The Environmental Footprint of Scientific Research: Proposals and Actions to Increase Sustainability and Traceability
Abstract
:1. Introduction
1.1. Foreword
1.2. Background: The Environmental Impact of Scientific Research (the Context)
1.3. Objective of this Paper
2. Materials and Methods
2.1. Methodological Framework for Assessing Impacts: Scientific Research
2.2. Methodological Framework for Assessing Impacts: A Conference
3. Results
3.1. Case Studies: Two Scientific Manuscripts Recently Published by the Authors
3.1.1. Plant Mitigation Actions 1
- Ilex aquifolium L. (var. argentea marginata) species (called Agrifoglio), belonging to the Aquifoliaceae Family. This is an evergreen tree or shrub that grows up to 10 m tall with shiny, dark green, decorative, variegated foliage that does not renew simultaneously. The reddish-colored fruits provide a decorative contrast to the color of the leathery, spiny-margined leaves on the lower branches of young plants. It contains saponins, the xanthine theobromine, and a yellow pigment, ilexanthine [37]. Nowadays, it is rarely used in herbal medicine due to its toxicity; however, it has diuretic, febrifuge, and laxative properties [38].
- K conversion kg CO2 eq. to the number of plants, 100:1 [36].
Type Consumptions | Evaluation of CO2 eq. Emission | ||||
---|---|---|---|---|---|
Parameter | Unit | Amount | K Conversion to CO2 | CO2 Yield (kg) | |
Energy (electric power by fossil) | Equipment (instruments, sterile hoods, fans, cooling, sterilization, others) | kWh | 800 | 0.224 [31] | 179.20 |
Tap water | m3 | 22.0 | 0.32 [32] | 7.04 | |
Chemical products | Reagents (dried cultural media; antibiotics, acid and basic solutions, others) | kg, liter | 50 | 1.47 [32] | 73.00 |
Toxic, hazard (solvents) | kg | 1 | 0.62 [32] | 0.62 | |
Wastes | Plastic (Petri dishes) | kg | 30 | 1.74 [32] | 52.20 |
Glass | kg | 2 | 0.85 [32] | 1.70 | |
Paper | kg | 2 | 2.42 [32] | 4.84 | |
Effluents | m3 | 20.0 | 0.29 [33] | 5.80 | |
Transports personnel and samples/ materials (Car, gasoline) [34] | km | 800 | 0.12 [35] | 96.80 | |
CO2 eq. total emissions (kg) | 421.20 (0.421 t) | ||||
Social Costs (€) | 17.00 | ||||
Mitigation Action [36] | N° of plants to be planted: 4 41°60′75.90″ N 14°26′49.46″ E | Which type (Taxus baccata L.); when (autumn); where (DiBT, Unimol, IT); how (manually); who provides (expert gardeners); control and guarantee of the time (Green Service, DiBT). |
3.1.2. Plant Mitigation Actions 2
- Taxus baccata L. is a tree of the conifer order, widely used as an ornamental hedge or isolated plant. It is also known as the “tree of death.” The active ingredient responsible for the toxicity of branches, leaves, and seeds, where it is present in percentages varying between 0.5 and 2%, is an alkaloid taxin. It has a narcotic and paralyzing effect on humans and many domestic animals. The organs that contain the most of it are the old leaves.
- K conversion kg CO2 eq. to the number of plants, 100:1 [36].
3.2. Case Study: A Conference
Plant Mitigation Actions 3
- Ostrya carpinifolia Scop. is a tree in the family Betulaceae. It is the only species of the genus Ostrya native to Europe. It is a medium-sized deciduous tree, which can reach up to 20–25 m tall, with a conical or irregular crown and scaly, rough bark. The wood is very heavy and hard and was historically used to fashion plane soles.
- K conversion kg CO2 eq. to the number of plants, 100:1 [36].
3.3. Impact of This Manuscript
3.4. New Label
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranalli, G.; Bosch-Roig, P.; Crudele, S.; Rampazzi, L.; Corti, C.; Zanardini, E. Dry Biocleaning of Artwork: An Innovative Methodology for Cultural Heritage Recovery? Microb. Cell 2021, 8, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Greever, C.; Ramirez-Aguilar, K.; Connelly, J. Connections between Laboratory Research and Climate Change: What Scientists and Policy Makers Can Do to Reduce Environmental Impacts. FEBS Lett. 2020, 594, 3079–3085. [Google Scholar] [CrossRef] [PubMed]
- Achten, W.M.J.; Almeida, J.; Muys, B. Carbon Footprint of Science: More than Flying. Ecol. Indic. 2013, 34, 352–355. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next Generation of Scenarios for Climate Change Research and Assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A Safe Operating Space for Humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories—IPCC. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 2 March 2023).
- Cluzel, F.; Vallet, F.; Leroy, Y.; Rebours, P. Reflecting on the Environmental Impact of Research Activities: An Exploratory Study. Procedia CIRP 2020, 90, 754–758. [Google Scholar] [CrossRef]
- Babu, S.; Lamano, A.; Pawar, P. Sustainability Assessment of a Laboratory Building: Case Study of Highest Rated Laboratory Building in Singapore Using Green Mark Rating System. Energy Procedia 2017, 122, 751–756. [Google Scholar] [CrossRef]
- Ni, K.; Hu, Y.; Ye, X.; AlZubi, H.S.; Goddard, P.; Alkahtani, M. Carbon Footprint Modeling of a Clinical Lab. Energies 2018, 11, 3105. [Google Scholar] [CrossRef] [Green Version]
- Urbina, M.A.; Watts, A.J.R.; Reardon, E.E. Labs Should Cut Plastic Waste Too. Nature 2015, 528, 479. [Google Scholar] [CrossRef] [Green Version]
- Belkhir, L.; Elmeligi, A. Carbon Footprint of the Global Pharmaceutical Industry and Relative Impact of Its Major Players. J. Clean. Prod. 2019, 214, 185–194. [Google Scholar] [CrossRef]
- Karliner, J.; Slotterback, S.; Boyd, R.; Ashby, B.; Steele, K.; Karliner, J.; Slotterback, S.; Boyd, R.; Ashby, B.; Steele, K. Health Care’s Climate Footprint; Health Care Without Harm: Reston, VA, USA, 2019; pp. 1–48. [Google Scholar]
- Lopez, J.B.; Badrick, T. Proposals for the Mitigation of the Environmental Impact of Clinical Laboratories. Clin. Chem. Lab. Med. (CCLM) 2012, 50, 1559–1564. [Google Scholar] [CrossRef] [PubMed]
- Joseph, E. Microorganisms in the Deterioration and Preservation of Cultural Heritage; Springer: Cham, Switzerland, 2021; ISBN 9783030694104. [Google Scholar]
- De Silva, M.; Henderson, J. Sustainability in Conservation Practice. J. Inst. Conserv. 2011, 34, 5–15. [Google Scholar] [CrossRef]
- The Strategic Innovation and Research Agenda (SIRA). Available online: https://biconsortium.eu/about/our-vision-strategy/sira (accessed on 17 January 2023).
- Silence, P. How Are US Conservators Going Green? Results of Polling AIC Members. Stud. Conserv. 2010, 55, 159–163. [Google Scholar] [CrossRef]
- Mariette, J.; Blanchard, O.; Berné, O.; Aumont, O.; Carrey, J.; Ligozat, A.; Lellouch, E.; Roche, P.-E.; Guennebaud, G.; Thanwerdas, J.; et al. An Open-Source Tool to Assess the Carbon Footprint of Research. Environ. Res. Infrastruct. Sustain. 2022, 2, 035008. [Google Scholar] [CrossRef]
- Kroft, S.H. A Different Kind of Laboratory Stewardship. Am. J. Clin. Pathol. 2021, 156, 493–494. [Google Scholar] [CrossRef]
- Güereca, L.P.; Torres, N.; Noyola, A. Carbon Footprint as a Basis for a Cleaner Research Institute in Mexico. J. Clean. Prod. 2013, 47, 396–403. [Google Scholar] [CrossRef]
- Wynes, S.; Donner, S.D.; Tannason, S.; Nabors, N. Academic Air Travel Has a Limited Influence on Professional Success. J. Clean. Prod. 2019, 226, 959–967. [Google Scholar] [CrossRef]
- Spinellis, D.; Louridas, P. The Carbon Footprint of Conference Papers. PLoS ONE 2013, 8, e66508. [Google Scholar] [CrossRef] [Green Version]
- Desiere, S. The Carbon Footprint of Academic Conferences: Evidence from the 14th EAAE Congress in Slovenia. EuroChoices 2016, 15, 56–61. [Google Scholar] [CrossRef]
- Stroud, J.T.; Feeley, K.J. Responsible Academia: Optimizing Conference Locations to Minimize Greenhouse Gas Emissions. Ecography 2015, 38, 402–404. [Google Scholar] [CrossRef]
- Yusuf, E.; Luijendijk, A.; Roo-Brand, G.; Friedrich, A.W. The Unintended Contribution of Clinical Microbiology Laboratories to Climate Change and Mitigation Strategies: A Combination of Descriptive Study, Short Survey, Literature Review and Opinion. Clin. Microbiol. Infect. 2022, 28, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Strategies to Achieve a Carbon Neutral Society: A Review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef] [PubMed]
- United States Government. Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis under Executive Order 12866; Environmental Protection Agency: Washington, DC, USA, 2015; pp. 65–88.
- Ricke, K.; Drouet, L.; Caldeira, K.; Tavoni, M. Country-Level Social Cost of Carbon. Nat. Clim Chang. 2018, 8, 895–900. [Google Scholar] [CrossRef] [Green Version]
- The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard; WBCSD; WRI: Washington, DC, USA, 2012; ISBN 1-56973-568-9.
- IWG. Technical Support Document: Social Cost of Carbon, Methane, and Nitrous Oxide; Interim Estimates under Executive Order 13990; The White House: Singapore, 2021; Volume 48.
- Material Flow Accounts Statistics—Material Footprints. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Material_flow_accounts_statistics_-_material_footprints (accessed on 17 January 2023).
- Emission Factors in Kg CO2-Equivalent per Unit. Search–City of Winnipeg. 2012. Available online: https://legacy.winnipeg.ca/search/default.stm?q=682+-+2012#gsc.tab=0&gsc.q=Emission%20factors%20in%20kg%20CO2-equivalent%20per%20unit%20682%20-%202012&gsc.sort= (accessed on 17 January 2023).
- Wang, J.; Karliner, J.; Slotterback, S.; Boyd, R.; Ashby, B.; Steele, K.; Wang, J. Contribution and Opportunities for Action 17. In E Workshop: Returning Disease Prevention and Health Promotion Back to the Table: From the 1980ies to the 2050ies; Oxford University Press: Oxford, UK, 2020; Volume 2020. [Google Scholar]
- ENEA. Rapporto Energia e Ambiente 2005; ENEA: Stockholm, Sweden, 2005; ISBN 9788882862138. [Google Scholar]
- CO2 Performance of New Passenger Cars in Europe. Available online: https://www.eea.europa.eu/ims/co2-performance-of-new-passenger (accessed on 17 January 2023).
- Forestazione Urbana: Alberi a Campobasso (CB). Available online: https://www.reteclima.it/sink/forestazione-urbana-alberi-a-campobasso-cb/ (accessed on 17 January 2023).
- Hoppe, H.A. Angiospermen; De Gruyter: Berlin, Germany, 1975; ISBN 978-3-11-003849-1. [Google Scholar]
- Wren, R.C. Potter’s Cyclopedia of Botanical Drugs and Preparations; Potter & Clarke: London, UK, 1988; pp. 1–256. [Google Scholar]
- Aquilano, C.; Baccari, L.; Caprari, C.; Divino, F.; Fantasma, F.; Saviano, G.; Ranalli, G. Effects of EOs vs. Antibiotics on E. coli Strains Isolated from Drinking Waters of Grazing Animals in the Upper Molise Region, Italy. Molecules 2022, 27, 8177. [Google Scholar] [CrossRef] [PubMed]
- Lo Stato dell’Arte 20—Atti del XX Congresso Nazionale IGIIC. Available online: https://www.nardinieditore.it/prodotto/lo-stato-arte-20-congresso-nazionale-igiic/ (accessed on 17 January 2023).
- Gioventù, E.; Ranalli, G.; Vittorini Orgeas, E. Il Biorestauro. Batteri per La Conservazione Delle Opere d’Arte. Biopulitura e Bioconsolidamento; Nardini Press srl: Firenze, Italy, 2020; ISBN 88-404-0136-9. [Google Scholar]
Type Consumptions | Evaluation of CO2 eq. Emission | ||||
---|---|---|---|---|---|
Parameter | Unit | Amount | K Conversion to CO2 | CO2 Yield (kg) | |
Type Consumptions | Evaluation of CO2 eq. Emission | ||||
---|---|---|---|---|---|
Parameter | Unit | Amount | K Conversion to CO2 | CO2 Yield (kg) | |
Energy (electric power by fossil) | Equipment (instruments, sterile hoods, fans, cooling, sterilization, others). | kWh | 600 | 0.224 [31] | 134.40 |
Tap water | m3 | 12.5 | 0.32 [32] | 4.00 | |
Chemical products | Reagents (dried cultural media; antibiotics, acid and basic solutions, others). | kg, liter | 35 | 1.47 [32] | 51.40 |
Toxic, hazard (solvents). | kg | 2 | 0.62 [32] | 1.24 | |
Wastes | Plastic | kg | 20 | 1.74 [32] | 34.80 |
Glass | kg | 4 | 0.85 [32] | 3.40 | |
Paper | kg | 2 | 2.42 [32] | 4.84 | |
Effluents | m3 | 11.0 | 0.29 [33] | 3.20 | |
Transports personnel and samples/ materials [34] (Bus and Car, diesel) | km | 850 | 0.121 [35] | 102.85 | |
CO2 eq. total emissions (kg) | 340.13 (0.34 t) | ||||
Social Costs (€) | 13.62 | ||||
Mitigation Action [36] | N° of plants to be planted: 4 41°60′74.57″ N 14°26′46.43″ E | Which type (Ilex aquifolium L.); when (autumn); where (DiBT, Unimol, Pesche, IT); how (manually); who provides (expert gardeners); control and guarantee of the time (Green Service, DiBT). |
Type Consumptions | Evaluation of CO2 eq. Emission | ||||
---|---|---|---|---|---|
Parameter | Unit | Amount | K Conversion to CO2 | CO2 Yield (kg) | |
Energy (electric power by fossil) | Equipment (services) | kWh | 40 | 0.22 [31] | 8.80 |
Toxic, hazard | kg | 0 | 0.62 [32] | 0 | |
Wastes | Plastic | kg | 5 | 1.74 [32] | 8.70 |
Paper b/w (abstract book: 200 copies, 1.8 kg each) | kg | 360 | 2.42 [32] | 871.20 | |
Colored paper (flyer, cover of books) | kg | 10 | 13.60 [32] | 136.00 | |
Effluents | m3 | 2 | 0.29 [33] | 0.58 | |
CO2 eq. total emissions (kg) | 1009 (1.01 t) | ||||
Social Costs (€) | 40.50 | ||||
Mitigation Action [36] | N° of plants to be planted: 11 DiBT, Unimol, IT. 41°60′71.82″ N 14°26′46.28″ E | Which type (Ostrya carpinifolia Scop.); when (early winter); how (manually); who provides (expert gardeners); control and guarantee of the time (Green Service, DiBT). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmieri, M.; Lasserre, B.; Marino, D.; Quaranta, L.; Raffi, M.; Ranalli, G. The Environmental Footprint of Scientific Research: Proposals and Actions to Increase Sustainability and Traceability. Sustainability 2023, 15, 5616. https://doi.org/10.3390/su15075616
Palmieri M, Lasserre B, Marino D, Quaranta L, Raffi M, Ranalli G. The Environmental Footprint of Scientific Research: Proposals and Actions to Increase Sustainability and Traceability. Sustainability. 2023; 15(7):5616. https://doi.org/10.3390/su15075616
Chicago/Turabian StylePalmieri, Margherita, Bruno Lasserre, Davide Marino, Luca Quaranta, Maxence Raffi, and Giancarlo Ranalli. 2023. "The Environmental Footprint of Scientific Research: Proposals and Actions to Increase Sustainability and Traceability" Sustainability 15, no. 7: 5616. https://doi.org/10.3390/su15075616
APA StylePalmieri, M., Lasserre, B., Marino, D., Quaranta, L., Raffi, M., & Ranalli, G. (2023). The Environmental Footprint of Scientific Research: Proposals and Actions to Increase Sustainability and Traceability. Sustainability, 15(7), 5616. https://doi.org/10.3390/su15075616