | |||||
---|---|---|---|---|---|---|---|
I (0–5°) | Ⅱ (6–15°) | Ⅲ (16–25°) | Ⅳ (26–35°) | Ⅴ (36–45°) | Ⅵ (46–63°) | ||
YC | 14.7 | 19.6 | 1.1 | 0.0 | 0.0 | 0.0 | 35.3 |
GL | 18.2 | 18.0 | 0.8 | 0.0 | 0.0 | 0.0 | 37.0 |
SWP | 17.0 | 32.1 | 4.8 | 0.3 | 0.0 | 0.0 | 54.2 |
TJP | 5.5 | 15.3 | 4.7 | 0.6 | 0.0 | 0.0 | 26.3 |
CP | 5.6 | 12.6 | 2.2 | 0.2 | 0.0 | 0.0 | 20.6 |
TC | 9.5 | 18.4 | 5.2 | 0.8 | 0.1 | 0.0 | 33.9 |
ZY | 3.2 | 8.7 | 2.1 | 0.1 | 0.0 | 0.0 | 14.2 |
SK | 51.8 | 69.3 | 5.6 | 0.4 | 0.0 | 0.0 | 127.2 |
MH | 1.0 | 3.5 | 1.9 | 0.4 | 0.0 | 0.0 | 6.9 |
TK | 5.1 | 11.3 | 2.9 | 0.4 | 0.0 | 0.0 | 19.7 |
SJD | 13.2 | 21.4 | 2.8 | 0.2 | 0.0 | 0.0 | 37.6 |
SS | 26.7 | 40.2 | 5.7 | 0.4 | 0.0 | 0.0 | 72.9 |
Total (km2) | 171.5 | 270.4 | 39.7 | 3.9 | 0.3 | 0.0 | 485.8 |
River Basin | Slope Grade | Total (km2) | |||||
---|---|---|---|---|---|---|---|
I (0–5°) | Ⅱ (6–15°) | Ⅲ (16–25°) | Ⅳ (26–35°) | Ⅴ (36–45°) | Ⅵ (46–63°) | ||
BY | 39 | 72.2 | 15.1 | 1.6 | 0.1 | 0 | 128.0 |
HS | 15.3 | 24.7 | 2.9 | 0.2 | 0.03 | 0 | 43.1 |
XH | 67.3 | 80.4 | 4.6 | 0.2 | 0 | 0 | 152.5 |
QY | 8.4 | 16.6 | 5.1 | 0.8 | 0.1 | 0 | 31 |
QS | 27 | 54 | 10.2 | 1 | 0.05 | 0 | 92.3 |
YC | 14.5 | 22.5 | 1.8 | 0.1 | 0.02 | 0 | 38.9 |
Total (km2) | 171.5 | 270.4 | 39.7 | 3.9 | 0.3 | 0 | 485.8 |
Town | Cluster Type Using Moran’s I | Total | ||||
---|---|---|---|---|---|---|
Not Significant | H-H | H-L | L-H | L-L | ||
YC | 25 | 16 | / | 6 | / | 47 |
GL | 37 | 10 | / | 9 | / | 56 |
SWP | 82 | 13 | / | 3 | 11 | 109 |
TJP | 38 | 2 | 1 | / | 35 | 76 |
CP | 14 | / | 1 | 3 | 38 | 56 |
TC | 41 | / | 5 | / | 62 | 108 |
ZY | 14 | / | 3 | / | 29 | 46 |
SK | 40 | 78 | 28 | / | 146 | |
MH | 3 | / | 2 | / | 28 | 33 |
TK | 22 | / | 3 | / | 40 | 65 |
SJD | 33 | 10 | 8 | / | 51 | |
SS | 118 | 1 | 10 | 2 | 30 | 161 |
Total | 467 | 130 | 25 | 59 | 273 | 954 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Tang, X.; Zhu, X.; Yu, X. Optimal Time Phase Identification for Apple Orchard Land Recognition and Spatial Analysis Using Multitemporal Sentinel-2 Images and Random Forest Classification. Sustainability 2023, 15, 4695. https://doi.org/10.3390/su15064695
Yan Y, Tang X, Zhu X, Yu X. Optimal Time Phase Identification for Apple Orchard Land Recognition and Spatial Analysis Using Multitemporal Sentinel-2 Images and Random Forest Classification. Sustainability. 2023; 15(6):4695. https://doi.org/10.3390/su15064695
Chicago/Turabian StyleYan, Yuxiang, Xiaoying Tang, Xicun Zhu, and Xinyang Yu. 2023. "Optimal Time Phase Identification for Apple Orchard Land Recognition and Spatial Analysis Using Multitemporal Sentinel-2 Images and Random Forest Classification" Sustainability 15, no. 6: 4695. https://doi.org/10.3390/su15064695
APA StyleYan, Y., Tang, X., Zhu, X., & Yu, X. (2023). Optimal Time Phase Identification for Apple Orchard Land Recognition and Spatial Analysis Using Multitemporal Sentinel-2 Images and Random Forest Classification. Sustainability, 15(6), 4695. https://doi.org/10.3390/su15064695