Design of Key Parameters for Strip–Filling Structures Using Cemented Gangue in Goaf—A Case Study
Abstract
:1. Introduction
2. Engineering Background
2.1. Introduction of 7402 Strip–Filling Face
2.2. Analysis of the Surrounding Strata Structures
3. Theoretical Foundations for the Key Parameters of the Strip–Filling Body
3.1. Design of Strip–Filling Body’s Strength
3.1.1. Discrimination of Composite Strata Structure
- The key layer I: the No. 17 fine sandstone layer with 15.6 m thickness and 58.5 MPa compressive strength.
- The key layer II: the No. 9 powder fine sandstone layer with 18.3 m thickness and 64.5 MPa compressive strength.
- The key layer III: the No. 2 red sandstone layer with 83 m thickness and 56.2 MPa compressive strength.
3.1.2. The Movement Characteristic and Load Analysis of Overlying Strata
- (1)
- The early–to–medium load analysis
- (2)
- The late load analysis
3.1.3. The Strength Design Requirements of the Strip–Filling Body
- The early strength:
- The mid–term strength:
- The late strength:
3.2. Design of Ultimate Compression Amount of Strip–Filling Structure
3.3. Width Design of the Strip–Filling Body and Unfilled Zone
- (1)
- Design based on the rock beam’s ultimate fracture step length
- (2)
- Design based on the overburden load and supporting capacity of the filling body
4. Production and Mechanical Testing of the Filling Body
4.1. Production
4.2. Mechanical Testing
5. Design Results and Discussion
5.1. Strength of the Strip–Filling Body
- (1)
- Calculation of the overlying strata load
- (2)
- The hardening time calculation of the strip–filling body
- (3)
- Discussion
5.2. Compression Amount of the Strip–Filling Body
5.3. Size Parameters of the Strip–Filling Body
5.4. Engineering Application Effect
- (1)
- Analysis of the strata behavior
- (2)
- Analysis of the ground subsidence
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, D.; Duan, H.Y.; Liu, J.F.; Li, X.B.; Zhou, Z.L. The role of gangue on the mitigation of mining–induced hazards and environmental pollution: An experimental investigation. Sci. Total Environ. 2019, 664, 436–448. [Google Scholar] [CrossRef]
- Wang, C.X.; Lu, Y.; Li, Y.Y.; Zhang, B.C.; Liang, Y.B. Deformation process and prediction of filling gangue: A case study in China. Geomech. Eng. 2019, 18, 417–426. [Google Scholar]
- Li, M.; Zhang, J.X.; Wu, Z.Y.; Sun, K. Calculation and monitoring analysis of stress distribution in a coal mine gob filled with waste rock backfill materials. Arab. J. Geosci. 2019, 12, 418. [Google Scholar] [CrossRef]
- Wu, J.Y.; Feng, M.M.; Xu, J.M.; Qiu, P.T.; Wang, Y.M.; Han, G.S. Particle size distribution of cemented rockfill effects on strata stability in filling mining. Minerals 2018, 8, 407. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.B.; Ma, S.Q.; Zhang, Z.Y. Ground control monitoring in backfilled strip mining under the metropolitan district: Case study. Int. J. Geomech. 2018, 18, 05018003. [Google Scholar] [CrossRef]
- Zhang, X.G.; Lin, J.; Liu, J.X.; Li, F.; Pang, Z.Z. Investigation of hydraulic–mechanical properties of paste backfill containing coal gangue–fly ash and its application in an underground coal mine. Energies 2017, 10, 1309. [Google Scholar] [CrossRef] [Green Version]
- Gorakhki, M.H.; Bareither, C.A. Unconfined compressive strength of synthetic and natural mine tailings amended with fly ash and cement. J. Geotech. Geoenviron. 2017, 143, 04017017. [Google Scholar] [CrossRef]
- Niroshan, N.; Sivakugan, N.; Veenstra, R.L. Laboratory study on strength development in cemented paste backfills. J. Mater. Civil Eng. 2017, 29, 04017027. [Google Scholar] [CrossRef]
- Zhang, J.X.; Li, B.Y.; Zhou, N.; Zhang, Q. Application of solid backfilling to reduce hard–roof caving and longwall coal face burst potential. Int. J. Rock Mech. Min. Sci. 2016, 88, 197–205. [Google Scholar] [CrossRef]
- Kostecki, T.; Spearing, A.J.S. Influence of backfill on coal pillar strength and floor bearing capacity in weak floor conditions in the Illinois Basin. Int. J. Rock Mech. Min. Sci. 2015, 76, 55–67. [Google Scholar] [CrossRef]
- AlHeib, M.M.; Didier, C.; Masrouri, F. Improving short– and long–term stability of underground gypsum mine using partial and total backfill. Rock Mech. Rock Eng. 2010, 43, 447–461. [Google Scholar] [CrossRef]
- Bell, F.G.; Stacey, T.R.; Genske, D.D. Mining subsidence and its effect on the environment: Some differing examples. Environ. Geol. 2000, 40, 135–152. [Google Scholar] [CrossRef]
- Collet, T.; Masrouri, F.; Didier, C. Partial backfilling effect in underground mines. In Geotechnical Measurements and Modeling; Natau, O., Fecker, E., Pimentel, E., Eds.; Swets and Zeitlinger: Lisse, The Netherlands, 2003; ISBN 9058096033. [Google Scholar]
- Du, X.J.; Feng, G.R.; Zhang, Y.J.; Wang, Z.H.; Guo, Y.X.; Qi, T.Y. Bearing mechanism and stability monitoring of cemented gangue–fly ash backfill column with stirrups in partial backfill engineering. Eng. Struct. 2019, 188, 603–612. [Google Scholar] [CrossRef]
- Petlovanyi, M.; Malashkevych, D.; Sai, K.; Zubko, S. Research into balance of rocks and underground cavities formation in the coal mine flowsheet when mining thin seams. Min. Miner. Depos. 2020, 14, 66–81. [Google Scholar] [CrossRef]
- Malashkevych, D.; Petlovanyi, M.; Sai, K.; Zubko, S. Research into the coal quality with a new selective mining technology of the waste rock accumulations in the mined–out area. Min. Miner. Depos. 2022, 16, 103–114. [Google Scholar] [CrossRef]
- Ghiasi, V.; Koushki, M. Numerical and artificial neural network analyses of ground surface settlement of tunnel in saturated soil. SN Appl. Sci. 2020, 2, 939. [Google Scholar] [CrossRef]
- Azarafza, M.; Hajialilue Bonab, M.; Derakhshani, R. A Deep Learning Method for the Prediction of the Index Mechanical Properties and Strength Parameters of Marlstone. Materials 2022, 15, 6899. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.B.; Xu, J.M.; Xu, J.L.; Cgeb, D.Y.; Shi, J.X. Pier–column backfill mining technology for controlling surface subsidence. Int. J. Rock Mech. Min. Sci. 2017, 96, 58–65. [Google Scholar] [CrossRef]
- Yang, L.; Xu, W.B.; Yilmaz, E.; Wang, Q.; Qiu, J.P. A combined experimental and numerical study on the triaxial and dynamic compression behavior of cemented tailings backfill. Eng. Struct. 2020, 219, 110957. [Google Scholar] [CrossRef]
- Tai, Y.; Guo, S.; Lan, L.X. Reasonable gangue section length for disposing gangue pollutants in the new green mixed workface. Bull. Eng. Geol. Environ. 2019, 79, 1669–1682. [Google Scholar] [CrossRef]
- Deng, X.J.; Zhang, J.X.; Zhou, N.; Bebhanub, D.W.; Wang, C.T. Upward slicing longwall–roadway cemented backfilling technology for mining an extra–thick coal seam located under aquifers: A case study. Environ. Earth Sci. 2017, 76, 789. [Google Scholar] [CrossRef]
- Xie, J.L.; Xu, J.L. The corresponding relationship between the change of goaf pressure and the key stratum breaking. J. Geophys. Eng. 2019, 16, 913–925. [Google Scholar] [CrossRef]
- Ju, J.F.; Xu, J.L. Structural characteristics of key strata and strata behaviour of a fully mechanized longwall face with 7.0 m height chocks. Int. J. Rock Mech. Min. Sci. 2013, 58, 46–54. [Google Scholar] [CrossRef]
- Song, Z.Q. Practical Ground Pressure Control; China University of Mining and Technology Press: Xuzhou China, 1988. [Google Scholar]
- Huang, W.P.; Li, C.; Zhang, L.W.; Yuan, Q.; Zheng, Y.S.; Liu, Y. In situ identification of water–permeable fractured zone in overlying composite strata. Int. J. Rock Mech. Min. Sci. 2018, 105, 85–97. [Google Scholar] [CrossRef]
- Wu, D.; Hou, Y.B.; Deng, T.F. Thermal, hydraulic and mechanical performances of cemented coal gangue–fly ash backfill. Int. J. Miner. Process. 2017, 162, 12–18. [Google Scholar] [CrossRef]
- Zhang, N.; Li, H.X.; Liu, X.M. Hydration kinetics of cementitious materials composed of red mud and coal gangue. Int. J. Min. Met. Mater. 2016, 23, 1215–1224. [Google Scholar] [CrossRef]
- Feng, J.; Peng, H.; Shuai, G.; Meng, X.; Lixin, L. A roof model and its application in solid backfilling mining. Int. J. Min. Sci. Technol. 2017, 27, 139–143. [Google Scholar]
- Guo, Z.P.; Huang, W.P. Parameter optimization and stability analysis of inclined gangue strip–fillings. J China Coal Soc. 2011, 36, 234–238. [Google Scholar]
Order | Lithology | Thickness (m) | Depth (m) | Bulk Density (kN/m3) | Compressive Strength (MPa) | Elastic Modulus (GPa) |
---|---|---|---|---|---|---|
1 | Topsoil | 170 | 170 | 17.0 | / | / |
2 | Red sandstone | 83 | 253 | 24.6 | 56.2 | 6.9 |
3 | Clay rock | 34 | 287 | 17.5 | 10.2 | 0.65 |
4 | Mudstone | 10.4 | 297.4 | 20.5 | 18.5 | 1.82 |
5 | Medium–fine sandstone | 6.6 | 304 | 24.0 | 48.6 | 6.0 |
6 | Fine sandstone | 1.89 | 305.89 | 25.2 | 58.5 | 7.5 |
7 | Medium sandstone | 7.54 | 313.43 | 24.1 | 50.8 | 6.8 |
8 | Sandy mudstone | 6.55 | 319.98 | 21.1 | 20.6 | 2.2 |
9 | Silt–fine stone | 18.3 | 338.28 | 26.0 | 64.5 | 8.2 |
10 | Medium–fine sandstone | 4.2 | 342.48 | 24.0 | 48.6 | 6.0 |
11 | Fine sandstone | 3.15 | 345.63 | 25.2 | 58.5 | 7.5 |
12 | Sandy mudstone | 7.8 | 353.43 | 21.1 | 20.6 | 2.2 |
13 | Siltstone | 6.5 | 359.93 | 23.4 | 34.8 | 5.5 |
14 | Muddy siltstone | 4.35 | 364.28 | 22.5 | 21.4 | 2.3 |
15 | Fine sandstone | 8.46 | 372.74 | 25.2 | 58.5 | 7.0 |
16 | Medium sandstone | 6.35 | 379.09 | 24.1 | 50.8 | 6.8 |
17 | Fine sandstone | 15.6 | 396.69 | 25.2 | 58.5 | 7.5 |
18 | Muddy siltstone | 1.9 | 398.59 | 22.5 | 21.4 | 2.3 |
19 | Mudstone | 0.5 | 399.09 | 20.5 | 18.5 | 1.82 |
20 | No. 4 coal seam | 2.17 | 401.26 | 18.0 | 15.8 | 1.02 |
Factors | Fly Ash Content | Mass Concentration (%) | Gangue Aggregate Content | Early Strength Agent Dosage (%) |
---|---|---|---|---|
Code | A | B | C | D |
Upper level (1) | 0.4 | 80 | 7 | 1.2 |
Middle level (2) | 0.5 | 82 | 8 | 1.4 |
Lower level (3) | 0.6 | 84 | 9 | 1.6 |
Designed Matrix | Uniaxial Compressive Strength (MPa) | |||||||
---|---|---|---|---|---|---|---|---|
Schemes | A | B | C | D | 8 h | 4 d | 14 d | 28 d |
1 | 1 | 1 | 1 | 1 | 0.65 | 5.34 | 10.55 | 13.88 |
2 | 1 | 2 | 2 | 2 | 0.58 | 5.24 | 9.88 | 10.20 |
3 | 1 | 3 | 3 | 3 | 0.49 | 4.30 | 7.22 | 8.58 |
4 | 2 | 1 | 2 | 2 | 0.78 | 6.32 | 11.21 | 12.85 |
5 | 2 | 2 | 3 | 1 | 0.46 | 4.05 | 6.33 | 9.38 |
6 | 2 | 3 | 1 | 3 | 0.47 | 4.26 | 5.08 | 8.98 |
7 | 3 | 1 | 3 | 2 | 0.41 | 4.84 | 7.205 | 10.66 |
8 | 3 | 2 | 1 | 3 | 0.46 | 3.66 | 5.79 | 8.02 |
9 | 3 | 3 | 2 | 1 | 0.23 | 2.06 | 4.56 | 5.58 |
Strip–Filling Body | Early Stage | Middle Stage | Late Stage |
---|---|---|---|
Strength (MPa) | 0.05 | > 1.45 | > 8.19 |
Minimum time (days) | 3.3 | 12.2 | 25.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Song, T.; Li, H.; Liu, Y.; Hou, T.; Gao, M.; Zheng, Y. Design of Key Parameters for Strip–Filling Structures Using Cemented Gangue in Goaf—A Case Study. Sustainability 2023, 15, 4698. https://doi.org/10.3390/su15064698
Huang W, Song T, Li H, Liu Y, Hou T, Gao M, Zheng Y. Design of Key Parameters for Strip–Filling Structures Using Cemented Gangue in Goaf—A Case Study. Sustainability. 2023; 15(6):4698. https://doi.org/10.3390/su15064698
Chicago/Turabian StyleHuang, Wanpeng, Tianneng Song, Huanyu Li, Yaxin Liu, Tao Hou, Mingtao Gao, and Yongsheng Zheng. 2023. "Design of Key Parameters for Strip–Filling Structures Using Cemented Gangue in Goaf—A Case Study" Sustainability 15, no. 6: 4698. https://doi.org/10.3390/su15064698
APA StyleHuang, W., Song, T., Li, H., Liu, Y., Hou, T., Gao, M., & Zheng, Y. (2023). Design of Key Parameters for Strip–Filling Structures Using Cemented Gangue in Goaf—A Case Study. Sustainability, 15(6), 4698. https://doi.org/10.3390/su15064698