Impact of Agricultural Land Use Types on Soil Moisture Retention of Loamy Soils
Abstract
:1. Introduction
- decreasing hydrologic extremities;
- infiltration and subsurface recharge should be intensified over excess runoff;
- increased replenishment and recharge into the vadose zone as well as aquifers;
- canopy density and leaf area index (e.g., employing intercropping) shall be increased to reduce throughfall and decrease evaporation loss.
2. Materials and Methods
2.1. Location of Study Sites
2.1.1. Ploughland Site (Foothills of the Mecsek Mountains)
2.1.2. Orchard Site
2.1.3. Pasture Site
2.2. Field Monitoring Setup
2.3. Particle Size Analysis of the Soil Samples
2.4. Calculation of the Pálfai Drought Index and the Aridity Indices
2.5. Analysis of Field Data
3. Results
3.1. Soil Textural Types
3.2. Water Balance
3.3. Soil Moisture Regime
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC 2013. Climate Change 2013: The Physical Science Basis. Summary for Policymakers. Intergovernmental Panel of Climate Change; Cambridge University Press: Cambridge, UK, 2013; 222p, Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf (accessed on 18 January 2023).
- Li, M.; Chu, R.; Islam, A.R.M.T.; Jiang, Y.; Shen, S. Attribution Analysis of Long-Term Trends of Aridity Index in the Huai River Basin, Eastern China. Sustainability 2020, 12, 1743. [Google Scholar] [CrossRef] [Green Version]
- Didovets, I.; Krysanova, V.; Bürger, G.; Snizhko, S.; Balabukh, V.; Bronstert, A. Climate change impact on regional floods in the Carpathian region. J. Hydrol. Reg. Stud. 2019, 22, 100590. [Google Scholar] [CrossRef]
- Fábián, S.Á.; Kovács, J.; Lóczy, D.; Schweitzer, F.; Varga, G.; Babák, K.; Lampért, K.; Nagy, A. Geomorphologic hazards in the Carpathian Foreland, Tolna County (Hungary). Stud. Geomorphol. Carpatho Balc. 2006, 11, 107–118. Available online: https://www.igipz.pan.pl/tl_files/igipz/ZGiHGiW/sgcb/sgcb_40/sgcb_40_07.pdf (accessed on 18 January 2023).
- Czigány, S.; Pirkhoffer, E.; Balassa, B.; Bugya, T.; Bötkös, T.; Gyenizse, P.; Nagyváradi, L.; Lóczy, D.; Geresdi, I. Villámárvíz mint természeti veszélyforrás a Dél-Dunántúlon. Földrajzi Közlemények 2010, 134, 281–298. Available online: https://www.foldrajzitarsasag.hu/downloads/foldrajzi_kozlemenyek_2010_134_evf_3_szam.pdf (accessed on 18 January 2023).
- Lóczy, D.; Czigány, S.; Pirkhoffer, E. Flash Flood Hazards. In Studies on Water Management Issues; Kumarasamy, M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 27–52. [Google Scholar] [CrossRef] [Green Version]
- Lukić, T.; Micić Ponjiger, T.; Basarin, B.; Sakulski, D.; Gavrilov, M.; Marković, S.; Zorn, M.; Komac, B.; Milanović, M.; Pavić, D.; et al. Application of Angot precipitation index in the assessment of rainfall erosivity: Vojvodina Region case study (North Serbia). Acta Geogr. Slov. 2021, 61, 123–153. [Google Scholar] [CrossRef]
- Grobicki, A.; MacLeod, F.; Pischke, F. Integrated policies and practices for flood and drought risk management. Water Policy 2015, 17, 180–194. [Google Scholar] [CrossRef]
- Ferk, M.; Ciglič, R.; Komac, B.; Lóczy, D. Management of small retention ponds and their impact on flood hazard prevention in the Slovenske Gorice Hills. Acta Geogr. Slov. 2020, 60, 107–125. [Google Scholar] [CrossRef]
- European Commission. A Guide to Support the Selection, Design and Implementation of Natural Water Retention Measures in Europe: Capturing the Multiple Benefits of Nature-Based Solutions; European Commission: Brussels, Belgium, 2014; 98p, Available online: http://www.ecrr.org/Portals/27/Publications/NWRMpublication.pdf (accessed on 18 January 2023).
- Castellini, M.; Iovino, M. Pedotransfer functions for estimating soil water retention curve of Sicilian soils. Arch. Agron. Soil Sci. 2019, 65, 1401–1416. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, K. Ecosystem services: Classification for valuation. Biol. Conserv. 2008, 141, 1167–1169. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES): 2011 Update; European Environment Agency: London, UK, 2011; 17p, Available online: https://cices.eu/content/uploads/sites/8/2009/11/CICES_Update_Nov2011.pdf (accessed on 18 January 2023).
- Dezső, J.; Lóczy, D.; Salem, A.M.; Nagy, G. Floodplain Connectivity. In The Drava River: Environmental Problems and Solutions; Lóczy, D., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 215–230. [Google Scholar] [CrossRef]
- Lóczy, D. Hydromorphological-Geoecological Foundations of Floodplain Management: CaseS from Hungary; Lambert Academic Publishing: Saarbrücken, Germany, 2013; 382p. [Google Scholar]
- Horel, Á.; Zsigmond, T.; Farkas, C.; Gelybó, G.; Tóth, E.; Kern, A.; Bakacsi, Z. Climate Change Alters Soil Water Dynamics under Different Land Use Types. Sustainability 2022, 14, 3908. [Google Scholar] [CrossRef]
- Abdelkadir, A.; Yimer, F. Soil water property variations in three adjacent land use types in the Rift Valley area of Ethiopia. J. Arid Environ. 2011, 75, 1067–1071. [Google Scholar] [CrossRef]
- Jakab, G.; Németh, T.; Csepinszky, B.; Madarász, B.; Szalai, Z.; Kertész, Á. The influence of short term soil sealing and crusting on hydrology and erosion at Balaton Uplands, Hungary. Carpathian J. Earth Environ. Sci. 2013, 8, 147–155. [Google Scholar]
- Saeidi, S.; Grósz, J.; Sebők, A.; Barros, V.D.d.; Waltner, I. Analysis results of land-use and land cover changes of Szilas catchment from 1990. Tájökológiai Lapok 2019, 17, 265–275. [Google Scholar] [CrossRef]
- Hota, S.; Mishra, V.; Mourya, K.K.; Giri, K.; Kumar, D.; Jha, P.K.; Saikia, U.S.; Prasad, P.V.V.; Ray, S.K. Land use, landform, and soil management as determinants of soil physicochemical properties and microbial abundance of Lower Brahmaputra Valley, India. Sustainability 2022, 14, 2241. [Google Scholar] [CrossRef]
- Fu, B.; Wang, J.; Chen, L.; Qui, Y. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. Catena 2003, 54, 197–213. [Google Scholar] [CrossRef]
- Jørgensen, D.; Jørgensen, F.A. Aesthetics of energy landscapes. Environ. Space Place 2018, 10, 1–14. [Google Scholar] [CrossRef]
- Peng, S.H.; Han, K.T. Assessment of aesthetic quality on soil and water conservation engineering using the scenic beauty estimation method. Water 2018, 10, 407–422. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Directive 2000/60/EEC. Establishing a framework for community action in the field of water policy. Off. J. Eur. Communities Luxembg. 2000, L327, 1–71. [Google Scholar]
- European Commission. Ecoflood Guidelines: How to Use Floodplains for Flood Risk Reduction; Office for Official Publications of the European Communities: Luxembourg, 2006; 144p. [Google Scholar]
- European Commission. Directive 2007/60/EC of the European Parliament and of the Council on the assessment and management of flood risks. Off. J. Eur. Union L 2007, 288, 27–34. [Google Scholar]
- Horel, Á.; Tóth, E.; Gelybó, G.; Kása, I.; Bakacsi, Z.; Farkas, C. Effects of Land Use and Management on Soil Hydraulic Properties. Open Geosci. 2015, 1, 742–754. [Google Scholar] [CrossRef]
- Haghighi, F.; Gorji, M.; Shorafa, M. A study of the effects of land use changes on soil physical properties and organic matter. Land Degrad. Dev. 2010, 21, 496–502. [Google Scholar] [CrossRef]
- Sławiński, C.; Cymerman, J.; Witkowska-Walczak, B.; Lamorski, K. Impact of diverse tillage on soil moisture dynamics. Int. Agrophys. 2012, 26, 301–309. [Google Scholar] [CrossRef]
- Nagy, G.; Lóczy, D.; Czigány, S.; Pirkhoffer, E.; Fábián, S.Á.; Ciglič, R.; Ferk, M. Soil moisture retention on slopes under different agricultural land uses in hilly regions of Southern Transdanubia. Hung. Geogr. Bull. 2020, 69, 263–280. [Google Scholar] [CrossRef]
- Tang, M.; Li, W.; Gao, X.; Wu, P.; Li, H.; Ling, Q.; Zhang, C. Land use affects the response of soil moisture and soil temperature to environmental factors in the loess hilly region of China. PeerJ 2022, 10, e13736. [Google Scholar] [CrossRef] [PubMed]
- Wang-Erlandsson, L.; Ent, R.J.; Gordon, L.J.; Savenije, H.H.G. Contrasting roles of interception and transpiration in the hydrological cycle—Part 1: Temporal characteristics over land. Earth Syst. Dynam. 2014, 5, 441–469. [Google Scholar] [CrossRef] [Green Version]
- Niu, C.Y.; Musa, A.; Liu, Y. Analysis of soil moisture condition under different land uses in the arid region of Horqin sandy land, northern China. Solid Earth 2015, 6, 1157–1167. [Google Scholar] [CrossRef] [Green Version]
- Pálfai, I. Az aszály definíciói, befolyásoló tényezői és mérőszámai. (Definition, influencing factors and indices of drought). In Belvizek és Aszályok Magyarországon (Inland Excess Water and Drought in Hungary); Pálfai, I., Ed.; Hidrológiai Tanulmányok: Budapest, Hungary, 2004; pp. 255–263. [Google Scholar]
- Thornthwaite, C.W. A contribution to the report of the committee on transpiration and evaporation. Trans. Am. Geophys. Union 1944, 25, 686–693. [Google Scholar]
- Thornthwaite, C.W. A re-examination of the concept and measurement of potential evapotranspiration. John Hopkins Univ. Publ. Climatol. 1954, 7, 200–209. [Google Scholar]
- Kocsis, T.; Anda, A. Microclimate simulation of climate change impacts in a maize canopy. Időjárás 2006, 116, 109–122. [Google Scholar]
- Emerson, C.H.; Welty, C.; Traver, R.G. Watershed-scale evaluation of a system of storm water detention basins. J. Hydrol. Eng. 2005, 10, 237–242. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention technology: Overview of current practice and future needs. J. Environ. Eng. ASCE 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Leitinger, G.; Tasser, E.; Newesely, C.; Obojes, N.; Tappeineret, U. Seasonal dynamics of surface runoff in mountain grassland ecosystems differing in land use. J. Hydrol. 2010, 385, 95–104. [Google Scholar] [CrossRef]
- Syrbe, R.-U.; Grunewald, K. Restrukturierungsbedarf für regionaltypische Landschaftselemente und Biotopstrukturen am Beispiel Sachsens. Nat. Und Landsch. 2013, 88, 103–111. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Gao, G.; Liu, Y.; Zhou, J. Responses of soil moisture in different land cover types to rainfall events in a re-vegetaion catchment area of the Loess Plateau, China. Catena 2013, 101, 122–128. [Google Scholar] [CrossRef]
- Zucco, G.; Brocca, L.; Moramarco, T.; Morbidelli, R. Influence of land use on soil moisture spatial–temporal variability and monitoring. J. Hydrol. 2014, 516, 193–199. [Google Scholar] [CrossRef]
- Výleta, R.; Danáčová, M.; Škrinár, A.; Fencík, R.; Hlavčová, K. Monitoring and assessment of water retention measures in agricultural land. Earth Environ. Sci. 2017, 95, 022008. [Google Scholar] [CrossRef] [Green Version]
- Juhos, K.; Czigány, S.; Madarász, B.; Ladányi, M. Interpretation of soil quality indicators for land suitability assessment—A multivariate approach for Central European arable soils. Ecol. Indic. 2019, 99, 261–272. [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.E.; Zhang, S.L.; Zhang, M.J.; Li, X.H. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW. PLoS ONE 2013, 8, e79103. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Tan, H.; Rao, W.; Liu, Z.; Elenga, H.I. Variations in water content of soil in apricot orchards in thewestern hilly regions of the Chinese Loess Plateau. Vadose Zone J. 2020, 19, e20034. [Google Scholar] [CrossRef]
- Tölgyesi, C.; Török, P.; Hábenczyus, A.A.; Bátori, Z.; Valkó, O.; Deák, B.; Kelemen, A. Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography 2020, 43, 848–859. [Google Scholar] [CrossRef]
- Ribeiro, D.; Šmid Hribar, M. Assessment of land-use changes and their impacts on ecosystem services in two Slovenian rural landscapes. Acta Geogr. Slov. 2019, 59, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, B.; Amosson, S.; Nair, S.; Marek, T. The importance of regional analysis in evaluating agricultural water conservation strategies. J. Reg. Anal. Policy 2017, 47, 188–198. [Google Scholar] [CrossRef]
- Fuentes, J.P.; Flury, M.; Bezdicek, F.D. Hydraulic Properties in a Silt Loam Soil under Natural Prairie, Conventional Till, and No-Till. Soil Sci. Soc. Am. 2004, 68, 1679–1688. [Google Scholar] [CrossRef] [Green Version]
Slope (°) | ||||||||
---|---|---|---|---|---|---|---|---|
Village Name | Site Area (ha) | Position | EOV X (m) | EOV Y (m) | Elevation (m) | Min | Max | Mean |
Almamellék | 7.4 | Foothill | 556,430.4 | 90,123.7 | 126.1 | 0.85 | 17.4 | 6.19 |
Uphill | 556,590.7 | 90,108.8 | 141.2 | |||||
Boda | 16.32 | Foothill | 571,380.0 | 81,182.9 | 175 | 0.02 | 6.48 | 2.63 |
Uphill | 571,518.2 | 81,322.1 | 182.7 | |||||
Palkonya | 6.85 | Foothill | 599,400.2 | 61,098.8 | 112.6 | 3.09 | 9.7 | 5.92 |
Uphill | 599,407.4 | 61,201.5 | 124.6 |
Land Use | Depth [cm] | Slope Position | Clay [%] | Silt [%] | Sand [%] | Textural Type |
---|---|---|---|---|---|---|
Pasture | 10 | Uphill | 4.88 | 95.02 | 0.10 | Silt |
Pasture | 30 | Uphill | 4.56 | 87.79 | 7.65 | Silt |
Pasture | 10 | Foothill | 2.48 | 72.56 | 24.96 | Silt loam |
Pasture | 30 | Foothill | 2.87 | 64.53 | 32.60 | Silt loam |
Orchard | 10 | Uphill | 4.43 | 86.56 | 9.01 | Silt |
Orchard | 30 | Uphill | 6.63 | 93.37 | 0.00 | Silt |
Orchard | 10 | Foothill | 3.68 | 86.97 | 9.35 | Silt |
Orchard | 30 | Foothill | 4.08 | 86.56 | 9.36 | Silt |
Ploughland | 10 | Uphill | 1.23 | 73.95 | 26.05 | Silt loam |
Ploughland | 30 | Uphill | 0.75 | 69.24 | 30.76 | Silt loam |
Ploughland | 10 | Foothill | 0.80 | 72.10 | 27.90 | Silt loam |
Ploughland | 30 | Foothill | 1.21 | 75.67 | 24.33 | Silt loam |
Land Use | 2019 | 2022 | ||
---|---|---|---|---|
1–8 | 6–8 | 1–8 | 6–8 | |
Pasture | 469.7 | 187.4 | 390 | 180 |
Ploughland | 466.7 | 185.3 | 310.4 | 163 |
Orchard | 516.7 | 265.3 | 231.7 | 115 |
Land Use | Annual | Growing Season | Spring | Summer | Autumn | |||||
---|---|---|---|---|---|---|---|---|---|---|
2019 | 2022 | 2019 | 2022 | 2019 | 2022 | 2019 | 2022 | 2019 | 2022 | |
Ploughland | 12.17 | 12.29 | 17.4 | 18.1 | 11.2 | 11.4 | 22.28 | 23.31 | 12.7 | 11.5 |
Orchard | 12.66 | 12.81 | 17.8 | 18.5 | 11.7 | 11.8 | 22.69 | 23.60 | 13.3 | 12.2 |
Pasture | 12.02 | 12.18 | 17.1 | 17.8 | 11 | 11.3 | 21.91 | 22.89 | 12.5 | 11.5 |
Annual | Growing Season | Spring | Summer | Autumn | Winter | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2022 | 2019 | 2022 | 2019 | 2022 | 2019 | 2022 | 2019 | 2022 | 2018/2019 | 2021/2022 | |
Pasture | ||||||||||||
P | 59.5 | 62.2 | 67.7 | 79.6 | 76.7 | 73.9 | 62.5 | 60 | 59.3 | 90.8 | 22.7 | 44.5 |
ET0 | 58.9 | 60.4 | 90.8 | 95.9 | 50.6 | 54.8 | 130.1 | 137.2 | 49.6 | 43.7 | - | - |
AI | 1.2 | 1.4 | 1.7 | 2.1 | 1.1 | 0.8 | 2.3 | 3.8 | 1.2 | 0.6 | - | - |
Ploughland | ||||||||||||
P | 57.5 | 51.4 | 66.8 | 54.8 | 70.9 | 64.8 | 61.8 | 54.3 | 54 | 69.1 | 29.4 | 41.3 |
ET0 | 59.6 | 61.1 | 92.3 | 97.6 | 50.9 | 54.9 | 132.5 | 140.2 | 50.1 | 43.7 | - | - |
AI | 1.2 | 1.7 | 1.8 | 2.7 | 1.0 | 1.4 | 2.7 | 3.8 | 1.1 | 1.2 | - | - |
Orchard | ||||||||||||
P | 60.1 | 43.8 | 79.2 | 47.3 | 67.9 | 41.3 | 88.4 | 38.3 | 52 | 72.6 | 18.4 | 33.0 |
ET0 | 60.9 | 62.5 | 93.9 | 99.0 | 52.3 | 56.2 | 134.8 | 141.7 | 51.2 | 45.4 | - | - |
AI | 1.2 | 1.8 | 1.3 | 2.8 | 2.2 | 1.7 | 1.5 | 4.0 | 1.1 | 1.3 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czigány, S.; Sarkadi, N.; Lóczy, D.; Cséplő, A.; Balogh, R.; Fábián, S.Á.; Ciglič, R.; Ferk, M.; Pirisi, G.; Imre, M.; et al. Impact of Agricultural Land Use Types on Soil Moisture Retention of Loamy Soils. Sustainability 2023, 15, 4925. https://doi.org/10.3390/su15064925
Czigány S, Sarkadi N, Lóczy D, Cséplő A, Balogh R, Fábián SÁ, Ciglič R, Ferk M, Pirisi G, Imre M, et al. Impact of Agricultural Land Use Types on Soil Moisture Retention of Loamy Soils. Sustainability. 2023; 15(6):4925. https://doi.org/10.3390/su15064925
Chicago/Turabian StyleCzigány, Szabolcs, Noémi Sarkadi, Dénes Lóczy, Anikó Cséplő, Richárd Balogh, Szabolcs Ákos Fábián, Rok Ciglič, Mateja Ferk, Gábor Pirisi, Marcell Imre, and et al. 2023. "Impact of Agricultural Land Use Types on Soil Moisture Retention of Loamy Soils" Sustainability 15, no. 6: 4925. https://doi.org/10.3390/su15064925
APA StyleCzigány, S., Sarkadi, N., Lóczy, D., Cséplő, A., Balogh, R., Fábián, S. Á., Ciglič, R., Ferk, M., Pirisi, G., Imre, M., Nagy, G., & Pirkhoffer, E. (2023). Impact of Agricultural Land Use Types on Soil Moisture Retention of Loamy Soils. Sustainability, 15(6), 4925. https://doi.org/10.3390/su15064925