Investigating Factors Affecting Institutional Investors’ Green Bond Investments: Cases for Beijing and Shenzhen
Abstract
:1. Introduction
2. Review of Literature
3. Methods
3.1. Study Area
3.2. Survey Methodology
3.3. Questionnaire Design
3.4. Variables for Analyzing the Effectiveness of the Greenium
3.5. WTP for the Greenium and Designing of Bids
3.6. Analysis of WTP and Factors Affecting the WTP
4. Results
5. Discussion
5.1. Factors Affecting the Greenium
5.2. Analysis of Differences in Results between Beijing and Shenzhen
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calel, R.; Chapman, S.C.; Stainforth, D.A.; Watkins, N.W. Temperature variability implies greater economic damages from climate change. Nat. Commun. 2020, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Qi, H.; Wan, Y. Driving factors behind the development of China’s green bond market. J. Clean. Prod. 2022, 354, 131705. [Google Scholar] [CrossRef]
- Agliardi, E.; Agliardi, R. Corporate Green Bonds: Understanding the Greenium in a Two-Factor Structural Model. Environ. Resour. Econ. 2021, 80, 257–278. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency (IEA). World Energy Outlook 2021. 2022. Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 10 January 2023).
- Ehlers, T.; Packer, F. Green Bond Finance and Certification. BIS Quarterly Review September. 2017. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3042378 (accessed on 10 January 2023).
- European Investment Bank (EIB). Evaluation of the EIB’s Climate Awareness Bonds. 2021. Available online: https://www.eib.org/en/publications/evaluation-of-the-eibs-climate-awareness-bonds (accessed on 10 January 2023).
- Flammer, C. Corporate green bonds. J. Financ. Econ. 2021, 142, 499–516. [Google Scholar] [CrossRef]
- International Capital Market Association (ICMA). Green Bond Principles—Voluntary Process. Guidelines for Issuing Green Bonds. 2018. Available online: https://www.icmagroup.org/assets/documents/Regulatory/Green-Bonds/Green-Bonds-Principles-June-2018-270520.pdf (accessed on 10 January 2023).
- European Commission (EC). The EU’s 2021–2027 Long-Term Budget and Next Generation EU. 2021. Available online: https://op.europa.eu/en/publication-detail/-/publication/d3e77637-a963-11eb-9585-01aa75ed71a1/language-en (accessed on 10 January 2023).
- Climate Bond Initiative (CBI). Interactive Data Platform as of H1 2022. 2021. Available online: https://www.climatebonds.net/market/data/ (accessed on 10 January 2023).
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- People’s Bank of China (PBOC). The Green Bond Endorsed Project Catalogue (2021 Edition). 2021. Available online: http://www.pbc.gov.cn/goutongjiaoliu/113456/113469/4342400/2021091617180089879.pdf (accessed on 10 January 2023).
- Chen, Y.; Zhao, Z.J. The rise of green bonds for sustainable finance: Global standards and issues with the expanding Chinese market. Curr. Opin. Environ. Sustain. 2021, 52, 54–57. [Google Scholar] [CrossRef]
- Amstad, M.; He, Z. Chinese Bond Market and Interbank Market. In The Handbook of China’s Financial System; Amstad, M., Sun, G., Xiong, W., Eds.; Princeton University Press: Princeton, NJ, USA, 2020; Chapter 5; pp. 105–150. [Google Scholar] [CrossRef]
- Wu, Y. Are green bonds priced lower than their conventional peers? Emerg. Mark. Rev. 2022, 52, 100909. [Google Scholar] [CrossRef]
- Su, T.; Zhang, Z.J.; Lin, B. Green bonds and conventional financial markets in China: A tale of three transmission modes. Energy Econ. 2022, 113, 106200. [Google Scholar] [CrossRef]
- Deschryver, P.; De Mariz, F. What Future for the Green Bond Market? How Can Policymakers, Companies, and Investors Unlock the Potential of the Green Bond Market? J. Risk Financ. Manag. 2020, 13, 61. [Google Scholar] [CrossRef] [Green Version]
- Zerbib, O.D. The effect of pro-environmental preferences on bond prices: Evidence from green bonds. J. Bank. Finance 2019, 98, 39–60. [Google Scholar] [CrossRef]
- Hachenberg, B.; Schiereck, D. Are green bonds priced differently from conventional bonds? J. Asset Manag. 2018, 19, 371–383. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Li, X.; Yu, J.; Zhong, R. The market reaction to green bond issuance: Evidence from China. Pac.-Basin Financ. J. 2020, 60, 101294. [Google Scholar] [CrossRef]
- Zenno, Y.; Aruga, K. Institutional Investors’ Willingness to Pay for Green Bonds: A Case for Shanghai. J. Risk Financ. Manag. 2022, 15, 508. [Google Scholar] [CrossRef]
- Chang, K.; Feng, Y.L.; Liu, W.; Lu, N.; Li, S.Z. The impacts of liquidity measures and credit rating on corporate bond yield spreads: Evidence from China’s green bond market. Appl. Econ. Lett. 2021, 28, 1446–1457. [Google Scholar] [CrossRef]
- Baker, M.; Bergstresser, D.; Serafeim, G.; Wurgler, J. Financing the Response to Climate Change: The Pricing and Ownership of US Green Bonds (No. w25194); National Bureau of Economic Research: Cambridge, MA, USA, 2018. [Google Scholar]
- Gianfrate, G.; Peri, M. The green advantage: Exploring the convenience of issuing green bonds. J. Clean. Prod. 2019, 219, 127–135. [Google Scholar] [CrossRef]
- Larcker, D.F.; Watts, E.M. Where’s the greenium? J. Account. Econ. 2020, 69, 101312. [Google Scholar] [CrossRef]
- Tang, D.Y.; Zhang, Y. Do shareholders benefit from green bonds? J. Corp. Financ. 2020, 61, 101427. [Google Scholar] [CrossRef]
- Karpf, A.; Mandel, A. Does It Pay to Be Green? 2017. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2923484 (accessed on 10 January 2023).
- Bachelet, M.J.; Becchetti, L.; Manfredonia, S. The Green Bonds Premium Puzzle: The Role of Issuer Characteristics and Third-Party Verification. Sustainability 2019, 11, 1098. [Google Scholar] [CrossRef] [Green Version]
- Kapraun, J.; Latino, C.; Scheins, C.; Schlag, C. (In)-credibly green: Which bonds trade at a green bond premium? In Proceedings of the Paris December 2019 Finance Meeting EUROFIDAI-ESSEC, Paris, Finance, 19 December 2021. [Google Scholar]
- Aruga, K. Are retail investors willing to buy green bonds? A case for Japan. In Proceedings of the Mapping the Energy Future-Voyage in Uncharted Territory—43rd IAEE International Conference, Tokyo, Japan, 31 July–3 August 2022; International Association for Energy Economics: Cleveland, OH, USA, 2022. [Google Scholar]
- Hau, L.; Zhu, H.; Sun, W.; Yu, K. Flight-to-quality or not? Evidence from China’s green bond and green equity markets during COVID-19 crisis. Appl. Econ. Lett. 2022, 1–7. [Google Scholar] [CrossRef]
- Hyun, S.; Li, C. Exploring Greenium in the Chinese Green Bond Market: Focusing on the Primary Market. Chen, Exploring Greenium in the Chinese Green Bond Market: Focusing on the Primary Market. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3962807 (accessed on 10 January 2023).
- Kocaarslan, B. How does the reserve currency (US dollar) affect the diversification capacity of green bond investments? J. Clean. Prod. 2021, 307, 127275. [Google Scholar] [CrossRef]
- Sartzetakis, E.S. Green bonds as an instrument to finance low carbon transition. Econ. Chang. Restruct. 2021, 54, 755–779. [Google Scholar] [CrossRef]
- Nanayakkara, M.; Colombage, S. Do investors in Green Bond market pay a premium? Global evidence. Appl. Econ. 2019, 51, 4425–4437. [Google Scholar] [CrossRef]
- Li, Z.; Tang, Y.; Wu, J.; Zhang, J.; Lv, Q. The Interest Costs of Green Bonds: Credit Ratings, Corporate Social Responsibility, and Certification. Emerg. Mark. Finance Trade 2020, 56, 2679–2692. [Google Scholar] [CrossRef]
- Chen, J.; Jia, L.; Shi, Y. The Outlook of the Green Bond Market in China. In Proceedings of the 2022 2nd International Conference on Enterprise Management and Economic Development (ICEMED 2022), Dalian, China, 27–29 May 2022; Atlantis Press: Paris, France, 2022; pp. 926–930. [Google Scholar]
- Cao, X.; Jin, C.; Ma, W. Motivation of Chinese commercial banks to issue green bonds: Financing costs or regulatory arbitrage? China Econ. Rev. 2021, 66, 101582. [Google Scholar] [CrossRef]
- Jian, J.; Fan, X.; Zhao, S. The Green Incentives and Green Bonds Financing under the Belt and Road Initiative. Emerg. Mark. Finance Trade 2022, 58, 1430–1440. [Google Scholar] [CrossRef]
- Harlan, T. Green development or greenwashing? A political ecology perspective on China’s green Belt and Road. Eurasian Geogr. Econ. 2021, 62, 202–226. [Google Scholar] [CrossRef]
- Yi, X.; Bai, C.; Lyu, S.; Dai, L. The impacts of the COVID-19 pandemic on China’s green bond market. Financ. Res. Lett. 2021, 42, 101948. [Google Scholar] [CrossRef]
- Lee, C.-C.; Tang, H.; Li, D. The roles of oil shocks and geopolitical uncertainties on China’s green bond returns. Econ. Anal. Policy 2022, 74, 494–505. [Google Scholar] [CrossRef]
- Zhang, H. Regulating green bond in China: Definition divergence and implications for policy making. J. Sustain. Finance Invest. 2020, 10, 141–156. [Google Scholar] [CrossRef]
- Bush, C. The Chinese credit rating industry: Internationalisation, challenges and reforms. J. Econ. Bus. 2022, 118, 106032. [Google Scholar] [CrossRef]
- Macaire, C.; Naef, A. Impact of Green Central Bank Collateral Policy; People’s Bank of China: Beijing, China, 2021. [Google Scholar]
- Chen, K.; Chen, G. The rise of international financial centers in mainland China. Cities 2015, 47, 10–22. [Google Scholar] [CrossRef]
- Wang, X. The Dynamics and Governmental Policies of Shanghai’s International Financial Center Formation: A Financial Geography Perspective. Prof. Geogr. 2019, 71, 331–341. [Google Scholar] [CrossRef]
- Z/Yen Group. The Global Financial Centres Index 32. Long Finance and Financial Centre Futures. 2022. Available online: https://www.longfinance.net/media/documents/GFCI_32_Report_2022.09.22_v1.0_.pdf (accessed on 10 January 2023).
- Mei, B.; Brown, G.T. Conducting Online Surveys in China. Soc. Sci. Comput. Rev. 2018, 36, 721–734. [Google Scholar] [CrossRef]
- Carson, R.T.; Hanemann, W.M. Contingent valuation. Handb. Environ. Econ. 2005, 2, 821–936. [Google Scholar]
- Gelo, D.; Koch, S.F. Contingent valuation of community forestry programs in Ethiopia: Controlling for preference anomalies in double-bounded CVM. Ecol. Econ. 2015, 114, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Bai, D.; Yin, Z.; Fan, G. Willingness to Pay for Enhanced Water Security in a Rapidly Developing Shale Gas Region in China. Water 2019, 11, 1888. [Google Scholar] [CrossRef] [Green Version]
- Fatica, S.; Panzica, R.; Rancan, M. The pricing of green bonds: Are financial institutions special? J. Financ. Stab. 2021, 54, 100873. [Google Scholar] [CrossRef]
- Sangiorgi, I.; Schopohl, L. Why do institutional investors buy green bonds: Evidence from a survey of European asset managers. Int. Rev. Financ. Anal. 2021, 75, 101738. [Google Scholar] [CrossRef]
- Dou, X.; Qi, S. The choice of green bond financing instruments. Cogent Bus. Manag. 2019, 6, 1652227. [Google Scholar] [CrossRef]
- Amihud, Y.; Mendelson, H. Liquidity, maturity, and the yields on US Treasury securities. J. Financ. 1991, 46, 1411–1425. [Google Scholar] [CrossRef]
- Herbsta, A.F.; Pergb, W.F. Efficient investment portfolios in a real-value environment: Implications for portfolio managers and bond yields. Int. J. Bus. 2001, 6, 1. [Google Scholar]
- Labuszewski, J.W.; Kamradt, M.; Gibbs, D. Understanding Treasury Futures; CME Group: Chicago, IL, USA, 2013. [Google Scholar]
Beijing | Shenzhen | |||
---|---|---|---|---|
Variables | Samples Frequency | Percentage (%) | Samples Frequency | Percentage (%) |
Respondent’s gender | ||||
1. Female | 270 | 45.00 | 272 | 45.33 |
2. Male | 330 | 55.00 | 328 | 54.67 |
Respondent’s age (year) | ||||
Age (20–29) | 48 | 8.00 | 56 | 9.33 |
Age (30–39) | 258 | 43.00 | 271 | 45.17 |
Age (40–49) | 252 | 42.00 | 235 | 39.17 |
Age (50–59) | 42 | 7.00 | 38 | 6.33 |
Respondent’s workplace | ||||
Bank | 103 | 17.17 | 103 | 17.17 |
Securities firm | 155 | 25.83 | 159 | 26.50 |
Asset management company | 163 | 27.17 | 178 | 29.67 |
Investing company | 113 | 18.83 | 118 | 19.67 |
Others | 66 | 11.00 | 42 | 7.00 |
Explanatory Variables | Variable Names | Previous Literature Using the Variables |
---|---|---|
GB issuer’s credit rating/credibility | credit | Bachelet et al. [28], Fatica et al. [53], Larcker and Watts [25], Li et al. [36], Sangiorgi and Schopohl [54], Wang et al. [20], Zerbib [18]. |
GB whose issuer’s credit rating | crrating | |
The type of business of the GB issuer (e.g., government, municipality, or industry in the case of a company) | issuer | Bachelet et al. [28], Dou and Qi [55], Larcker and Watts [25], Sangiorgi and Schopohl [54]. |
Use of the fund of the GB | usage | Dou and Qi [55], Fatica et al. [53]. |
Amount of GB issued and liquidity of the bond | liquidity | Bachelet et al. [28], Fatica et al. [53], Larcker and Watts [25], Sangiorgi and Schopohl [54], Wang et al. [20]. |
Redemption term of the GB | term | Bachelet et al. [28], Dou and Qi [55], Fatica et al. [53], Larcker and Watts [25], Li et al. [36], Wang et al. [20], Zerbib [18]. |
Proof of the label | label | Bachelet et al. [28], Larcker and Watts [25], Sangiorgi and Schopohl [54]. |
Pre-explanation or post-report | maintenance | Sangiorgi and Schopohl [54]. |
Currency of the GB | currency | Bachelet et al. [28], Sangiorgi and Schopohl [54]. |
GB in RMB | rmb | |
The yield offered in the first question | bid1 | |
The yield offered in the second question | bid2 | |
A dummy variable representing the answer to the first question (yes = 1, no = 0) | A1 | |
A dummy variable representing the answer to the second question (yes = 1, no = 0) | A2 |
Beijing | Shenzhen | |||||
---|---|---|---|---|---|---|
Variables | Description | Variable | Frequency | % | Frequency | % |
credit | Whether the respondents consider the credit rating of the issuer of GBs: yes = 1 and no = 0. | YES = 1 | 524 | 87.33 | 535 | 89.17 |
NO = 0 | 76 | 12.67 | 65 | 10.83 | ||
crrating | Rating of the issuer of GB: 1 = below AA−, 2 = AA−, 3 = AA, 4 = AA+, and 5 = AAA. | AAA = 5 | 181 | 30.17 | 181 | 30.17 |
AA+ = 4 | 314 | 52.33 | 311 | 51.83 | ||
AA = 3 | 29 | 4.83 | 43 | 7.17 | ||
AA− = 2 | 0 | 0 | 0 | 0 | ||
Below AA− = 1 | 0 | 0 | 0 | 0 | ||
issuer | Whether the respondents think the type of issuer is important | YES = 1 | 493 | 82.17 | 483 | 80.50 |
NO = 0 | 107 | 17.83 | 117 | 19.50 | ||
usage | Whether the respondents put importance on the use of proceeds. | YES = 1 | 443 | 73.83 | 427 | 71.17 |
NO = 0 | 157 | 26.17 | 173 | 28.83 | ||
liquidity | Whether the respondents think the liquidity of GBs is important. | YES = 1 | 458 | 76.33 | 464 | 74.33 |
NO = 0 | 142 | 23.67 | 154 | 25.67 | ||
term | Whether the respondents think the redemption term of GBs is important. | YES = 1 | 411 | 68.50 | 403 | 67.17 |
NO = 0 | 189 | 31.50 | 197 | 32.83 | ||
label | Whether the respondents think the certification label is important for GBs: | YES = 1 | 451 | 75.17 | 456 | 76.00 |
NO = 0 | 149 | 24.83 | 144 | 24.00 | ||
maintenance | Whether the respondents think pre-explanation or post-report is important when issuing GBs. | YES = 1 | 443 | 73.83 | 428 | 71.33 |
NO = 0 | 157 | 26.17 | 172 | 28.67 | ||
currency | Whether the respondents think the type of currency is important | YES = 1 | 367 | 61.17 | 357 | 59.50 |
NO = 0 | 233 | 38.83 | 243 | 40.50 | ||
rmb | The currency is RMB = 1, and otherwise = 0. | rmb = 1 | 336 | 56.00 | 321 | 53.50 |
rmb = 0 | 31 | 5.17 | 36 | 6.00 |
Beijing | Shenzhen | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Obs | Mean | Std. Dev. | Min | Max | Skewness | Kurtosis | Obs | Mean | Std. Dev. | Min | Max | Skewness | Kurtosis |
creditcrrating | 600 | 3.747 | 1.522 | 0 | 5 | −1.729 | 4.810 | 600 | 3.797 | 1.438 | 0 | 5 | −1.831 | 5.432 |
Issuer | 600 | 0.822 | 0.383 | 0 | 1 | −1.681 | 3.825 | 600 | 0.805 | 0.397 | 0 | 1 | −1.540 | 3.370 |
Usage | 600 | 0.738 | 0.440 | 0 | 1 | −1.084 | 2.176 | 600 | 0.712 | 0.453 | 0 | 1 | −0.935 | 1.873 |
liquidity | 600 | 0.763 | 0.425 | 0 | 1 | −1.239 | 2.535 | 600 | 0.743 | 0.437 | 0 | 1 | −1.114 | 2.241 |
Term | 600 | 0.685 | 0.465 | 0 | 1 | −0.797 | 1.634 | 600 | 0.672 | 0.470 | 0 | 1 | −0.731 | 1.535 |
Label | 600 | 0.752 | 0.432 | 0 | 1 | −1.165 | 2.357 | 600 | 0.760 | 0.427 | 0 | 1 | −1.218 | 2.482 |
maintenance | 600 | 0.738 | 0.440 | 0 | 1 | −1.084 | 2.176 | 600 | 0.713 | 0.453 | 0 | 1 | −0.944 | 1.890 |
currencyrmb | 600 | 0.560 | 0.497 | 0 | 1 | −0.242 | 1.058 | 600 | 0.535 | 0.499 | 0 | 1 | −0.140 | 1.020 |
Beijing (n = 600) | ||||||
---|---|---|---|---|---|---|
1st bid | 2nd bid (Bl/Bu) | y/y | y/n | n/y | n/n | Total Respondents |
0.50% | +0.25%/+0.75% | 57 | 39 | 19 | 5 | 120 |
47.50% | 32.50% | 15.83% | 4.17% | 100% | ||
0.25% | ±0.00%/+0.50% | 79 | 23 | 14 | 4 | 120 |
65.83% | 19.17% | 11.67% | 3.33% | 100% | ||
±0.00% | −0.25%/+0.25% | 91 | 15 | 14 | 0 | 120 |
75.83% | 12.50% | 11.67% | 0.00% | 100% | ||
−0.25% | −0.50%/±0.00% | 39 | 34 | 33 | 14 | 120 |
32.50% | 28.33% | 27.50% | 11.67% | 100% | ||
−0.50% | −0.75%/−0.25% | 31 | 33 | 31 | 25 | 120 |
25.83% | 27.50% | 25.83% | 20.83% | 100% | ||
Total respondents | 297 | 144 | 111 | 48 | 600 | |
49.50% | 24.00% | 18.50% | 8.00% | 100% | ||
Shenzhen (n = 600) | ||||||
1st bid | 2nd bid (Bl/Bu) | y/y | y/n | n/y | n/n | Total Respondents |
0.50% | +0.25%/+0.75% | 63 | 30 | 16 | 11 | 120 |
52.50% | 25.00% | 13.33% | 9.17% | 100% | ||
0.25% | ±0.00%/+0.50% | 79 | 20 | 18 | 3 | 120 |
65.83% | 16.67% | 15.00% | 2.50% | 100% | ||
±0.00% | −0.25%/+0.25% | 92 | 11 | 16 | 1 | 120 |
76.67% | 9.17% | 13.33% | 0.83% | 100% | ||
−0.25% | −0.50%/±0.00% | 52 | 26 | 33 | 9 | 120 |
43.33% | 21.67% | 27.50% | 7.50% | 100% | ||
−0.50% | −0.75%/−0.25% | 30 | 34 | 35 | 21 | 120 |
25.00% | 28.33% | 29.17% | 17.50% | 100% | ||
Total respondents | 316 | 121 | 118 | 45 | 600 | |
52.67% | 20.17% | 19.67% | 7.50% | 100% |
Beijing | Shenzhen | |||
---|---|---|---|---|
Variable | Coef. | SE | Coef. | SE |
Constant | 0.419 *** | 0.019 | 0.447 *** | 0.021 |
creditcrrating | 0.027 ** | 0.013 | 0.009 | 0.016 |
issuer | 0.101 * | 0.056 | 0.061 | 0.060 |
usage | −0.012 | 0.050 | 0.155 *** | 0.052 |
liquidity | 0.188 *** | 0.050 | 0.205 *** | 0.053 |
term | 0.166 *** | 0.046 | 0.152 *** | 0.048 |
label | 0.052 | 0.047 | 0.082 | 0.054 |
maintenance | 0.058 | 0.049 | 0.028 | 0.053 |
currencyrmb | 0.180 *** | 0.042 | 0.218 *** | 0.047 |
Mean WTP | 0.326 *** | 0.022 | 0.369 *** | 0.024 |
Beijing | Shenzhen | |||||||
---|---|---|---|---|---|---|---|---|
Stage 1 | Stage 2 | Stage 1 | Stage 2 | |||||
Variable | Coef. | SE | Coef. | SE | Coef. | SE | Coef. | SE |
Constant | −1.474 ** | 0.519 | −0.721 | 0.483 | −1.000 ** | 0.468 | −0.491 | 0.456 |
bid1 | −2.269 *** | 0.315 | n.a. | −1.983 *** | 0.299 | n.a. | ||
bid2 | n.a. | −2.135 *** | 0.289 | n.a. | −1.973 *** | 0.290 | ||
creditcrrating | 0.134 ** | 0.066 | 0.060 | 0.064 | −0.010 | 0.073 | 0.068 | 0.069 |
issuer | 0.189 | 0.288 | 0.434 * | 0.254 | 0.140 | 0.274 | 0.267 | 0.262 |
usage | 0.229 | 0.244 | −0.055 | 0.231 | 0.629 *** | 0.231 | 0.301 | 0.231 |
liquidity | 0.803 *** | 0.241 | 0.267 | 0.234 | 0.870 *** | 0.233 | 0.364 | 0.239 |
term | 0.852 *** | 0.223 | 0.431 ** | 0.210 | 0.442 ** | 0.217 | 0.572 *** | 0.211 |
label | 0.245 | 0.231 | 0.245 | 0.215 | 0.256 | 0.239 | 0.231 | 0.237 |
maintenance | 0.234 | 0.237 | 0.295 | 0.225 | 0.262 | 0.235 | −0.165 | 0.241 |
currencyrmb | 0.595 *** | 0.206 | 0.698 *** | 0.191 | 0.611 ** | 0.213 | 0.775 *** | 0.210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zenno, Y.; Aruga, K. Investigating Factors Affecting Institutional Investors’ Green Bond Investments: Cases for Beijing and Shenzhen. Sustainability 2023, 15, 4870. https://doi.org/10.3390/su15064870
Zenno Y, Aruga K. Investigating Factors Affecting Institutional Investors’ Green Bond Investments: Cases for Beijing and Shenzhen. Sustainability. 2023; 15(6):4870. https://doi.org/10.3390/su15064870
Chicago/Turabian StyleZenno, Yoshihiro, and Kentaka Aruga. 2023. "Investigating Factors Affecting Institutional Investors’ Green Bond Investments: Cases for Beijing and Shenzhen" Sustainability 15, no. 6: 4870. https://doi.org/10.3390/su15064870
APA StyleZenno, Y., & Aruga, K. (2023). Investigating Factors Affecting Institutional Investors’ Green Bond Investments: Cases for Beijing and Shenzhen. Sustainability, 15(6), 4870. https://doi.org/10.3390/su15064870