Genetic Variability for Iron, Zinc, and Protein Content in a Mediterranean Lentil Collection Grown under No-Till Conditions: Towards Biofortification under Conservation Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment Site and Climatic Conditions
2.2. Plant Materials, Experimental Set-Up, and Crop Management
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Genetic Variability for Proteins, Iron, and Zinc Contents under No-Till System (Genotype Effect)
3.2. Genetic Variability for Proteins, Iron, and Zinc Contents under No-Tillage System According to the Accessions’ Origins and Types (Origin/Type Effect)
3.3. Comparison of Genetic Variation for Protein, Iron, and Zinc Content under No-Till and Conventional Tillage (Effect of Genotype and Tillage System)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jha, A.B.; Warkentin, T.D. Biofortification of Pulse Crops: Status and Future Perspectives. Plants 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. The State of Food and Agriculture 2013: Food Systems for Better Nutrition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 92-5-107672-3. [Google Scholar]
- Ahmed, T.; Hossain, M.; Sanin, K.I. Global Burden of Maternal and Child Undernutrition and Micronutrient Deficiencies. Ann. Nutr. Metab. 2012, 61, 8–17. [Google Scholar] [CrossRef]
- Aboutayeb, R. Contribution au Développement de Méthodes d’analyse de la Vitamine A dans les Huiles Végétales Fortifiées. In Mémoire d’Ingénieur d’Etat en Industries Agricoles et Alimentaires; Institut Agronomique et Vétérinaire Hassan II: Rabat, Morocco, 2003; 112p. [Google Scholar]
- Patterson, C.A.; Maskus, H.; Dupasquier, C. Pulse Crops for Health. Cereal Foods World 2009, 54, 108. [Google Scholar] [CrossRef]
- Jha, A.B.; Ashokkumar, K.; Diapari, M.; Ambrose, S.J.; Zhang, H.; Tar’an, B.; Bett, K.E.; Vandenberg, A.; Warkentin, T.D.; Purves, R.W. Genetic Diversity of Folate Profiles in Seeds of Common Bean, Lentil, Chickpea and Pea. J. Food Compos. Anal. 2015, 42, 134–140. [Google Scholar] [CrossRef]
- Khazaei, H.; Podder, R.; Caron, C.T.; Kundu, S.S.; Diapari, M.; Vandenberg, A.; Bett, K.E. Marker–Trait Association Analysis of Iron and Zinc Concentration in Lentil (Lens culinaris Medik.) Seeds. Plant Genome 2017, 10, plantgenome2017.02.0007. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Kaur, J.; Verma, V.; Singh, P.; Singh, H.; Abdel-Hafez, S.H.; Sayed, S.; Gaber, A. Enrichment of Zinc and Iron Micronutrients in Lentil (Lens culinaris Medik.) through Biofortification. Molecules 2021, 26, 7671. [Google Scholar] [CrossRef] [PubMed]
- Khoshgoftarmanesh, A.H.; Schulin, R.; Chaney, R.L.; Daneshbakhsh, B.; Afyuni, M. Micronutrient-Efficient Genotypes for Crop Yield and Nutritional Quality in Sustainable Agriculture. A review. Agron. Sustain. Dev. 2010, 30, 83–107. [Google Scholar] [CrossRef] [Green Version]
- Aboutayeb, R.; El Yousfi, B.; El Gharras, O. Impact of No-Till on Physicochemical Properties of Vertisols in Chaouia Region of Morocco. Eurasian J. Soil Sci. 2020, 9, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Farooq, M.; Ullah, A.; Nadeem, F.; Im, S.Y.; Park, S.K.; Lee, D.-J. Agronomic Biofortification of Zinc in Pakistan: Status, Benefits, and Constraints. Front. Sustain. Food Syst. 2020, 4, 591722. [Google Scholar] [CrossRef]
- Erkossa, T.; Stahr, K.; Gaiser, T. Soil Tillage and Crop Productivity on a Vertisol in Ethiopian Highlands. Soil Tillage Res. 2006, 85, 200–211. [Google Scholar] [CrossRef]
- Fan, J.; McConkey, B.G.; Luce, M.S.; Brandt, K. Rotational Benefit of Pulse Crop with No-till Increase over Time in a Semiarid Climate. Eur. J. Agron. 2020, 121, 126155. [Google Scholar] [CrossRef]
- Conti, M.V.; Guzzetti, L.; Panzeri, D.; De Giuseppe, R.; Coccetti, P.; Labra, M.; Cena, H. Bioactive Compounds in Legumes: Implications for Sustainable Nutrition and Health in the Elderly Population. Trends Food Sci. Technol. 2021, 117, 139–147. [Google Scholar] [CrossRef]
- Mrabet, R. No-Tillage Agriculture in West Asia and North Africa. In Rainfed Farming Systems; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Lal, R. Sequestering Carbon and Increasing Productivity by Conservation Agriculture. J. Soil Water Conserv. 2015, 70, 55A–62A. [Google Scholar] [CrossRef] [Green Version]
- Ngwira, A.R.; Aune, J.B.; Mkwinda, S. On-Farm Evaluation of Yield and Economic Benefit of Short Term Maize Legume Intercropping Systems under Conservation Agriculture in Malawi. Field Crops Res. 2012, 132, 149–157. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. Anti-Inflammatory Effects of Phytochemicals from Fruits, Vegetables, and Food Legumes: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Saltzman, A.; Birol, E.; Bouis, H.E.; Boy, E.; De Moura, F.F.; Islam, Y.; Pfeiffer, W.H. Biofortification: Progress toward a More Nourishing Future. Glob. Food Secur. 2013, 2, 9–17. [Google Scholar] [CrossRef]
- Watson, C.A.; Reckling, M.; Preissel, S.; Bachinger, J.; Bergkvist, G.; Kuhlman, T.; Lindström, K.; Nemecek, T.; Topp, C.F.E.; Vanhatalo, A.; et al. Grain Legume Production and Use in European Agricultural Systems. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2017; Volume 144, pp. 235–303. [Google Scholar]
- Salaria, S.; Boatwright, J.L.; Thavarajah, P.; Kumar, S.; Thavarajah, D. Protein Biofortification in Lentils (Lens Culinaris Medik.) Toward Human Health. Front. Plant Sci. 2022, 13, 934. [Google Scholar] [CrossRef]
- Jha, U.C.; Nayyar, H.; Parida, S.K.; Deshmukh, R.; von Wettberg, E.J.B.; Siddique, K.H.M. Ensuring Global Food Security by Improving Protein Content in Major Grain Legumes Using Breeding and ‘Omics’ Tools. Int. J. Mol. Sci. 2022, 23, 7710. [Google Scholar] [CrossRef]
- Aboutayeb, R.; Soufiane, E.-M.; Zouhri, A.; Idrissi, O.; Khalid, A. Hygienization Assessment during Heap Co-Composting of Turkey Manure and Olive Mill Pomace. Eurasian J. Soil Sci. 2021, 10, 332–342. [Google Scholar] [CrossRef]
- Neumann, A.; Schmidtke, K.; Rauber, R. Effects of Crop Density and Tillage System on Grain Yield and N Uptake from Soil and Atmosphere of Sole and Intercropped Pea and Oat. Field Crops Res. 2007, 100, 285–293. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.G.; Piggin, C.; Haddad, A.; Ahmed, S.; Kumar, R. No-till Lentil: An Option for Profitable Harvest in Dry Areas. Grain Legum. 2011, 57, 39–42. [Google Scholar]
- Devkota, M.; Patil, S.B.; Kumar, S.; Kehel, Z.; Wery, J. Performance of Elite Genotypes of Barley, Chickpea, Lentil, and Wheat under Conservation Agriculture in Mediterranean Rainfed Conditions. Exp. Agric. 2021, 57, 126–143. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; Van Groenigen, L.J.; Lee, J.; Lundy, M.E.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. Productivity Limits and Potentials of the Principles of Conservation Agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple Benefits of Legumes for Agriculture Sustainability: An Overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Wolk, A. Potential Health Hazards of Eating Red Meat. J. Intern. Med. 2017, 281, 106–122. [Google Scholar] [CrossRef]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-Tillage and Conventional Tillage Effects on Durum Wheat Yield, Grain Quality and Soil Moisture Content in Southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Woźniak, A.; Rachoń, L. Effect of Tillage Systems on the Yield and Quality of Winter Wheat Grain and Soil Properties. Agriculture 2020, 10, 405. [Google Scholar] [CrossRef]
- Djouadi, K.; Mekliche, A.; Dahmani, S.; Ladjiar, N.I.; Abid, Y.; Silarbi, Z.; Hamadache, A.; Pisante, M. Durum Wheat Yield and Grain Quality in Early Transition from Conventional to Conservation Tillage in Semi-Arid Mediterranean Conditions. Agriculture 2021, 11, 711. [Google Scholar] [CrossRef]
- Estefan, G. Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa Region; International Center for Agricultural Research in the Dry Areas (ICARDA): Beirut, Lebanon, 2013. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Aravind, J.; Mukesh Sankar, S.; Wankhede, D.P.; Kaur, V. Augmented RCBD: Analysis of Augmented Randomised Complete Block Designs. R Package Version 0.1.4. 2020. Available online: https://aravind-j.github.io/augmentedRCBD/ (accessed on 17 April 2022).
- Benbrahim, N.; Taghouti, M.; Zouahri, A.; Gaboun, F. On-Farm Conservation of Zaer Lentil Landrace in Context of Climate Change and Improved Varieties Competition. Univ. J. Agric. Res. 2017, 5, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Nadia, B.; Fatima, G.; Rachid, M.; Mona, T. THE GENETIC POTENTIAL OF MOROCCAN LENTIL LANDRACES. Int. J. Agric. Sci. Res. 2019, 9, 291–306. [Google Scholar]
- Idrissi, O.; Sahri, A.; Houasli, C.; Nsarellah, N. Breeding Progress, Adaptation, and Stability for Grain Yield in Moroccan Lentil Improved Varieties. Crop Sci. 2019, 59, 925–936. [Google Scholar] [CrossRef]
- Saker, B. Amélioration Génétique de La Lentille. In La Création Variétale à l’INRA: Méthodes, Acquis et Perspectives (Full Text)|INRA. 2005. Available online: https://www.inra.org.ma/fr/content/la-cr%C3%A9ation-vari%C3%A9tale-%C3%A0-linra-m%C3%A9thodesacquis-et-perspectives-full-text (accessed on 20 May 2022).
- Khazaei, H.; Subedi, M.; Nickerson, M.; Martínez-Villaluenga, C.; Frias, J.; Vandenberg, A. Seed Protein of Lentils: Current Status, Progress, and Food Applications. Foods 2019, 8, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, J.; Sen Gupta, D.; Baum, M.; Varshney, R.K.; Kumar, S. Genomics-assisted Lentil Breeding: Current Status and Future Strategies. Legume Sci. 2021, 3, e71. [Google Scholar] [CrossRef]
- Grusak, M.A. Nutritional and Health-Beneficial Quality. In The Lentil: Botany, Production and Uses; CAB International: Wallingford, UK, 2009; pp. 382–383. ISBN 9781845934873. [Google Scholar]
- Ray, H.; Bett, K.; Tar’an, B.; Vandenberg, A.; Thavarajah, D.; Warkentin, T. Mineral Micronutrient Content of Cultivars of Field Pea, Chickpea, Common Bean, and Lentil Grown in Saskatchewan, Canada. Crop Sci. 2014, 54, 1698–1708. [Google Scholar] [CrossRef]
- Vandemark, G.J.; Grusak, M.A.; McGee, R.J. Mineral Concentrations of Chickpea and Lentil Cultivars and Breeding Lines Grown in the U.S. Pacific Northwest. Crop J. 2018, 6, 253–262. [Google Scholar] [CrossRef]
- Kumar, J.; Thavarajah, D.; Kumar, S.; Sarker, A.; Singh, N.P. Analysis of Genetic Variability and Genotype× Environment Interactions for Iron and Zinc Content among Diverse Genotypes of Lentil. J. Food Sci. Technol. 2018, 55, 3592–3605. [Google Scholar] [CrossRef]
- Ankit; Bana, R.S.; Rana, K.S.; Singh, R.; Godara, S.; Grover, M.; Yadav, A.; Choudhary, A.K.; Singh, T.; Choudahary, M.; et al. No-Tillage with Residue Retention and Foliar Sulphur Nutrition Enhances Productivity, Mineral Biofortification and Crude Protein in Rainfed Pearl Millet under Typic Haplustepts: Elucidating the Responses Imposed on an Eight-Year Long-Term Experiment. Plants 2022, 11, 943. [Google Scholar] [CrossRef]
- McConkey, B.G.; Selles, F.; Miller, P.; Campbell, C.A. Yield and Protein of Wheat and Durum in Brown Soil Zone as Affected by Long-Term Tillage System and Crop Rotation. In Proceedings of the Soils and Crops Workshop. 2003. Available online: https://harvest.usask.ca/handle/10388/9689 (accessed on 20 May 2022).
- Pagnani, G.; Galieni, A.; D’Egidio, S.; Visioli, G.; Stagnari, F.; Pisante, M. Effect of Soil Tillage and Crop Sequence on Grain Yield and Quality of Durum Wheat in Mediterranean Areas. Agronomy 2019, 9, 488. [Google Scholar] [CrossRef] [Green Version]
- Jahangir, M.M.R.; Islam, S.; Nitu, T.T.; Uddin, S.; Kabir, A.K.M.A.; Meah, M.B.; Islam, R. Bio-Compost-Based Integrated Soil Fertility Management Improves Post-Harvest Soil Structural and Elemental Quality in a Two-Year Conservation Agriculture Practice. Agronomy 2021, 11, 2101. [Google Scholar] [CrossRef]
- Ali, A.; Ayuba, S.A.; Ojeniyi, S.O. Effect of Tillage and Fertilizer on Soil Chemical Properties, Leaf Nutrient Content and Yield of Soyabean in the Guinea Savanna Zone of Nigeria. Niger. J. Soil Sci. 2006, 16, 126–130. [Google Scholar]
- Mahmoudi, H.; Ksouri, R.; Gharsalli, M.; Lachaâl, M. Differences in Responses to Iron Deficiency between Two Legumes: Lentil (Lens culinaris) and Chickpea (Cicer arietinum). J. Plant Physiol. 2005, 162, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Pestana, M.; Correia, P.J.; de Varennes, A.; Abadía, J.; Faria, E.A. Effectiveness of Different Foliar Iron Applications to Control Iron in Orange Trees Grown on a Calcareous Soil. J. Plant Nutr. 2001, 24, 613–622. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The Role of Conservation Agriculture in Sustainable Agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
Soil Properties | pH | Electrical Conductivity (dS/m) | NO3 (mg/kg) | P (mg/kg) | K (mg/kg) | Organic Matter (%) | Total Nitrogen (%) | Total Limestone (%) | Active Limestone (%) |
---|---|---|---|---|---|---|---|---|---|
Conventional tillage | 8.30 ± 0.09 | 0.24 ± 0.13 | 30.64 ± 16.56 | 15.69 ± 0.99 | 258.83 ± 25.29 | 2.63 ± 0.09 | 0.11 ± 0.02 | 23.88 ± 1.48 | 11.75 ± 0.24 |
No-till | 8.15 ± 0.06 | 0.33 ± 0.10 | 12.05 ± 1.70 | 18.50 ± 3.55 | 179.75 ± 1.77 | 2.79 ± 0.29 | 0.13 ± 0.01 | 21.82 ± 1.04 | 11.25 ± 0.37 |
Grain Content | Mean | Minimum | Maximum | Phenotypic Coefficient of Variation | Genotypic Coefficient of Variation | Broad-Sense Heritability (%) |
---|---|---|---|---|---|---|
Protein (%) | 27.51 | 19.32 | 31.85 | 5.99 | 3.01 | 28.07 |
Iron (mg/kg) | 54.79 | 16.82 | 183.99 | 48.92 | 45.13 | 85.11 |
Zinc (mg/kg) | 32.12 | 8.98 | 47.83 | 22.36 | 14.08 | 39.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboutayeb, R.; Baidani, A.; Zeroual, A.; Benbrahim, N.; Aissaoui, A.E.; Ouhemi, H.; Houasli, C.; Mazzucotelli, E.; Gadaleta, A.; Idrissi, O. Genetic Variability for Iron, Zinc, and Protein Content in a Mediterranean Lentil Collection Grown under No-Till Conditions: Towards Biofortification under Conservation Agriculture. Sustainability 2023, 15, 5200. https://doi.org/10.3390/su15065200
Aboutayeb R, Baidani A, Zeroual A, Benbrahim N, Aissaoui AE, Ouhemi H, Houasli C, Mazzucotelli E, Gadaleta A, Idrissi O. Genetic Variability for Iron, Zinc, and Protein Content in a Mediterranean Lentil Collection Grown under No-Till Conditions: Towards Biofortification under Conservation Agriculture. Sustainability. 2023; 15(6):5200. https://doi.org/10.3390/su15065200
Chicago/Turabian StyleAboutayeb, Rachid, Aziz Baidani, Abdelmonim Zeroual, Nadia Benbrahim, Abdellah El Aissaoui, Hanane Ouhemi, Chafika Houasli, Elisabetta Mazzucotelli, Agata Gadaleta, and Omar Idrissi. 2023. "Genetic Variability for Iron, Zinc, and Protein Content in a Mediterranean Lentil Collection Grown under No-Till Conditions: Towards Biofortification under Conservation Agriculture" Sustainability 15, no. 6: 5200. https://doi.org/10.3390/su15065200
APA StyleAboutayeb, R., Baidani, A., Zeroual, A., Benbrahim, N., Aissaoui, A. E., Ouhemi, H., Houasli, C., Mazzucotelli, E., Gadaleta, A., & Idrissi, O. (2023). Genetic Variability for Iron, Zinc, and Protein Content in a Mediterranean Lentil Collection Grown under No-Till Conditions: Towards Biofortification under Conservation Agriculture. Sustainability, 15(6), 5200. https://doi.org/10.3390/su15065200