Are Economic Growth Pressures Inhibiting Green Total Factor Productivity Growth?
Abstract
:1. Introduction
2. Literature Review
2.1. Economic-Growth-Target-Related Literature
2.2. Literature on Green Total Factor Productivity
3. Theoretical Basis and Research Hypothesis
4. Model Setting and Variable Description
4.1. Econometric-Model Setting
4.2. Description of Variables
4.2.1. Explained Variables
4.2.2. Core Explanatory Variables
4.2.3. Control Variables
5. Empirical Analyses
5.1. Baseline Regression
5.2. Robustness Tests
5.2.1. Replacement of Core Variables
5.2.2. Split-Sample Regression
5.2.3. System GMM
5.3. Further Analysis
5.4. Heterogeneity Analysis
5.4.1. Intensity of Economic-Growth Pressure
5.4.2. Degree of Economic Development
5.4.3. Level of Marketization
5.5. Mechanism Analysis
5.5.1. Green-Technology-Innovation Mechanism
5.5.2. Heterogeneity of Patent-Type Mechanism
6. Discussion
7. Conclusions and Recommendations
7.1. Conclusions
7.2. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | High Economic-Growth Pressure | Low Economic-Growth Pressure | ||||
---|---|---|---|---|---|---|
GTFP | GTECH | GEFFCH | GTFP | GTECH | GEFFCH | |
EGP | −0.310 ** | −0.225 | −0.094 *** | −0.146 | −0.122 | −0.017 |
(−2.30) | (−1.65) | (−2.82) | (−0.76) | (−0.61) | (−0.28) | |
LED | 0.337 *** | 0.384 *** | −0.026 ** | 0.054 | 0.059 | −0.007 |
(6.73) | (7.53) | (−2.07) | (0.84) | (0.89) | (−0.37) | |
FAG | 0.513 ** | 0.514 ** | 0.009 | 1.215 ** | 1.198 ** | 0.024 |
(2.56) | (2.51) | (0.17) | (2.12) | (2.01) | (0.13) | |
HCA | 0.041 * | 0.048 * | −0.006 | 0.065 *** | 0.058 ** | 0.005 |
(1.65) | (1.91) | (−0.92) | (2.78) | (2.38) | (0.74) | |
FAU | 0.001 | 0.007 | −0.011 | 0.027 | 0.019 | 0.007 |
(0.01) | (0.13) | (−0.83) | (0.66) | (0.44) | (0.55) | |
IET | 0.332 *** | 0.562 *** | −0.123 *** | −0.304 | −0.328 | 0.011 |
(4.26) | (7.08) | (−6.35) | (−1.24) | (−1.30) | (0.15) | |
Constant | −0.489 ** | −0.711 *** | 1.132 *** | 0.623 ** | 0.623 ** | 1.015 *** |
(−2.21) | (−3.15) | (20.52) | (2.28) | (2.20) | (11.93) | |
N | 1885 | 1885 | 1885 | 1601 | 1601 | 1601 |
F | 33.43 | 35.28 | 29.13 | 35.34 | 43.87 | 36.29 |
R2 | 0.282 | 0.293 | 0.255 | 0.335 | 0.384 | 0.341 |
City | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
Variables | High Level of Economic Development | Low Level of Economic Development | ||||
---|---|---|---|---|---|---|
GTFP | GTECH | GEFFCH | GTFP | GTECH | GEFFCH | |
EGP | −0.420 *** | −0.383 *** | −0.054 | −0.046 | 0.019 | −0.061 * |
(−3.19) | (−2.86) | (−1.63) | (−0.41) | (0.16) | (−1.81) | |
LED | 0.228 *** | 0.262 *** | −0.041 ** | 0.311 *** | 0.372 *** | −0.037 ** |
(3.38) | (3.81) | (−2.46) | (6.34) | (7.30) | (−2.46) | |
FAG | 2.469 *** | 2.185 *** | 0.293 * | 1.350 ** | 1.556 ** | −0.211 |
(3.53) | (3.07) | (1.68) | (2.28) | (2.53) | (−1.17) | |
HCA | 0.102 *** | 0.106 *** | −0.007 | −0.004 | −0.008 | 0.004 |
(3.31) | (3.40) | (−0.96) | (−0.21) | (−0.37) | (0.68) | |
FAU | 0.061 | 0.075 | −0.016 | −0.005 | −0.025 | 0.018 |
(1.18) | (1.43) | (−1.29) | (−0.12) | (−0.56) | (1.38) | |
IET | −0.171 | −0.213 | 0.002 | 0.323 *** | 0.569 *** | −0.136 *** |
(−0.18) | (−0.22) | (0.01) | (4.49) | (7.60) | (−6.20) | |
Constant | −0.296 | −0.469 | 1.218 *** | −0.224 | −0.462 ** | 1.136 *** |
(−0.91) | (−1.41) | (15.00) | (−1.12) | (−2.21) | (18.57) | |
N | 1695 | 1695 | 1695 | 1791 | 1791 | 1791 |
F | 38.09 | 41.46 | 37.91 | 34.60 | 41.19 | 32.79 |
R2 | 0.330 | 0.349 | 0.329 | 0.297 | 0.335 | 0.286 |
City | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
Variables | High Level of Marketability | Low Level of Marketability | ||||
---|---|---|---|---|---|---|
GTFP | GTECH | GEFFCH | GTFP | GTECH | GEFFCH | |
EGP | −0.109 | −0.060 | −0.059 * | −0.243 ** | −0.172 | −0.078 ** |
(−0.77) | (−0.41) | (−1.85) | (−2.27) | (−1.56) | (−2.18) | |
LED | 0.354 *** | 0.431 *** | −0.043 *** | 0.245 *** | 0.280 *** | −0.042 ** |
(6.57) | (7.75) | (−3.59) | (3.78) | (4.19) | (−1.96) | |
FAG | 0.406 ** | 0.460 ** | −0.040 | 0.789 | 0.838 | −0.073 |
(2.04) | (2.24) | (−0.90) | (0.96) | (0.99) | (−0.27) | |
HCA | 0.122 *** | 0.113 *** | 0.011 | 0.030 | 0.032 | −0.004 |
(4.20) | (3.76) | (1.62) | (1.20) | (1.23) | (−0.52) | |
FAU | −0.010 | −0.021 | 0.006 | 0.003 | 0.004 | −0.001 |
(−0.17) | (−0.37) | (0.45) | (0.08) | (0.08) | (−0.10) | |
IET | 0.341 *** | 0.610 *** | −0.144 *** | −0.076 | 0.065 | −0.183 |
(4.15) | (7.19) | (−7.82) | (−0.13) | (0.11) | (−0.92) | |
Constant | −0.795 *** | −1.089 *** | 1.150 *** | −0.072 | −0.226 | 1.198 *** |
(−3.17) | (−4.21) | (20.45) | (−0.26) | (−0.79) | (12.86) | |
N | 1746 | 1746 | 1746 | 1740 | 1740 | 1740 |
F | 34.95 | 36.60 | 32.19 | 38.29 | 47.11 | 31.42 |
R2 | 0.309 | 0.319 | 0.292 | 0.330 | 0.377 | 0.287 |
City | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
References
- Rusiawan, W.; Tjiptoherijanto, P.; Suganda, E.; Darmajanti, L. Assessment of green total factor productivity impact on sustainable Indonesia productivity growth. Procedia Environ. Sci. 2015, 28, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, E.M. Green TFP intensity impact on sustainable east Asian productivity growth. Econ. Anal. Policy 2012, 42, 67–78. [Google Scholar] [CrossRef]
- Wang, X.; Li, J. Did the digital economy effectively promote energy conservation and CO2 reduction? China Popul. Resour. Environ. 2022, 32, 83–95. (In Chinese) [Google Scholar]
- Zhang, Z.X. China is moving away the pattern of “develop first and then treat the pollution”. Energy Policy 2007, 35, 3547–3549. [Google Scholar] [CrossRef]
- He, J. Pollution haven hypothesis and environmental impacts of foreign direct investment: The case of industrial emission of sulfur dioxide (SO2) in Chinese provinces. Ecol. Econ. 2006, 60, 228–245. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Lei, H.; Zhou, Y. How does green trade affect the environment? Evidence from China. J. Econ. Anal. 2022, 1, 1–19. [Google Scholar] [CrossRef]
- Ren, S.; Liu, Z.; Zhanbayev, R.; Du, M. Does the internet development put pressure on energy-saving potential for environmental sustainability? Evidence from China. J. Econ. Anal. 2022, 1, 50–65. [Google Scholar] [CrossRef]
- Wang, N.; Cui, D.; Geng, C.; Xia, Z. The role of business environment optimization on entrepreneurship enhancement. J. Econ. Anal. 2022, 1, 66–81. [Google Scholar] [CrossRef]
- Xu, X.X.; Li, S.J.; Wang, X.B.; Bi, Q.M. Growth target choices: Ending Chinese collapse fallacy with high-quality development. World Econ. 2018, 10, 3–25. (In Chinese) [Google Scholar]
- Xu, X.; Liu, Y. Economic growth target management. Econ. Res. J. 2017, 7, 18–33. (In Chinese) [Google Scholar]
- Gao, J. Governing by goals and numbers: A case study in the use of performance measurement to build state capacity in China. Public Adm. Dev. 2009, 29, 21–31. [Google Scholar] [CrossRef]
- Lee, C.C.; Olasehinde-Williams, G. Gasoline demand elasticities in the world’s energy gluttons: A time-varying coefficient approach. Environ. Sci. Pollut. Res. 2021, 28, 64830–64847. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Gao, Y. Growth target management and regional economic growth. J. Asia Pac. Econ. 2015, 20, 517–534. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, X. Stabilizing economic growth: Growth target and government expenditure since World War II. China Econ. Q. Int. 2022, 2, 98–110. [Google Scholar] [CrossRef]
- Liu, D.; Xu, C.; Yu, Y.; Rong, K.; Zhang, J. Economic growth target, distortion of public expenditure and business cycle in China. China Econ. Rev. 2020, 63, 101373. [Google Scholar] [CrossRef]
- Jin, H.; Qian, Y.; Weingast, B.R. Regional decentralization and fiscal incentives: Federalism, Chinese style. J. Public Econ. 2005, 89, 1719–1742. [Google Scholar] [CrossRef]
- Latham, G.; Borgony, L.; Petitta, L. Goal setting and performance management in the public sector. Public Adm. Issues 2011, 11, 72–91. [Google Scholar] [CrossRef]
- Shen, F.; Liu, B.; Luo, F.; Wu, C.; Chen, H.; Wei, W. The effect of economic growth target constraints on green technology innovation. J. Environ. Manag. 2021, 292, 112765. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Hou, Q.; Hu, M. Haste doesn’t bring success: Top-down amplification of economic growth targets and enterprise overcapacity. J. Corp. Financ. 2021, 70, 102059. [Google Scholar] [CrossRef]
- Du, J.; Yi, H. Target-setting, political incentives, and the tricky trade-off between economic development and environmental protection. Public Adm. 2022, 100, 923–941. [Google Scholar] [CrossRef]
- Hao, Y.; Huang, J.; Guo, Y.; Wu, H.; Ren, S. Does the legacy of state planning put pressure on ecological efficiency? Evidence from China. Bus. Strategy Environ. 2022, 31, 3100–3121. [Google Scholar] [CrossRef]
- Chai, J.; Hao, Y.; Wu, H.; Yang, Y. Do constraints created by economic growth targets benefit sustainable development? Evidence from China. Bus. Strategy Environ. 2021, 30, 4188–4205. [Google Scholar] [CrossRef]
- Chai, J.; Wu, H.; Hao, Y. Planned economic growth and controlled energy demand: How do regional growth targets affect energy consumption in China? Technol. Forecast. Soc. Change 2022, 185, 122068. [Google Scholar] [CrossRef]
- Su, X.; Yang, X.; Zhang, J.; Yan, J.; Zhao, J.; Shen, J.; Ran, Q. Analysis of the impacts of economic growth targets and marketization on energy efficiency: Evidence from China. Sustainability 2021, 13, 4393. [Google Scholar] [CrossRef]
- Zhu, J.; Lin, B. Economic growth pressure and energy efficiency improvement: Empirical evidence from Chinese cities. Appl. Energy 2022, 307, 118275. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, B.; Fan, T.; Zhang, J. Economic growth targets and carbon emissions: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 8053. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.; Huang, L. Economic growth target and environmental regulation intensity: Evidence from 284 cities in China. Environ. Sci. Pollut. Res. 2022, 29, 10235–10249. [Google Scholar] [CrossRef]
- Zhong, Q.; Wen, H.; Lee, C.C. How does economic growth target affect corporate environmental investment? Evidence from heavy-polluting industries in China. Environ. Impact Assess. Rev. 2022, 95, 106799. [Google Scholar] [CrossRef]
- Nanere, M.; Fraser, I.; Quazi, A.; D’Souza, C. Environmentally adjusted productivity measurement: An Australian case study. J. Environ. Manag. 2007, 85, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ouyang, H.; Fang, K.; Ye, L.; Zhang, J. Evaluation of regional environmental efficiencies in China based on super-efficiency-DEA. Ecol. Indic. 2015, 51, 13–19. [Google Scholar] [CrossRef]
- Cheng, Y.; Shao, T.; Lai, H.; Shen, M.; Li, Y. Total-factor eco-efficiency and its influencing factors in the Yangtze River delta urban agglomeration, China. Int. J. Environ. Res. Public Health 2019, 16, 3814. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhang, J.; Shen, Y.; Du, Q. Can green credit policy promote green total factor productivity? Evidence from China. Environ. Sci. Pollut. Res. 2022, 30, 6891–6905. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Z.; Liu, S. The policy outcomes of low-carbon city construction on urban green development: Evidence from a quasi-natural experiment conducted in China. Sustain. Cities Soc. 2021, 66, 102699. [Google Scholar] [CrossRef]
- Wang, K.L.; Li, J.; Xu, R.Y.; Pang, S.Q.; Miao, Z.; Sun, H.P. The impact of low-carbon city pilot policy on green total-factor productivity in China’s cities. Environ. Sci. Pollut. Res. 2022, 30, 24299–24318. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Pang, S.Q.; Zhang, F.Q.; Miao, Z.; Sun, H.P. The impact assessment of smart city policy on urban green total-factor productivity: Evidence from China. Environ. Impact Assess. Rev. 2022, 94, 106756. [Google Scholar] [CrossRef]
- Ouyang, X.; Liao, J.; Sun, C.; Cao, Y. Measure is treasure: Revisiting the role of environmental regulation in Chinese industrial green productivity. Environ. Impact Assess. Rev. 2023, 98, 106968. [Google Scholar] [CrossRef]
- Cheng, Z.; Kong, S. The effect of environmental regulation on green total-factor productivity in China’s industry. Environ. Impact Assess. Rev. 2022, 94, 106757. [Google Scholar] [CrossRef]
- Tian, Y.; Feng, C. The internal-structural effects of different types of environmental regulations on China’s green total-factor productivity. Energy Econ. 2022, 113, 106246. [Google Scholar] [CrossRef]
- Fan, M.; Yang, P.; Li, Q. Impact of environmental regulation on green total factor productivity: A new perspective of green technological innovation. Environ. Sci. Pollut. Res. 2022, 29, 53785–53800. [Google Scholar] [CrossRef]
- Zhao, X.; Nakonieczny, J.; Jabeen, F.; Shahzad, U.; Jia, W. Does green innovation induce green total factor productivity? Novel findings from Chinese city level data. Technol. Forecast. Soc. Chang. 2022, 185, 122021. [Google Scholar] [CrossRef]
- Wu, J.; Xia, Q.; Li, Z. Green innovation and enterprise green total factor productivity at a micro level: A perspective of technical distance. J. Clean. Prod. 2022, 344, 131070. [Google Scholar] [CrossRef]
- Zhao, S.; Cao, Y.; Feng, C.; Guo, K.; Zhang, J. How do heterogeneous R&D investments affect China’s green productivity: Revisiting the Porter hypothesis. Sci. Total Environ. 2022, 825, 154090. [Google Scholar]
- Qiu, W.; Zhang, J.; Wu, H.; Irfan, M.; Ahmad, M. The role of innovation investment and institutional quality on green total factor productivity: Evidence from 46 countries along the “Belt and Road”. Environ. Sci. Pollut. Res. 2022, 29, 16597–16611. [Google Scholar] [CrossRef]
- Tian, Y.; Pang, J. The role of internet development on green total-factor productivity—An empirical analysis based on 109 cities in Yangtze River economic belt. J. Clean. Prod. 2022, 378, 134415. [Google Scholar] [CrossRef]
- Deng, H.; Bai, G.; Shen, Z.; Xia, L. Digital economy and its spatial effect on green productivity gains in manufacturing: Evidence from China. J. Clean. Prod. 2022, 378, 134539. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, W.; Wu, Y.; Zhang, J. How does digital economy affect green total factor productivity? Evidence from China. Sci. Total Environ. 2023, 857, 159428. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liao, F. Input digitalization and green total factor productivity under the constraint of carbon emissions. J. Clean. Prod. 2022, 377, 134403. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, Y.; Sun, X. How does artificial intelligence affect green economic growth?—Evidence from China. Sci. Total Environ. 2022, 834, 155306. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Pan, A.; Han, M.; Veglianti, E. Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms. Technol. Soc. 2022, 70, 102034. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.; Mai, Q. Robot adoption and green productivity: Curse or Boon. Sustain. Prod. Consum. 2022, 34, 1–11. [Google Scholar] [CrossRef]
- You, J.; Xiao, H. Can FDI facilitate green total factor productivity in China? Evidence from regional diversity. Environ. Sci. Pollut. Res. 2022, 29, 49309–49321. [Google Scholar] [CrossRef]
- Ai, H.; Xiong, S.; Li, K.; Jia, P. Electricity price and industrial green productivity: Does the “low-electricity price trap” exist? Energy 2020, 207, 118239. [Google Scholar] [CrossRef]
- Sun, Y.; Razzaq, A.; Kizys, R.; Bao, Q. High-speed rail and urban green productivity: The mediating role of climatic conditions in China. Technol. Forecast. Soc. Chang. 2022, 185, 122055. [Google Scholar] [CrossRef]
- Li, S.E.; Cheng, K.M. Do large cities have a productivity advantage in China? From the perspective of green total factor productivity growth. J. Clean. Prod. 2022, 379, 134801. [Google Scholar] [CrossRef]
- Debbarma, J.; Choi, Y.; Yang, F.; Lee, H. Exports as a new paradigm to connect business and information technology for sustainable development. J. Innov. Knowl. 2022, 7, 100233. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, B.; Wang, N. Non-linear relationship between energy consumption transition and green total factor productivity: A perspective on different technology paths. Sustain. Prod. Consum. 2021, 28, 91–104. [Google Scholar] [CrossRef]
- Xie, R.; Yao, S.; Han, F.; Zhang, Q. Does misallocation of land resources reduce urban green total factor productivity? An analysis of city-level panel data in China. Land Use Policy 2022, 122, 106353. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Dong, Z.; Wang, S.; Cao, Z. The air pollution effect of government economic growth expectations: Evidence from China’s cities based on green technology. Environ. Sci. Pollut. Res. 2021, 28, 27639–27654. [Google Scholar] [CrossRef]
- Zhou, L. Governing China’s Local Officials: An Analysis of Promotion Tournament Model. Econ. Res. J. 2007, 7, 36–50. (In Chinese) [Google Scholar]
- Färe, R.; Grosskopf, S.; Pasurka, C.A., Jr. Environmental production functions and environmental directional distance functions. Energy 2007, 32, 1055–1066. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wu, G.; Zhang, J. The Estimation of China’s provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. (In Chinese) [Google Scholar]
- Yu, Y.; Peng, C.; Li, Y. Do neighboring prefectures matter in promoting eco-efficiency? Empirical evidence from China. Technol. Forecast. Soc. Chang. 2019, 144, 456–465. [Google Scholar] [CrossRef]
- Ghisetti, C.; Quatraro, F. Green technologies and environmental productivity: A cross-sectoral analysis of direct and indirect effects in Italian regions. Ecol. Econ. 2017, 132, 1–13. [Google Scholar] [CrossRef]
- Chen, N.; Xu, L.; Chen, Z. Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models. Energy 2017, 134, 659–671. [Google Scholar] [CrossRef]
- Sun, L.Y.; Miao, C.L.; Yang, L. Ecological-economic efficiency evaluation of green technology innovation in strategic emerging industries based on entropy weighted TOPSIS method. Ecol. Indic. 2017, 73, 554–558. [Google Scholar] [CrossRef]
Variable | Observation | Mean | Standard Error | Min | Max |
---|---|---|---|---|---|
EGP | 3486 | 0.002 | 0.029 | −0.149 | 0.410 |
GTFP | 3486 | 1.029 | 0.132 | 0.530 | 1.907 |
GTECH | 3486 | 1.015 | 0.139 | 0.530 | 1.907 |
GEFFCH | 3486 | 1.016 | 0.037 | 0.652 | 1.502 |
LED | 3486 | 4.531 | 0.360 | 2.846 | 5.740 |
FAG | 3486 | 0.019 | 0.014 | 0.001 | 0.694 |
HCA | 3486 | 2.694 | 0.404 | 0.700 | 4.010 |
FAU | 3486 | 0.493 | 0.228 | 0.055 | 1.541 |
IET | 3486 | 0.035 | 0.047 | 0.001 | 2.109 |
PGPG | 3486 | 0.058 | 0.137 | 0.000 | 2.284 |
PGIPG | 3486 | 0.012 | 0.035 | 0.000 | 0.488 |
PGUPG | 3486 | 0.045 | 0.106 | 0.000 | 1.911 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | |
EGP | −0.213 ** | −0.196 ** | −0.200 ** | −0.199 ** | −0.198 ** | −0.196 ** |
(−2.53) | (−2.35) | (−2.40) | (−2.39) | (−2.37) | (−2.36) | |
LED | -- | 0.156 *** | 0.159 *** | 0.160 *** | 0.157 *** | 0.237 *** |
-- | (6.37) | (6.49) | (6.56) | (6.36) | (7.08) | |
FAG | -- | -- | 0.706 *** | 0.554 *** | 0.553 *** | 0.575 *** |
-- | -- | (4.43) | (3.30) | (3.29) | (3.43) | |
HCA | -- | -- | -- | 0.043 *** | 0.043 *** | 0.047 *** |
-- | -- | -- | (2.85) | (2.86) | (3.11) | |
FAU | -- | -- | -- | -- | 0.021 | 0.006 |
-- | -- | -- | -- | (0.71) | (0.20) | |
IET | -- | -- | -- | -- | -- | 0.217 *** |
-- | -- | -- | -- | -- | (3.53) | |
Constant | 1.050 *** | 0.398 *** | 0.374 *** | 0.255 ** | 0.256 ** | −0.084 |
(141.52) | (3.88) | (3.64) | (2.31) | (2.32) | (−0.57) | |
N | 3486 | 3486 | 3486 | 3486 | 3486 | 3486 |
F | 88.71 | 86.52 | 82.80 | 78.58 | 74.23 | 71.23 |
R2 | 0.278 | 0.287 | 0.291 | 0.293 | 0.293 | 0.296 |
City | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
Hypothesis Catalogue | Hypothesis Content | Supported or Not |
---|---|---|
Hypothesis 1 | Economic-growth pressure inhibits green total factor productivity growth. | Supported |
Hypothesis 2 | Economic-growth pressure will inhibit green-technology innovation. | Supported |
Hypothesis 3 | Green-technology innovation can promote green total factor productivity enhancement. | Supported |
Hypothesis 4 | Economic-growth pressure inhibits green total factor productivity growth by suppressing green-technology innovation. | Supported |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
GTFP | GTFP | GTFP | GTFP | |
L.tfpch1 | -- | -- | -- | −0.361 *** |
-- | -- | -- | (−6.67) | |
EGP | −0.002 ** | −0.175** | −0.195 ** | −0.923 *** |
(−2.04) | (−2.26) | (−2.33) | (−4.43) | |
LED | 0.235 *** | 0.243 *** | 0.241 *** | 0.092 |
(7.02) | (7.80) | (7.14) | (1.64) | |
FAG | 0.568 *** | 0.697 *** | 0.571 *** | 0.372 ** |
(3.39) | (4.46) | (3.38) | (2.03) | |
HCA | 0.047 *** | 0.054 *** | 0.047 *** | 0.026 |
(3.13) | (3.83) | (3.11) | (1.47) | |
FAU | 0.007 | 0.009 | 0.005 | −0.107 * |
(0.23) | (0.31) | (0.17) | (−1.79) | |
IET | 0.215 *** | 0.103 * | 0.222 *** | −0.090 |
(3.49) | (1.80) | (3.57) | (−0.41) | |
Constant | −0.073 | −0.155 | −0.099 | 0.987 *** |
(−0.50) | (−1.14) | (−0.67) | (3.84) | |
N | 3486 | 3486 | 3430 | 3237 |
F | 71.12 | 81.73 | 70.42 | -- |
R2 | 0.296 | 0.325 | 0.297 | -- |
City | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes |
AR1-P | -- | -- | -- | 0.001 |
AR2-P | -- | -- | -- | 0.159 |
Hansen-P | -- | -- | -- | 0.235 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
GTECH | GTECH | GTECH | GTECH | GTECH | GTECH | |
EGP | −0.161 * | −0.149 * | −0.152 * | −0.152 * | −0.150 * | −0.147 * |
(−1.86) | (−1.72) | (−1.77) | (−1.76) | (−1.74) | (−1.71) | |
LED | -- | 0.117 *** | 0.120 *** | 0.121 *** | 0.118 *** | 0.272 *** |
-- | (4.64) | (4.75) | (4.80) | (4.60) | (7.91) | |
FAG | -- | -- | 0.686 *** | 0.561 *** | 0.559 *** | 0.602 *** |
-- | -- | (4.16) | (3.23) | (3.22) | (3.48) | |
HCA | -- | -- | -- | 0.035 ** | 0.035 ** | 0.043 *** |
-- | -- | -- | (2.28) | (2.28) | (2.77) | |
FAU | -- | -- | -- | -- | 0.026 | −0.004 |
-- | -- | -- | -- | (0.83) | (−0.13) | |
IET | -- | -- | -- | -- | -- | 0.422 *** |
-- | -- | -- | -- | -- | (6.65) | |
Constant | 1.046 *** | 0.555 *** | 0.531 *** | 0.434 *** | 0.435 *** | −0.226 |
(136.81) | (5.23) | (5.01) | (3.80) | (3.80) | (−1.50) | |
N | 3486 | 3486 | 3486 | 3486 | 3486 | 3486 |
F | 100.77 | 96.08 | 91.62 | 86.64 | 81.86 | 80.92 |
R2 | 0.304 | 0.309 | 0.313 | 0.314 | 0.314 | 0.323 |
City | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
GTECH | GTECH | GTECH | GTECH | GTECH | GTECH | |
EGP | −0.055 ** | −0.053 ** | −0.053 ** | −0.053 ** | −0.053 ** | −0.054 ** |
(−2.41) | (−2.32) | (−2.33) | (−2.33) | (−2.33) | (−2.38) | |
LED | -- | 0.018 *** | 0.018 *** | 0.019 *** | 0.019 *** | −0.021 ** |
-- | (2.73) | (2.74) | (2.78) | (2.75) | (−2.29) | |
FAG | -- | -- | 0.019 | −0.004 | −0.004 | −0.015 |
-- | -- | (0.43) | (−0.08) | (−0.08) | (−0.32) | |
HCA | -- | -- | -- | 0.006 | 0.006 | 0.005 |
-- | -- | -- | (1.55) | (1.54) | (1.09) | |
FAU | -- | -- | -- | -- | −0.001 | 0.007 |
-- | -- | -- | -- | (−0.07) | (0.84) | |
IET | -- | -- | -- | -- | -- | −0.109 *** |
-- | -- | -- | -- | -- | (−6.42) | |
Constant | 1.004 *** | 0.927 *** | 0.926 *** | 0.908 *** | 0.908 *** | 1.079 *** |
(494.45) | (32.82) | (32.74) | (29.78) | (29.78) | (26.78) | |
N | 3486 | 3486 | 3486 | 3486 | 3486 | 3486 |
F | 97.39 | 91.58 | 85.84 | 80.97 | 76.45 | 75.5 |
R2 | 0.297 | 0.299 | 0.299 | 0.299 | 0.299 | 0.308 |
City | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
PGPG | GTFP | GTECH | GEFFCH | |
PGPG | -- | 0.066 ** | 0.076 *** | −0.008 |
-- | (2.52) | (2.81) | (−1.14) | |
EGP | −0.097 * | -- | -- | -- |
(−1.74) | -- | -- | -- | |
LED | −0.029 | 0.241 *** | 0.276 *** | −0.021 ** |
(−1.30) | (7.19) | (8.02) | (−2.26) | |
FAG | 0.140 | 0.562 *** | 0.588 *** | −0.015 |
(1.25) | (3.35) | (3.41) | (−0.32) | |
HCA | −0.095 *** | 0.053 *** | 0.050 *** | 0.004 |
(−9.47) | (3.49) | (3.20) | (0.90) | |
FAU | −0.080 *** | 0.013 | 0.003 | 0.007 |
(−3.98) | (0.43) | (0.11) | (0.82) | |
IET | −0.111 *** | 0.226 *** | 0.431 *** | −0.110 *** |
(−2.68) | (3.65) | (6.79) | (−6.45) | |
Constant | 0.424 *** | −0.118 | −0.262* | 1.081 *** |
(4.33) | (−0.80) | (−1.73) | (26.74) | |
N | 3486 | 3486 | 3486 | 3486 |
F | 64.07 | 71.29 | 81.31 | 75.17 |
R2 | 0.274 | 0.296 | 0.324 | 0.307 |
City | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
PGIPG | GTFP | GTECH | GEFFCH | |
PGIPG | -- | 0.177 * | 0.197 * | −0.021 |
-- | (1.65) | (1.80) | (−0.70) | |
EGP | −0.028 ** | -- | -- | -- |
(−2.08) | -- | -- | -- | |
LED | −0.008 | 0.240 *** | 0.275 *** | −0.021 ** |
(−1.49) | (7.17) | (7.99) | (−2.25) | |
FAG | 0.065 ** | 0.559 *** | 0.586 *** | −0.015 |
(2.35) | (3.33) | (3.39) | (−0.31) | |
HCA | −0.024 *** | 0.051 *** | 0.048 *** | 0.004 |
(−9.75) | (3.35) | (3.04) | (0.96) | |
FAU | −0.015 *** | 0.010 | 0.000 | 0.007 |
(−3.00) | (0.34) | (0.01) | (0.87) | |
IET | −0.025 ** | 0.223 *** | 0.428 *** | −0.109 *** |
(−2.48) | (3.61) | (6.73) | (−6.43) | |
Constant | 0.107 *** | −0.109 | −0.251* | 1.079 *** |
(4.44) | (−0.74) | (−1.66) | (26.70) | |
N | 3486 | 3486 | 3486 | 3486 |
F | 45.22 | 71.02 | 80.94 | 75.11 |
R2 | 0.211 | 0.295 | 0.323 | 0.307 |
City | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
PGUPG | GTFP | GTECH | GEFFCH | |
PGUPG | -- | 0.086 *** | 0.100 *** | −0.011 |
-- | (2.63) | (2.96) | (−1.20) | |
EGP | −0.068 | -- | -- | -- |
(−1.54) | -- | -- | -- | |
LED | −0.021 | 0.241 *** | 0.276 *** | −0.021 ** |
(−1.17) | (7.19) | (8.01) | (−2.26) | |
FAG | 0.075 | 0.564 *** | 0.591 *** | −0.015 |
(0.83) | (3.37) | (3.43) | (−0.33) | |
HCA | −0.071 *** | 0.053 *** | 0.050 *** | 0.004 |
(−8.81) | (3.48) | (3.19) | (0.90) | |
FAU | −0.065 *** | 0.013 | 0.004 | 0.007 |
(−4.04) | (0.44) | (0.13) | (0.82) | |
IET | −0.086 *** | 0.226 *** | 0.431 *** | −0.110 *** |
(−2.58) | (3.66) | (6.79) | (−6.45) | |
Constant | 0.317 *** | −0.117 | −0.261 * | −1.081 *** |
(4.03) | (−0.80) | (−1.73) | (26.75) | |
N | 3486 | 3486 | 3486 | 3486 |
F | 63.65 | 71.33 | 81.37 | 75.18 |
R2 | 0.273 | 0.296 | 0.325 | 0.307 |
City | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, J.; Wang, N. Are Economic Growth Pressures Inhibiting Green Total Factor Productivity Growth? Sustainability 2023, 15, 5239. https://doi.org/10.3390/su15065239
Wang X, Li J, Wang N. Are Economic Growth Pressures Inhibiting Green Total Factor Productivity Growth? Sustainability. 2023; 15(6):5239. https://doi.org/10.3390/su15065239
Chicago/Turabian StyleWang, Xiangyan, Jinye Li, and Nannan Wang. 2023. "Are Economic Growth Pressures Inhibiting Green Total Factor Productivity Growth?" Sustainability 15, no. 6: 5239. https://doi.org/10.3390/su15065239