Training Sources and Preferences for Agricultural Producers and Professionals in Middle-North Mato Grosso, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Methodological Approach
2.2. Sampling and Survey Administration
2.3. Data Organization and Analysis
3. Results
3.1. Survey Respondent and Farm Area Characteristics
3.1.1. Agricultural Producers and Their Farms
3.1.2. Agricultural Professionals and Advisory Area
3.2. Agricultural Systems
3.3. Contrasting Use of Public versus Private Agricultural Training
3.4. Financial and Technical Assistance for Producers
3.5. Agricultural Professionals’ Training
4. Discussion
4.1. Improved Participation for Sustainable Agricultural Systems
4.2. Increasing Participation in Public Sources of Agricultural Training
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto Mato-Grossense de Economia Agropecuária (IMEA). Metodologia—Justificativa da Divisão do Mapa de Regiões. 2017. Available online: https://www.imea.com.br/imea-site/view/uploads/metodologia/justificativamapa.pdf (accessed on 22 September 2020).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Brazilian Institute of Geography and Statistics. 2021. Available online: https://www.ibge.gov.br/ (accessed on 19 September 2020).
- Muchagata, M.; Brown, K. Cows, colonists, and trees: Rethinking cattle and environmental degradation in Brazilian Amazonia. Agric. Syst. 2003, 76, 797–816. [Google Scholar] [CrossRef]
- Wesz Junior, V.J. O Mercado da Soja no Sudeste de Mato grosso (brasil): Uma Análise das Relações entre Produtores Rurais e Empresas a partir da Sociologia Econômica. Dados Rev. Ciên. Soc. 2019, 62, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Cidades e Estados. Mato Grosso. 2021. Available online: https://www.ibge.gov.br/cidades-e-estados/mt.html/ (accessed on 23 February 2023).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Censo Agropecuário de 2017. 2017. Available online: https://cidades.ibge.gov.br/brasil/mt/pesquisa/10100/95260 (accessed on 23 February 2023).
- Companhia Nacional de Abastecimento (CONAB). Acompanhamento da Safra Brasileira. 2022. Available online: https://www.conab.gov.br/info-agro/safras?view=default (accessed on 23 February 2023).
- Fumagali Junior, G.N.; da Costa Silva, M.M. Efeitos dos cursos de Ciências Agrárias na Produtividade da soja no Mato Grosso: Uma Análise Especial. 2020. Available online: https://brsa.org.br/enaber-2020/#artigos (accessed on 15 October 2021).
- AgriSciences. 2022. Available online: https://www.agrisciences.org/ (accessed on 20 June 2022).
- Ragasa, C.; Ulimwengu, J.; Randriamamonjy, J.; Badibanga, T. Factors Affecting Performance of Agricultural Extension: Evidence from Democratic Republic of Congo. J. Agric. Educ. Ext. 2016, 22, 113–143. [Google Scholar] [CrossRef]
- Gido, E.O.; Sibiko, K.W.; Ayuya, O.I.; Mwangi, J.K. Demand for Agricultural Extension Services Among Small-Scale Maize Farmers: Micro-Level Evidence from Kenya. J. Agric. Educ. Ext. 2015, 21, 177–192. [Google Scholar] [CrossRef]
- Mittal, S.; Mehar, M. Socio-economic Factors Affecting Adoption of Modern Information and Communication Technology by Farmers in India: Analysis Using Multivariate Probit Model. J. Agric. Educ. Ext. 2016, 22, 199–212. [Google Scholar] [CrossRef]
- Suvedi, M.; Ghimire, R.; Kaplowitz, M. Farmers’ participation in extension programs and technology adoption in rural Nepal: A logistic regression analysis. J. Agric. Educ. Ext. 2017, 23, 351–371. [Google Scholar] [CrossRef]
- Charatsari, C.; Papadaki-Klavdianou, A.; Michailidis, A. Farmers as Consumers of Agricultural Education Services: Willingness to Pay and Spend Time. J. Agric. Educ. Ext. 2011, 17, 253–266. [Google Scholar] [CrossRef]
- Adamsone-Fiskovica, A.; Grivins, M.; Burton, R.J.F.; Elzen, B.; Flanigan, S.; Frick, R.; Hardy, C. Disentangling critical success factors and principles of on-farm agricultural demonstration events. J. Agric. Educ. Ext. 2021, 27, 639–656. [Google Scholar] [CrossRef]
- Estevão, P.; de Sousa, D.N. A Web como ferramenta de capacitação para a extensão rural. Cad. Tecnol. Ciênc. 2021, 38, 26656. [Google Scholar] [CrossRef]
- Mazzali, L. O Processo Recente de Reorganização Agroindustrial: Do Complexo à Organização em Rede. PhD Thesis in Business Economics, Fundação Getúlio Vargas, São Paulo, Brazil, 1995. Available online: http://hdl.handle.net/10438/4638 (accessed on 16 December 2021).
- Diesel, V.; Dias, M.M. The Brazilian experience with agroecological extension: A critical analysis of reform in a pluralistic extension system. J. Agric. Educ. Ext. 2016, 22, 415–433. [Google Scholar] [CrossRef]
- Botha, N.; Coutts, J.; Roth, H. The role of agricultural consultants in the New Zealand Research, Development and Extension system. In Proceedings of the New Zealand Agricultural and Resource Economics Society Conference, Nelson, New Zealand, 25–27 August 2006; 11p. Available online: https://ageconsearch.umn.edu/record/31971/?ln=en (accessed on 6 March 2023).
- De Rosa, M.; Bartoli, L. Do farm advisory services improve adoption of rural development policies? An empirical analysis in GI areas. J. Agric. Educ. Ext. 2017, 23, 461–474. [Google Scholar] [CrossRef]
- Faure, G.; Huamanyauri, M.K.; Salazar, I.; Gómez, C.; de Nys, E.; Dulcire, M. Privatisation of agricultural advisory services and consequences for the dairy farmers in the Mantaro Valley, Peru. J. Agric. Educ. Ext. 2017, 23, 197–211. [Google Scholar] [CrossRef]
- Vanclay, F.; Lawrence, G. Farmer rationality and the adoption of environmentally sound practices; A critique of the assumptions of traditional agricultural Extension. Eur. J. Agric. Educ. Ext. 1994, 1, 59–90. [Google Scholar] [CrossRef]
- Hunt, W.; Coutts, J. Extension in Tough Times—Addressing Failures in Public and Private Extension, Lessons from the Tasmanian Wool Industry, Australia. J. Agric. Educ. Ext. 2009, 15, 39–55. [Google Scholar] [CrossRef]
- De Freitas, A.F.; de Freitas, A.F.; Dias, M.M. O uso do diagnóstico rápido participativo (DRP) como metodologia de projetos de extensão universitária. Rev. Ext. 2012, 11, 69–81. [Google Scholar] [CrossRef]
- Benge, M.; Warner, L. Conducting the Needs Assessment #2: Using Needs Assessments in Extension Programming; Publication #AEC684, 5 December 2019; The Institute of Food and Agricultural Sciences (IFAS), University of Florida: Gainesville, FL, USA, 2019; Available online: https://edis.ifas.ufl.edu/publication/WC347 (accessed on 22 December 2022).
- Diori, H.I. A Critical Insight into Needs Assessment Technique and the Way Social Needs are Actually Assessed. Adv. J. Soc. Sci. 2021, 8, 3–9. [Google Scholar] [CrossRef]
- Fávero, L.P.; Belfiore, P. Manual de Análise de Dados: Estatística e Modelagem Multivariada com Excel®; SPSS® e Stata®; Elsevier: Rio de Janeiro, Brasil, 2017; pp. 1–1216. [Google Scholar]
- Balsadi, O.V.; da Mota, D.M. Diversidade de vínculos de trabalho de mulheres no censo agropecuário brasileiro de 2017. InterEspaço Rev. Geogr. Interdiscip. 2017, 7, 202113. [Google Scholar] [CrossRef]
- Da Conceição, J.C.P.R. Capital Humano e Obtenção de Informações Técnicas na Agricultura: Perfil e Diferenças Regionais a Partir dos Dados do Censo Agropecuário de 2017. Instituto de Pesquisa Econômica Aplicada. 2020. Available online: http://repositorio.ipea.gov.br/handle/11058/10474 (accessed on 20 March 2022).
- Global Forum for Rural Advisory Services (GFRAS). Activities—Global Good Practice Initiative. 2021. Available online: https://www.g-fras.org/en/ggp-home.html (accessed on 16 January 2022).
- Statista, Inc. Leading States for Agricultural Production in Brazil in 2021, Based on Share of Production Value. 3 World Trade Center, 175 Greenwich Street, 36th floor, New York, NY 1007, USA. Available online: https://www.statista.com/statistics/1072317/agricultural-production-value-brazil-state/ (accessed on 23 December 2022).
- Picoli, M.C.A.; Maciel, A.; Simões, R.; Santos, L.A.; Sanches, I. Agricultural production gains in Brazilian commodity hotspot: Case study state of Mato Grosso. In Proceedings of the XIX Brazilian Symposium on Remote Sensing, Santos, Brazil, 14–17 April 2019; Volume 19, ISBN 978-85-17-00097-3. [Google Scholar]
- Arvor, D.; Daugeard, M.; Tritsch, I.; De Mello-Thery, N.A.; Thery, H.; Dubreuil, V. Combining socioeconomic development with environmental governance in the Brazilian Amazon: The Mato Grosso agricultural frontier at a tipping point. Environ. Dev. Sustain. 2018, 20, 1–22. [Google Scholar] [CrossRef]
- Junqueira, V.H.; Bezerra, M.C.d.S. The new requirements of reproduction of workforce qualification for agribusiness. Trabalho Educação 2015, 24, 221–238. Available online: https://periodicos.ufmg.br/index.php/trabedu/article/view/9462 (accessed on 2 February 2022).
- Ventura, M.V.A.; Batista, H.R.F.; Bessa, M.M.; Pereira, L.S.; Costa, E.M.; de Oliveira, M.H.R. Comparison of conventional and transgenic soybean production costs in different regions in Brazil. Res. Soc. Dev. 2020, 9, e154973977. [Google Scholar] [CrossRef]
- Barros, M.A.L.; da Silva, C.R.C.; de Lima, L.M.; Farias, F.J.C.; Ramos, G.A.; dos Santos, R.C. A Review on Evolution of Cotton in Brazil: GM, White, and Colored Cultivars. J. Nat. Fibers 2020, 19, 209–221. [Google Scholar] [CrossRef]
- Richetti, A.; Ito, M.A. Viabilidade Econômica da Cultura do Feijão-Comum, Safra da seca de 2016, em Mato Grosso do Sul. Embrapa. 2015. Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1001428 (accessed on 12 March 2022).
- Serviço Nacional de Aprendizagem Rural de Mato Grosso (Senar). Portal da Transparência—Transparência Senar. Available online: http://app3.cna.org.br/transparencia/?gestaoOrcamento-MT-2021-863 (accessed on 28 June 2022).
- Universidade Federal de Mato Grosso (UFMT). Portal da Transparência. Controladoria-geral da União. Available online: https://www.portaltransparencia.gov.br/orgaos/26276?ano=2021 (accessed on 28 June 2022).
- Secretaria de Estado de Fazenda (Sefaz). Governo do Estado de Mato Grosso. Orçamento Cidadão 2021. Available online: http://www5.sefaz.mt.gov.br/documents/6071037/11388742/Or%C3%A7amento+Cidad%C3%A3o+2021.pdf/7172b6c5-90e3-97f9-cbab-d88831597240 (accessed on 28 June 2022).
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa). Portal da Transparência. Controladoria-Geral da União. Available online: https://transparenciapublica.gov.br/orgaos/22202?ano=2021 (accessed on 28 June 2022).
- Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Portal da Transparência. Controladoria-Geral da União. 2022. Available online: https://www.portaltransparencia.gov.br/orgaos-superiores/22000?ano=2021 (accessed on 28 June 2022).
- Bayer, S.A. e Controladas. Relatório da Administração. 2021. Available online: https://www.bayer.com.br/pt/balancos-financeiros-do-grupo-bayer-brasil (accessed on 28 June 2022).
- Corteva. Corteva Annual Report 2021. Available online: https://investors.corteva.com/static-files/fb19f308-4766-4ca6-a3d6-bd0a8035f09a (accessed on 28 October 2022).
- Mosaic. Performance Highlights. Annual Report 2021. Available online: https://s1.q4cdn.com/823038994/files/doc_financials/2021/ar/2021AnnualReport_FINAL.pdf (accessed on 28 October 2022).
- Yara. Integrated Report 2021: Growing a Nature Positive Food Future. Available online: https://www.yara.com/siteassets/investors/057-reports-and-presentations/annual-reports/2021/yara-integrated-report-2021.pdf/ (accessed on 28 October 2022).
- Carbonera, R.; Basso, N.; Buratti, J.B.L.; Kovalski, C.H.; Scheer, M.R.; Oliveski, F.E. Níveis de reprodução social e estratégias para a agricultura familiar. Redes 2020, 25, 2035–2059. [Google Scholar] [CrossRef]
- De Magalhães, M.M.; Braga Júnior, S.S. Evolução recente e potencial da agricultura de baixo carbono. Periód. Eletrônico Fórum Ambient. Alta Paul. 2013, 9, 100–118. [Google Scholar] [CrossRef]
- De Abreu, D.C.; Morales, M.M.; dos Anjos, A.F.T.; Felipe, R.T.A.; de Lima Dias, M.P.; de Paula Lana, R. (Eds.) VIII SIMBRAS, Proceedings of the 8th Simpósio Brasileiro de Agropecuária Sustentável and 5th International Conference on Sustainable Agriculture, Mato Grosso, Brazil, 6–8 October 2016; Universidade Federal de Mato Grosso: Sinop, Brazil, 2016; pp. 1–214. ISBN 978-85-921803-0-0. [Google Scholar]
- Sobrinho, O.R.; de Abreu, D.C.; de Lima Dias, M.P.; da Silva, W.M.; de Souza Santos, D.M.; Molossi, L.; Somavilla, A.; Baldan, A. (Eds.) 2a Vitrine Technológica Agrícola: Atualidades na Pecuária de Corte para Baixada Cuiabana, 1st ed.; Fundação UNISELVA: Cuiabá, Brazil, 2021; pp. 1–272. ISBN 978-65-86743-42-5. [Google Scholar]
- De Abreu, D.C.; de Lima Dias, M.P.; Boscoli, D.Z.; da Silva, W.M.; de Paula Alberto, F.; Martins, A.R.R.; Pinheiro, D.T. (Eds.) 3a Vitrine Technológica Agrícola: Atualidades na Cultura do Milho em Sistema Soja e Milho-Safrinha, 1st ed.; Fundação UNISELVA: Cuiabá, Brazil, 2022; pp. 1–230. ISBN 978-65-86743-50-0. [Google Scholar]
- Cattelan, A.J.; Dall’agnol, A. The rapid soybean growth in Brazil. Embrapa Soja-Artigo em periódico indexado (ALICE). Oilseeds Fats Crops Lipids 2018, 25, D102. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.H.; Patino, H.O.; Hoshide, A.K.; de Abreu, D.C.; Rotz, C.A.; Nabinger, C. Grazing supplementation and crop diversification benefits for southern Brazil beef: A case study. Agric. Syst. 2018, 162, 1–9. [Google Scholar] [CrossRef]
- Pedrosa, L.M.; Hoshide, A.K.; Abreu, D.C.; Molossi, L.; Couto, E.G. Financial transition and costs of sustainable agricultural intensification practices on a beef cattle and crop farm in Brazil’s Amazon. Renew. Agric. Food Syst. 2019, 36, 26–37. [Google Scholar] [CrossRef]
- Molossi, L.; Hoshide, A.K.; Pedrosa, L.M.; de Oliveira, A.S.; Abreu, D.C. Improve pasture or feed grain?: Greenhouse gas emissions, profitability, and resource use for Nelore beef cattle in Brazil’s Cerrado and Amazon biomes. Animals 2020, 10, 1386. [Google Scholar] [CrossRef]
- Hoshide, A.K.; Dalton, T.J.; Smith, S.N. Profitability of coupled potato and dairy farms in Maine. Renew. Agric. Food Syst. 2006, 21, 261–272. [Google Scholar] [CrossRef]
- Asai, M.; Moraine, M.; Ryschawy, J.; de Wit, J.; Hoshide, A.K.; Martin, G. Critical factors to crop-livestock integration beyond the farm level: A cross-analysis of worldwide case studies. Land Use Policy 2018, 72, 184–194. [Google Scholar] [CrossRef]
- Inwood, S.M.; Sharp, J.S. Farm persistence and adaptation at the rural–urban interface: Succession and farm adjustment. J. Rural Stud. 2012, 28, 107–117. [Google Scholar] [CrossRef]
- Carrer, M.J.; Maia, A.G.; Vinholis, M.d.M.B.; de Souza Filho, H.M. Assessing the effectiveness of rural credit policy on the adoption of integrated crop-livestock systems in Brazil. Land Use Policy 2020, 92, 104468. [Google Scholar] [CrossRef]
- Gil, J.; Siebold, M.; Berger, T. Adoption and development of integrated crop-livestock-forestry systems in Mato Grosso, Brazil. Agric. Ecosyst. Environ. 2015, 199, 394–406. [Google Scholar] [CrossRef]
- Garrett, R.D.; Niles, M.; Gil, J.; Dy, P.; Reis, J.; Valentim, J. Policies for reintegrating crop and livestock systems: A comparative analysis. Sustainability 2017, 9, 473. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, R.F.; Batistella, M.; Moran, E.; de Melo Celidonio, O.L.; Millington, J.D.A. The soybean trap: Challenges and risks for Brazilian producers. Front. Sustain. Food Syst. 2020, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Possamai, E.J.; Conceição, P.C.; Amadori, C.; Bartz, M.L.C.; Ralisch, R.; Vicensi, M.; Marx, E.F. Adoption of the no-tillage system in Paraná State: A (re)view. Rev. Bras. Ciênc. Solo 2022, 46, e0210104. [Google Scholar] [CrossRef]
- Cerdeira, A.L.; Gazziero, D.L.P.; Duke, S.O.; Matallo, M.B.; Spadotto, C.A. Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil. J. Environ. Sci. Health B 2007, 42, 539–549. [Google Scholar] [CrossRef]
- Ministério da Agricultura Pecuária e Abastecimento (MAPA). Acesso à Informação. 2020. Available online: https://www.gov.br/agricultura/pt-br (accessed on 12 October 2022).
- Pinheiro, D.T.; Santos, D.M.S.; Martins, A.R.R.; da Silva, W.M.; de Araújo, C.V.; Hoshide, A.K.; Abreu, D.C. Produtividade e qualidade nutricional dos principais híbridos de milho no cerrado mato-grossense. In Chapter 3 in 3.a Vitrine Tecnológica Agrícola; AgriSciences and Fundação UNISELVA: Cuiabá, Brazil, 2022; pp. 43–64. [Google Scholar]
- Gonçalves, A.C.; Junior, L.R.; Fonseca, M.I.; Nadruz, B.V.; Bürger, G.R. Technical assistance and rural extension: A case study that demonstrates its importance for the improvement of milk production. Rev. Bras. Hig. Sanid. Anim. 2014, 8, 47–61. [Google Scholar] [CrossRef]
- Cristóvão, A.; Koutsouris, A.; Kügler, M. Extension systems and change facilitation for agricultural and rural development. In Farming Systems Research into the 21st Century: The New Dynamic; Darnhofer, I., Gibbon, G., Dedieu, B., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 201–227. [Google Scholar] [CrossRef]
- Landini, F.; Brites, W.; Rebolé, M.I.M.Y. Towards a new paradigm for rural extensionists’ in-service training. J. Rural Stud. 2017, 51, 158–167. [Google Scholar] [CrossRef]
- Chowdhury, A.; Odame, H.H. Social media for enhancing innovation in agri-food and rural development: Current dynamics in Ontario, Canada. J. Rural Community Dev. 2013, 8, 97–119. [Google Scholar]
- Kolling, C.E.; Rampim, L. Agricultura de precisão e digital: Perspectivas e desafios dos produtores rurais do estado do paraná. Rev. Uningá 2021, 36, eURJ3981. Available online: https://revista.uninga.br/uningareviews/article/view/3981 (accessed on 6 March 2023). [CrossRef]
AgriSciences Program Components | Description | Methods | Participants (2019–2022) |
---|---|---|---|
Demonstrative Unit (DU) | Commercial rural property, where research and extension actions are already established. Offers producers and technicians local training programs for practical application of technologies and develops and evaluates research on advantages and disadvantages of such technologies. |
| 2261 |
Multiplier Unit | Rural property close to DU disseminating and transferring one or more technologies developed and/or validated at the DU. Promotes technology adoption and enables exchange of experiences between producers. Disseminates knowledge in environment close to their familiar daily life. |
| 33 |
Community Engagement | Community formed by academics, rural producers and professionals, young people, and rural children. Intended to bring together younger people and rural dwellers to disseminate academic knowledge, scientific production, and technological innovation using correct approaches. |
| 1301 |
Exchange of Leaders | International, practical experiences by academics and recent graduates. Allows exchange of rural youths, higher education students, and graduates in the United States. Focus on practical teaching of new practices for Mato Grosso. |
| 54 |
Producer Characteristic | n | % |
---|---|---|
Age (n = 93): | ||
<25 | 5 | 5.4 |
25–35 | 22 | 23.6 |
36–45 | 18 | 19.4 |
46–55 | 18 | 19.4 |
56–65 | 23 | 24.7 |
>65 | 7 | 7.5 |
Gender (n = 93): | ||
Male | 85 | 91.4 |
Female | 8 | 8.6 |
Civil Status (n = 92): | ||
Single | 14 | 15.2 |
Married | 76 | 82.6 |
Divorced | 2 | 2.2 |
Undergraduate area (n = 40): | ||
Agronomist | 20 | 50.0 |
Other professions | 15 | 37.5 |
Administrator | 2 | 5.0 |
Veterinarian | 1 | 2.5 |
Economist/Accountant | 2 | 5.0 |
Live on farm (n = 93): | ||
Yes | 29 | 31.2 |
No | 64 | 68.8 |
Administrative decisions made (n = 89): | ||
Individually | 26 | 29.2 |
With husband (wife) | 15 | 16.9 |
With husband (wife) and children | 23 | 25.8 |
With someone outside the family | 22 | 24.7 |
Outside the family | 3 | 3.4 |
Years in agriculture (n = 93) | ||
0–10 | 16 | 17.2 |
10–19 | 20 | 21.5 |
20–29 | 23 | 24.8 |
30–39 | 20 | 21.5 |
40–50 | 11 | 11.8 |
>50 | 3 | 3.2 |
Farm area managed (hectares) (n = 93): | ||
<500 | 21 | 22.6 |
500–1499 | 32 | 34.4 |
1500–3499 | 20 | 21.5 |
3500–9999 | 19 | 20.4 |
>10,000 | 1 | 1.1 |
Uses farm credit (n = 93): | ||
Yes | 76 | 81.7 |
No | 17 | 18.3 |
Respondent Characteristics | Producers | Professionals | Z-Test | ||
---|---|---|---|---|---|
and Preferences | n | % resp. | n | % resp. | p-Value |
Location: | 91 | 89 | |||
Sinop | 19 | 20.9 | 29 | 32.5 | 0.108 |
Sorriso | 23 | 25.3 | 28 | 31.5 | 0.450 |
Nova Mutum | 16 | 17.6 | 12 | 13.5 | 0.580 |
Lucas do Rio Verde | 9 | 9.9 | 9 | 10.1 | >0.999 |
Other | 28 | 30.8 | 11 | 12.4 | 0.005 |
Educational level: | 92 | 89 | |||
Up to high school | 15 | 16.3 | 2 | 2.3 | 0.003 |
Completed high school | 28 | 30.4 | 1 | 1.1 | <0.0001 |
Technical education | 3 | 3.3 | 14 | 15.7 | 0.009 |
Other higher education | 15 | 16.3 | 0 | 0 | 0.0002 |
College Degree (B.A., B.S.) | 21 | 22.8 | 47 | 52.8 | <0.0001 |
Graduate Degree (M.S., Ph.D.) | 6 | 6.5 | 25 | 28.1 | 0.0003 |
Works with crop system type(s) a: | 93 | 85 | |||
Just soybeans (S) | 6 | 6.5 | 1 | 1.2 | 0.155 |
S-Maize (M) | 55 | 59.1 | 56 | 65.9 | 0.439 |
S-Cotton | 7 | 7.5 | 28 | 19.7 | <0.0001 |
S-M-Pasture | 28 | 30.1 | 26 | 18.3 | >0.999 |
Other crop(s)/enterprise | 31 | 33.3 | 31 | 21.8 | 0.778 |
Sources for agricultural training a: | 83 | 86 | |||
Public training sources: | |||||
Regional extension | 39 | 47.0 | 22 | 25.6 | 0.006 |
Universities | 10 | 12.0 | 16 | 18.6 | 0.333 |
State research | 7 | 8.4 | 6 | 7.0 | 0.947 |
Federal research | 21 | 25.3 | 18 | 20.9 | 0.623 |
Private training sources: | |||||
Chemical companies | 37 | 44.6 | 71 | 82.6 | <0.0001 |
Fertilizer companies | 17 | 20.5 | 55 | 64.0 | <0.0001 |
Retail companies | 40 | 48.2 | 44 | 51.2 | 0.816 |
Independent consultants | 15 | 18.1 | 29 | 33.7 | 0.032 |
Other private entities | 3 | 3.6 | 4 | 4.7 | >0.999 |
Preferred topics for training a: | 90 | 88 | |||
Physical soil qualities | 40 | 44.4 | 44 | 50.0 | 0.554 |
Soil conservation | 47 | 52.2 | 40 | 45.5 | 0.451 |
Soil–plant–atmosphere relations | 26 | 28.9 | 17 | 19.3 | 0.188 |
Soil preparation | 38 | 42.2 | 48 | 54.5 | 0.135 |
GPS and precision agriculture | 35 | 38.9 | 34 | 38.6 | >0.999 |
Weed management | 55 | 61.1 | 63 | 71.6 | 0.187 |
Plant mineral nutrition | 42 | 46.7 | 61 | 69.3 | 0.004 |
Correcting soil acidity | 39 | 43.3 | 53 | 60.2 | 0.035 |
Plant fertilizer management | 50 | 55.6 | 64 | 72.7 | 0.026 |
Soil biology | 49 | 54.4 | 37 | 42.0 | 0.132 |
Soil fertility assessment | 49 | 54.4 | 62 | 70.5 | 0.040 |
Other topics | 10 | 11.1 | 8 | 9.1 | 0.843 |
Optimistic on future of agriculture: | 91 | 88 | |||
Yes | 68 | 74.7 | 83 | 94.3 | 0.0007 |
Professional Characteristics | n | % |
---|---|---|
Number of rural producers assisted (n = 89): | ||
0–19 | 39 | 43.8 |
20–39 | 30 | 33.7 |
40–60 | 4 | 4.5 |
>60 | 16 | 18.0 |
Total area covered by professionals’ work (n = 88): | ||
0–19,000 hectares | 24 | 27.3 |
20,000–39,999 hectares | 28 | 31.8 |
40,000–59,999 hectares | 14 | 15.9 |
>60,000 hectares | 22 | 25.0 |
Type | Class | Abbreviation | Entity Name | 2021 Budget (USD/Year) | |||
---|---|---|---|---|---|---|---|
International | Brazil | Mato Grosso | Source | ||||
Public | Regional extension | Fundação MT | Fundação de Apoio à Pesquisa Agropecuária de Mato Grosso | - | - | n/a | - |
IMA | Instituto Matogrossense de Algodão | - | - | n/a | |||
SENAR-MT | Serviço Nacional de Aprendizagem Rural de Mato Grosso | - | - | 25,756,833 | [38] | ||
Universities | UFMT | Universidade Federal de Mato Grosso | - | - | 180,261,746 | [39] | |
AgriSciences | - | - | 169,523 | ||||
State | EMPAER-MT | Empresa Mato-Grosssense de Pesquisa, Assistência e Extensão Rural | - | - | 30,468,664 | [40] | |
INDEA | Instituto de Defesa Agropecuária do Estado de Mato Grosso | - | - | 43,059,919 | [40] | ||
Federal | Embrapa | Empresa Brasileira de Pesquisa Agropecuária | - | 657,227,049 | n/a | [41] | |
MAPA | Ministério da Agricultura, Pecuária e Abastecimento | - | 787,328,902,333 | n/a | [42] | ||
Private | Chemicals | - | Bayer (includes Monsanto) | - | 2,041,688 | n/a | [43] |
- | Corteva (includes Pioneer) | 15,655,000 | n/a | n/a | [44] | ||
Fertilizers | - | Mosaic | 1,630,600,000 | n/a | n/a | [45] | |
- | Yara | 384,000,000 | n/a | n/a | [46] | ||
Retailers | - | Agroamazônia | - | n/a | n/a | - | |
- | Agroinsumos | - | n/a | n/a | - | ||
Independent | - | Independent Consultants | - | n/a | n/a | - | |
Other | - | Other private entities | - | n/a | n/a | - |
Proportion Public Training | Producers | Professionals | ||||
---|---|---|---|---|---|---|
OLS Model: Independent Variables | Coefficient | Standard Error | p-Value a | Coefficient | Standard Error | p-Value a |
Constant | 0.65826 | 0.25337 | 0.0115 ** | 0.56507 | 0.20079 | 0.0063 *** |
Private training source: | ||||||
Chemical companies | −0.20100 | 0.07393 | 0.0083 *** | −0.35957 | 0.07259 | <0.0001 *** |
Resale companies | −0.27186 | 0.07207 | 0.0003 *** | −0.05143 | 0.05403 | 0.3444 |
Residence: | ||||||
Sinop | −0.29254 | 0.10318 | 0.0060 *** | −0.09202 | 0.06498 | 0.1554 |
Sorriso | 0.03919 | 0.08784 | 0.6569 | −0.16216 | 0.06462 | 0.0144 ** |
Socio-demographics: | ||||||
Female | 0.32599 | 0.13429 | 0.0179 ** | – b | – b | – b |
Single | 0.22590 | 0.09779 | 0.0239 ** | – b | – b | – b |
Years of education | −0.00565 | 0.01277 | 0.6595 | −0.00854 | 0.01233 | 0.4907 |
Agricultural background c: | ||||||
Managed area (ranges) | −0.00002 | 0.00001 | 0.0725 * | −0.000002 | 0.000001 | 0.0801 * |
Soybeans only | −0.30665 | 0.19923 | 0.1284 | −0.34075 | 0.24407 | 0.1670 |
Number of crops | 0.01103 | 0.02657 | 0.6795 | 0.06672 | 0.02151 | 0.0028 *** |
Years in agriculture (range) | 0.00192 | 0.00296 | 0.5178 | – a | – a | – a |
Number articles read/year | – b | – b | – b | 0.00032 | 0.00018 | 0.0812 * |
Model summary: | ||||||
Sample size (n) | 94 | 91 | ||||
Degrees of freedom (df) | 11 | 9 | ||||
R-squared (R2) | 0.4159 | 0.4631 |
Producer Characteristics and Preferences | n | % |
---|---|---|
Rural credit: | ||
Rural credit used (n = 93): | ||
Yes | 76 | 81.7 |
No | 17 | 18.3 |
Type a (responses = 129): | ||
Banco do Brasil (FCO, etc.) | 54 | 41.9 |
SICREDI | 50 | 38.8 |
ABC | 2 | 1.6 |
Other type(s) | 8 | 6.2 |
Barter | 15 | 11.6 |
Technical assistance | ||
Receives technical assistance (n = 91): | ||
Yes | 76 | 83.5 |
No | 15 | 16.5 |
Source(s) a (responses = 176): | ||
Regional extension (SENAR) | 21 | 11.9 |
Universities | 5 | 2.8 |
State research (EMPAER) | 2 | 1.1 |
Federal research (Embrapa) | 14 | 7.9 |
Private companies | 58 | 33.0 |
Producer associations | 45 | 25.6 |
Rural unions | 29 | 16.5 |
Non-Government Organizations (NGOs) | 1 | 0.6 |
Other sources | 1 | 0.6 |
Preferences a (responses = 99): | ||
Understanding cost–benefit analysis | 37 | 37.4 |
New technology and science | 28 | 28.3 |
Basic technical knowledge | 21 | 21.2 |
Communication skills | 8 | 8.1 |
Other | 5 | 5.0 |
Preferred extension methods a (responses = 245): | ||
Field days | 74 | 30.2 |
Fairs and exhibitions | 45 | 18.4 |
Presentations | 71 | 29.0 |
Congresses and seminars | 48 | 19.6 |
Other types | 5 | 2.0 |
None | 2 | 0.8 |
Professional Participation and Preferences | n | % |
---|---|---|
Participation in training and reading | ||
Trainings attended annually (n = 88): | ||
None | 3 | 3.4 |
1–3 training(s) per year | 33 | 37.5 |
4–5 trainings per year | 16 | 18.2 |
>5 trainings per year | 36 | 40.9 |
Technical articles read (n = 89): | ||
Daily | 23 | 25.9 |
Weekly | 31 | 34.8 |
Monthly | 10 | 11.2 |
Occasionally | 24 | 27.0 |
Do not read technical articles | 1 | 1.1 |
Books read annually (n = 89): | ||
None | 29 | 32.6 |
1–2 books | 42 | 47.2 |
3–5 books | 11 | 12.3 |
>5 books | 7 | 7.9 |
Preferences for training: | ||
Ideal length for agronomic course (n = 89): | ||
1–4 h | 32 | 36.0 |
8 h | 21 | 23.6 |
>8 h | 26 | 29.2 |
Do not know | 10 | 11.2 |
Hours available for online training (n = 89): | ||
Up to 1 h | 46 | 51.7 |
1–3 h | 26 | 29.2 |
A half day | 6 | 6.7 |
Not interested in participating in online program | 11 | 12.4 |
0 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, J.A.V.d.; Hoshide, A.K.; Vreyens, J.R.; Oliveira, A.S.d.; Barros, V.A.M.d.; Silva, W.M.d.; Molossi, L.; Viana, J.L.; Abreu, D.C.d.; Oliveira, R.A.d. Training Sources and Preferences for Agricultural Producers and Professionals in Middle-North Mato Grosso, Brazil. Sustainability 2023, 15, 4712. https://doi.org/10.3390/su15064712
Reis JAVd, Hoshide AK, Vreyens JR, Oliveira ASd, Barros VAMd, Silva WMd, Molossi L, Viana JL, Abreu DCd, Oliveira RAd. Training Sources and Preferences for Agricultural Producers and Professionals in Middle-North Mato Grosso, Brazil. Sustainability. 2023; 15(6):4712. https://doi.org/10.3390/su15064712
Chicago/Turabian StyleReis, Jordane Aparecida Vieira dos, Aaron Kinyu Hoshide, John Robert Vreyens, André Soares de Oliveira, Vanessa Aparecida Moreira de Barros, Wininton Mendes da Silva, Luana Molossi, Jessica Lima Viana, Daniel Carneiro de Abreu, and Ronaldo Alves de Oliveira. 2023. "Training Sources and Preferences for Agricultural Producers and Professionals in Middle-North Mato Grosso, Brazil" Sustainability 15, no. 6: 4712. https://doi.org/10.3390/su15064712