Ecological Sensitivity of Urban Agglomeration in the Guanzhong Plain, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.3. The SEP (Sensitivity–Elasticity–Pressure) Evaluation Framework Model
2.4. Weight Calculation
2.5. Data Acquisition and Processing
2.5.1. Sensitivity
- Topographical factors
- Climatic factors
- Land use degree
- Soil conservation
2.5.2. Elasticity
- Soil organic matter (SOM)
- Biodiversity (BIO)
- Normalized Difference Vegetation Index (NDVI)
2.5.3. Pressure
- Building Area Percentage (BAP)
- Road Mileage (RM)
- Gross Domestic Product (GDP)
- Population (POP)
- Night Light Index (NLI)
2.5.4. Standardization of Data
2.6. Comprehensive Ecological Vulnerability Index (CEVI)
3. Results
3.1. Weight Calculation Result
3.2. Analysis of Ecological Sensitivity, Elasticity, and Pressure Evaluation Results
3.2.1. Spatiotemporal Change of ESI
3.2.2. Spatiotemporal Change of EEI
3.2.3. Spatiotemporal Change of EPI
3.3. Ecological Vulnerability Assessment Results and Grade Estimation
3.3.1. Spatiotemporal Change of EVI
3.3.2. Anselin Local Moran’s I
3.4. Ecological Vulnerability Grade Estimation and Analysis
3.4.1. EVI Grade Classification
3.4.2. Grade Statistics Based on Administrative Units
3.4.3. The EVI Grade in 2000 and 2020
4. Discussion
4.1. Analysis of Ecological Vulnerability Change Based on Administrative Units
4.2. Analysis of the Main Drivers of Spatial and Temporal Variation in EVI
4.3. The Influence of the ESI, EEI, and EPI on the EVI
4.4. Uncertainty and Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.J. Social vulnerability indicators as a sustainable planning tool. Environ. Impact Assess. Rev. 2014, 44, 31–42. [Google Scholar] [CrossRef]
- Song, G.; Li, Z.; Yang, Y.; Semakula, H.M.; Zhang, S. Assessment of ecological vulnerability and decision-making application for prioritizing roadside ecological restoration: A method combining geographic information system, Delphi survey and Monte Carlo simulation. Ecol. Indic. 2015, 52, 57–65. [Google Scholar] [CrossRef]
- Okey, T.A.; Agbayani, S.; Alidina, H.M. Mapping ecological vulnerability to recent climate change in Canada’s Pacific marine ecosystems. Ocean Coast. Manag. 2015, 106, 35–48. [Google Scholar] [CrossRef]
- Fu, G.; Bai, J.; Qi, Y.; Yan, B.; He, J.; Xiao, N.; Li, J. Ecological Vulnerability Assessment in Beijing Based on GIS Spatial Analysis. J. Ecol. Rural Environ. 2018, 34, 830–839. [Google Scholar]
- Thiault, L.; Marshall, P.; Gelcich, S.; Collin, A.; Chlous, F.; Claudet, J. Space and time matter in social-ecological vulnerability assessments. Mar. Policy 2018, 88, 213–221. [Google Scholar] [CrossRef]
- Beroya-Eitner, M.A. Ecological Vulnerability Indicators. Ecol. Indic. 2016, 60, 329–334. [Google Scholar] [CrossRef]
- Williams, L.R.R.; Kapustka, L.A. Ecosystem Vulnerability: A Complex Interface with Technical Components. Environ. Toxicol. Chem. 2000, 19, 1055–1058. [Google Scholar]
- Gallopin, G.C. Linkages between Vulnerability, Resilience, and Adaptive Capacity. Glob. Environ. Chang. 2006, 16, 293–303. [Google Scholar] [CrossRef]
- Lv, X.; Xiao, W.; Zhao, Y.; Zhang, W.; Li, S.; Sun, H. Drivers of spatio-temporal ecological vulnerability in an arid, coal mining region in Western China. Ecol. Indic. 2019, 106, 105475. [Google Scholar] [CrossRef]
- Xue, L.; Wang, J.; Zhang, L.; Wei, G.; Zhu, B. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Sci. Total Environ. 2019, 649, 876–888. [Google Scholar] [CrossRef] [PubMed]
- Wolfslehner, B.; Vacik, H. Evaluating Sustainable Forest Management Strategies with the Analytic Network Process in a Pressure-State-Response Framework. J. Environ. Manag. 2008, 88, 1–10. [Google Scholar] [CrossRef]
- Polsky, C.; Neff, R.; Yarnal, B. Building Comparable Global Change Vulnerability Assessments: The Vulnerability Scoping Diagram. Glob. Environ. Chang. 2007, 17, 472–485. [Google Scholar] [CrossRef]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adger, W.N.; Kelly, P.M. Social vulnerability to climate change and the architecture of entitlements. Mitig. Adapt. Strat. Glob. Chang. 1999, 4, 253–266. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef]
- Hussain, M.; Tayyab, M.; Zhang, J.; Shah, A.; Ullah, K.; Mehmood, U.; Al-Shaibah, B. GIS-based multi-criteria approach for flood vulnerability assessment and mapping in district Shangla: Khyber Pakhtunkhwa, Pakistan. Sustainability 2021, 13, 3126. [Google Scholar] [CrossRef]
- Lu, C.Y.; Gu, W.; Dai, A.H.; Wei, H.Y. Assessing habitat suitability based on geographic information system (GIS) and fuzzy: A case study of Schisandra sphenanthera Rehd. et Wils. in Qinling Mountains, China. Ecol. Model. 2012, 242, 105–115. [Google Scholar] [CrossRef]
- Pan, J.H.; Liu, X. Assessment of landscape ecological security and optimization of landscape pattern based on spatial principal component analysis and resistance model in arid inland area: A case study of Ganzhou District, Zhangye City, Northwest China. J. Appl. Ecol. 2015, 26, 3126–3136. (In Chinese) [Google Scholar]
- Sahoo, S.; Dhar, A.; Kar, A. Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model. Environ. Impact Assess. Rev. 2016, 56, 145–154. [Google Scholar] [CrossRef]
- Gong, J.; Jin, T.T.; Cao, E. Is ecological vulnerability assessment based on the VSD model and AHP-Entropy method useful for loessial forest landscape protection and adaptative management? A case study of Ziwuling Mountain Region, China. Ecol. Indic. 2022, 143, 109379. [Google Scholar] [CrossRef]
- Wiik, E.; Bennion, H.; Sayer, C.D.; Davidson, T.A.; McGowan, S.; Patmore, I.R.; Clarke, S.J. Ecological sensitivity of marl lakes to nutrient enrichment: Evidence from Hawes Water, UK. Freshw. Biol. 2015, 60, 2226–2247. [Google Scholar] [CrossRef] [Green Version]
- McCluney, K.E.; Poff, N.L.; Palmer, M.A.; Thorp, J.H.; Poole, G.C.; Williams, B.S.; Williams, M.R.; Baron, J.S. Riverine macrosystems ecology: Sensitivity, resistance, and resilience of whole river basins with human alterations. Front. Ecol. Environ. 2014, 12, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Sun, M.; Li, J. Impact of environmental regulation policy on ecological efficiency in four major urban agglomerations in eastern China. Ecol. Indic. 2021, 130, 108002. [Google Scholar] [CrossRef]
- Li, J.; Ouyang, X.; Zhu, X. Land space simulation of urban agglomerations from the perspective of the symbiosis of urban development and ecological protection: A case study of Changsha-Zhuzhou-Xiangtan urban agglomeration. Ecol. Indic. 2021, 126, 107669. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, X.; Zhu, X.; Zhang, B. Ecological security pattern: A new idea for balancing regional development and ecological protection. A case study of the Jiaodong Peninsula, China. Glob. Ecol. Conserv. 2021, 26, e01472. [Google Scholar] [CrossRef]
- Chen, J.; Wang, S.; Zou, Y. Construction of an ecological security pattern based on ecosystem sensitivity and the importance of ecological services: A case study of the Guanzhong Plain urban agglomeration, China. Ecol. Indic. 2022, 136, 108688. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, Z.X. Ecological security assessment of the Guanzhong Plain urban agglomeration based on an adapted ecological footprint model. J. Clean. Prod. 2020, 260, 120973. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Li, P.; Zhang, Z.; Zhang, Y. Identification of Coupling and Influencing Factors between Urbanization and Ecosystem Services in Guanzhong, China. Sustainability 2021, 13, 10637. [Google Scholar] [CrossRef]
- Turner Ii, B.L. Vulnerability and resilience: Coalescing or paralleling approaches for sustainability science? Glob. Environ. Chang. 2010, 20, 570–576. [Google Scholar] [CrossRef]
- Shao, W.; Wang, Q.; Guan, Q.; Zhang, J.; Yang, X.; Liu, Z. Environmental sensitivity assessment of land desertification in the Hexi Corridor, China. Catena 2023, 220, 106728. [Google Scholar] [CrossRef]
- Eleftheriou, G.; Iosjpe, M. Evaluation of the environmental sensitivity of Aegean Sea based on radiological box modeling. J. Environ. Radioactiv. 2020, 222, 106360. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhong, J.L.; Zhang, Q.F.; Xiang, X.; Huang, H. Exploring the coupling coordination and key factors between urbanization and land use efficiency in ecologically sensitive areas: A case study of the Loess Plateau, China. Sustain. Cities Soc. 2022, 86, 104148. [Google Scholar] [CrossRef]
- Bennett, N.J.; Blythe, J.; Tyler, S.; Ban, N.C. Communities and change in the anthropocene: Understanding social-ecological vulnerability and planning adaptations to multiple interacting exposures. Reg. Environ. Chang. 2016, 16, 907–926. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Guo, B.; Fan, J.; Yang, F.; Han, B.; Wei, C.; Lu, Y.; Zang, W.; Zhen, X.; Meng, C. A novel remote sensing ecological vulnerability index on large scale: A case study of the China-Pakistan Economic Corridor region. Ecol. Indic. 2021, 129, 107955. [Google Scholar] [CrossRef]
- Pei, H.; Fang, S.; Lin, L.; Qin, Z.; Wang, X. Methods and applications for ecological vulnerability evaluation in a hyper-arid oasis: A case study of the Turpan Oasis, China. Environ. Earth Sci. 2015, 74, 1449–1461. [Google Scholar] [CrossRef] [Green Version]
- Tsou, J.Y.; Gao, Y.; Zhang, Y.; Sun, G.; Ren, J.; Li, Y. Evaluating urban land carrying capacity based on the ecological sensitivity analysis: A case study in Hangzhou, China. Remote Sens. 2017, 9, 529. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geogr. Sin. 2014, 69, 3–14. [Google Scholar] [CrossRef]
- Gao, H.; Li, Z.; Jia, L. Capacity of soil loss control in the Loess Plateau based on soil erosion control degree. J. Geogr. Sci. 2016, 26, 457–472. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.D.; Guo, L. Evaluation of ecological vulnerability in the process of economic transformation in northern mountain resource exhausted area of Jiaozuo City. Chin. J. Ecol. 2020, 39, 3442–3451. [Google Scholar]
- Xu, X.L. China’s GDP Spatial Distribution Kilometer Grid Dataset. Resource and Environmental Science Data Registration and Publishing System. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=33 (accessed on 10 October 2022).
- Xu, X.L. Chinese Population Spatial Distribution Kilometer Grid Dataset. Resource and Environmental Science Data Registration and Publishing System. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=32 (accessed on 10 October 2022).
- Xu, X.L. Annual Dataset of Night Lights in China. Resource and Environmental Science Data Registration and Publishing System. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=105 (accessed on 10 October 2022).
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Panagos, P. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, K.; Cao, H. Land-use change and its driving factors in Henan province from 1995 to 2015. Arab. J. Geosci. 2022, 3, 247. [Google Scholar] [CrossRef]
- Witzgall, K.; Vidal, A.; Schubert, D.I.; Höschen, C.; Schweizer, S.A.; Buegger, F.; Pouteau, V.; Chenu, C.; Mueller, C.W. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun. 2021, 1, 4115. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shi, P.; Zhang, X.; Tong, H.; Zhang, W.; Liu, Y. Research on landscape pattern construction and ecological restoration of Jiuquan City based on ecological security evaluation. Sustainability 2021, 10, 5732. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, H.; Liu, Y. Urban ecological corridors construction: A review. Acta Ecol. Sin. 2017, 37, 23–30. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, L.; Li, X.; Wang, Z.; Wang, H.; Jiao, L. Spatial expansion effects on urban ecosystem services supply-demand mismatching in Guanzhong Plain Urban Agglomeration of China. J. Geogr. Sci. 2022, 5, 806–828. [Google Scholar] [CrossRef]
- Yang, S.; Su, H. Multi-Scenario simulation of ecosystem service values in the Guanzhong Plain Urban Agglomeration, China. Sustainability 2022, 14, 8812. [Google Scholar] [CrossRef]
Data | Precision | Type | Time | Data Sources |
---|---|---|---|---|
Landsat data | 30 m | Raster | 2000/2020 | http://www.gscloud.cn/ accessed on 5 July 2022 |
Landsat TM | 30 m | Raster | 2000 | |
Landsat 8 OLI | 30 m | Raster | 2020 | |
Topographical | 100 m | Raster | 2011 | https://www.resdc.cn/ accessed on 10 October 2022 |
DEM | 100 m | Raster | 2011 | |
Meteorology | 1000 m | Raster | 2000/2020 | https://www.resdc.cn/ accessed on 10 October 2022 |
Evapotranspiration | 1000 m | Raster | 2000/2020 | |
Precipitation | 1000 m | Raster | 2000/2020 | |
Ground Surface Temperature | 1000 m | Raster | 2000/2020 | |
NDVI | 1000 m | Raster | 2000/2020 | https://www.resdc.cn/ accessed on 10 October 2022 |
Harmonized World Soil Database | 1:106 | Map | 2009 | http://data.tpdc.ac.cn/zh-hans/ accessed on 15 October 2022 |
Grid Population | 1000 m | Raster | 2000/2019 | https://www.resdc.cn/ accessed on 10 October 2022 |
Grid GDP | 1000 m | Raster | 2000/2019 | https://www.resdc.cn/ accessed on 10 October 2022 |
Roads | - | Shape | 2020 | https://www.resdc.cn/ accessed on 10 October 2022 |
Night Lights | 1000 m | Raster | 2000/2020 | https://www.resdc.cn/ accessed on 10 October 2022 |
First Level | Second Level | Third Level | Abbr. | Nature |
---|---|---|---|---|
EVI | ESI | Digital elevation model | DEM | − |
Slope | SLO | − | ||
Evapotranspiration | EVP | + | ||
Precipitation | PRE | − | ||
Ground surface temperature | GST | + | ||
Land use degree | LUD | + | ||
Soil erosion | SE | − | ||
ERI | Soil organic matter | SOM | − | |
Biodiversity | BIO | − | ||
Normalized difference vegetation index | NDVI | − | ||
EPI | Building area percentage | BAP | + | |
Road mileage | RM | + | ||
Gross domestic product | GDP | + | ||
Population | POP | + | ||
Night light index | NLI | + |
Type | Bare Land | Grassland, Forest, Water | Farmland | Built-Up Land |
---|---|---|---|---|
Grading index | 1 | 2 | 3 | 4 |
Third Level | Abbr. | 2000 | 2020 |
---|---|---|---|
Digital elevation model | DEM | 0.0693 | 0.0640 |
Slope | SLO | 0.0399 | 0.0490 |
Evapotranspiration | EVP | 0.0969 | 0.1445 |
Precipitation | PRE | 0.0726 | 0.0633 |
Ground surface temperature | GST | 0.0820 | 0.0670 |
Land use degree | LUD | 0.0482 | 0.0501 |
Soil erosion | SE | 0.0069 | 0.0137 |
Soil organic matter | SOM | 0.0101 | 0.0066 |
Biodiversity | BIO | 0.1660 | 0.1640 |
Normalized difference vegetation index | NDVI | 0.1949 | 0.1674 |
Building area percentage | BAP | 0.0701 | 0.1910 |
Road mileage | RM | 0.0242 | 0.0138 |
Gross domestic product | GDP | 0.0911 | 0.0013 |
Population | POP | 0.0227 | 0.0016 |
Night light index | NLI | 0.0051 | 0.0027 |
Area | ESI | EEI | EPI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2020 | 2000 | 2020 | 2000 | 2020 | ||||||||
L1 | 0–0.1 | 0.09 | 0.00 | 0.09 | 0.00 | 30.43 | 17.96 | 38.86 | 30.73 | 96.65 | 91.75 | 88.3 | 78.59 |
0.1–0.2 | 0.09 | 0.09 | 12.47 | 8.13 | 4.90 | 9.71 | |||||||
L2 | 0.2–0.3 | 3.18 | 0.66 | 3.6 | 0.65 | 19.32 | 8.95 | 15.58 | 7.09 | 2.5 | 1.83 | 6.85 | 4.45 |
0.3–0.4 | 2.52 | 2.95 | 10.37 | 8.49 | 0.67 | 2.40 | |||||||
L3 | 0.4–0.5 | 17.84 | 5.93 | 21.28 | 9.41 | 43.76 | 26.43 | 39.15 | 22.81 | 0.42 | 0.28 | 2.11 | 1.30 |
0.5–0.6 | 11.91 | 11.87 | 17.33 | 16.34 | 0.14 | 0.81 | |||||||
L4 | 0.6–0.7 | 45.02 | 17.48 | 41.6 | 15.24 | 6.28 | 5.86 | 6.09 | 4.37 | 0.18 | 0.11 | 1.04 | 0.58 |
0.7–0.8 | 27.54 | 26.36 | 0.42 | 1.72 | 0.07 | 0.46 | |||||||
L5 | 0.8–0.9 | 33.88 | 28.99 | 33.43 | 22.03 | 0.21 | 0.16 | 0.32 | 0.31 | 0.25 | 0.21 | 1.7 | 0.48 |
0.9–1 | 4.89 | 11.40 | 0.05 | 0.01 | 0.04 | 1.22 |
Data | ESI | EEI | EPI | EVI | ||||
---|---|---|---|---|---|---|---|---|
2000 | 2020 | 2000 | 2020 | 2000 | 2020 | 2000 | 2020 | |
Max | 0.955 | 0.971 | 0.941 | 0.943 | 0.926 | 0.983 | 0.893 | 0.933 |
Min | 0.091 | 0.082 | 0.018 | 0.012 | 0 | 0 | 0.087 | 0.082 |
Mean | 0.716 | 0.711 | 0.346 | 0.308 | 0.036 | 0.075 | 0.434 | 0.441 |
SD | 0.144 | 0.159 | 0.191 | 0.219 | 0.077 | 0.163 | 0.132 | 0.159 |
Year | LL | LH | NS | HL | HH | ||
---|---|---|---|---|---|---|---|
** | * | * | * | ** | * | ||
2000 | 4.24 | 0.01 | 33.38 | 55.43 | 0.06 | 6.58 | 0.30 |
2020 | 5.75 | 0.01 | 11.20 | 65.06 | 0.05 | 17.60 | 0.33 |
Year | LEVEL | Potential | Slight | Mild | Moderate | Severe |
---|---|---|---|---|---|---|
Index | 0–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1 | |
2000 | Area | 4.10 | 33.93 | 56.90 | 4.83 | 0.24 |
2020 | 4.54 | 37.24 | 43.11 | 13.54 | 1.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Eboy, O.V.; Xu, L.; Yu, D. Ecological Sensitivity of Urban Agglomeration in the Guanzhong Plain, China. Sustainability 2023, 15, 4804. https://doi.org/10.3390/su15064804
Wei X, Eboy OV, Xu L, Yu D. Ecological Sensitivity of Urban Agglomeration in the Guanzhong Plain, China. Sustainability. 2023; 15(6):4804. https://doi.org/10.3390/su15064804
Chicago/Turabian StyleWei, Xingtao, Oliver Valentine Eboy, Lu Xu, and Di Yu. 2023. "Ecological Sensitivity of Urban Agglomeration in the Guanzhong Plain, China" Sustainability 15, no. 6: 4804. https://doi.org/10.3390/su15064804
APA StyleWei, X., Eboy, O. V., Xu, L., & Yu, D. (2023). Ecological Sensitivity of Urban Agglomeration in the Guanzhong Plain, China. Sustainability, 15(6), 4804. https://doi.org/10.3390/su15064804