Estimation of Modulus of Deformation Using Rock Mass Rating—A Review and Validation Using 3D Numerical Modelling
Abstract
:1. Introduction
2. Methodology
3. Statistical Analysis
4. Case Study—Tala Powerhouse Complex
4.1. Geology
4.2. 3D Numerical Modelling
4.3. Excavation Sequence and Support System
4.4. Material Properties
4.5. Comparison of Modelling Results with Instrumentation Data
5. Conclusions
- The review of various empirical models available for estimating Ed values indicates a considerable variation in the value of the deformation modulus for the Himalayan region. The empirical equations proposed by [14,20,21,29] are also in good comparison with the in situ tested value of Ed, while equations proposed by [11,23,25,27,28] overestimate, and the remaining equations underestimate Ed values.
- Based on the data obtained from 35 test locations, a predictive cubic equation (Equation (19)) could be developed, with R2, RMSE, and VAF values of 0.75, 1.70, and 74.33, respectively. These values indicate higher predictability and maximum accounted-for variance in Ed compared with other available correlations available in the literature.
- The 3D numerical modelling results show that the Ed value adopted based on the proposed Equation (19) (Model A) correlated well with that of the measured instrumentation data when compared with the value of Ed based on the in situ testing (Model B). Model B underpredicts the deformations in the powerhouse complex at all locations, indicating that the in situ tested Ed value is higher, enhancing the rock mass properties. Measured convergence matched well in Model A compared to Model B. Hence, the relation proposed in Equation (19) can be utilized to estimate the value of Ed.
- From the in situ tested data, the average ratio of Ee/ Ed for the Himalayan region is 1.5.
- The proposed equation validates rock masses from the Himalayan region, with RMR values ranging from 15 to 70.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IHA (International Hydropower Association). Hydropower Status Report: Sector Trends and Insights; International Hydropower Association: London, UK, 2020. [Google Scholar]
- CEA: HPMD (Central Electricity Authority: Hydro Project Monitoring Division). Progress of On-Going Hydro Electric Projects, Quarterly Review No. 100, January–March 2020; Central Electricity Authority: New Delhi, India, 2020. [Google Scholar]
- Kansal, M.L.; Agarwal, S.S. Uncertainties-Based Potential Time and Cost Overrun Assessment While Planning a Hydropower Project. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2022, 8, 1–14. [Google Scholar] [CrossRef]
- Siva Prasad, B.; Thapliyal, A.; Rabi, B.; Sripad, R. Delineation of Cavity in Downstream Surge Chamber at Punatsangchhu-II Hydroelectric Project, Bhutan. J. Geol. Res. 2019, 1, 5–11. [Google Scholar]
- Najman, Y.; Clift, P.; Johnson, M.R.W.; Robertson, A.H.F. Early Stages of Foreland Basin Evolution in the Lesser Himalaya, N India. Geol. Soc. Spec. Publ. 1993, 74, 541–558. [Google Scholar] [CrossRef]
- Naik, S.R. Studies on Stability Assessment of Large Caverns in Himalayan Region, National Institute of Technology Karnataka. Ph.D Thesis, National Institute of Technology Karnataka, Surathkal, India, 2017. [Google Scholar]
- Brady, B.H.; Brown, E.T. Rock Mechanics for Underground Mining; Kluwer Academic Publishers: New York, NY, USA; Boston, MA, USA; Dordrecht, The Netherland; London, UK; Moscow, Russia, 1978; Volume 24, ISBN 140202116X. [Google Scholar]
- Hoek, E.; Diederichs, M.S. Empirical Estimation of Rock Mass Modulus. Int. J. Rock Mech. Min. Sci. 2006, 43, 203–215. [Google Scholar] [CrossRef]
- ISRM. Commission on Terminology, Symbols and Graphic Representation; International Society for Rock Mechanics (ISRM): Salzburg, Austria, 1975. [Google Scholar]
- ISRM. Suggested Method for Determing In Situ Deformability of Rock; International Society for Rock Mechanics (ISRM): Salzburg, Austria, 1979; pp. 197–214. [Google Scholar]
- Palmström, A.; Singh, R. The Deformation Modulus of Rock Masses-Comparisons between in Situ Tests and Indirect Estimates. Tunn. Undergr. Sp. Technol. 2001, 16, 115–131. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Determining Rock Mass Deformability: Experience from Case Histories. Int. J. Rock Mech. Min. Sci. 1978, 15, 237–247. [Google Scholar] [CrossRef]
- Aladejare, A.E.; Malachi Ozoji, T.; Adebayo Idris, M.; Lawal, A.I.; Onifade, M. Empirical Estimation of Rock Mass Deformation Modulus of Rocks: Comparison of Intact Rock Properties and Rock Mass Classifications as Inputs. Arab. J. Geosci. 2022, 15, 1033. [Google Scholar] [CrossRef]
- Serafim, J.L.; Pereira, J.P. Considerations on the Geomechanical Classification of Bieniawski. In Proceedings of the International Symposium on Engineering Geology and Underground Openings, Lisbon, Portugal, 12–15 September 1983; pp. 1133–1144. [Google Scholar]
- Chun, B.-S.; Lee, Y.; Jung, S. The Evaluation for Estimation Method of Deformation Modulus of Rock Mass Using RMR System. J. Korean GEO-Environ. Soc. 2006, 7, 25–32. [Google Scholar]
- Isik, N.S.; Ulusay, R.; Doyuran, V. Deformation Modulus of Heavily Jointed-Sheared and Blocky Greywackes by Pressuremeter Tests: Numerical, Experimental and Empirical Assessments. Eng. Geol. 2008, 101, 269–282. [Google Scholar] [CrossRef]
- Mohammadi, R.R. The Estimation of Rock Mass Deformation Modulus Using Regression and Artificial Neural Networks Analysis. Sociology 2010, 35, 1. [Google Scholar]
- Shen, J.; Karakus, M.; Xu, C. A Comparative Study for Empirical Equations in Estimating Deformation Modulus of Rock Masses. Tunn. Undergr. Sp. Technol. 2012, 32, 245–250. [Google Scholar] [CrossRef]
- Kang, S.S.; Kim, H.Y.; Jang, B.A. Correlation of in Situ Modulus of Deformation with Degree of Weathering, RMR and Q-System. Environ. Earth Sci. 2013, 69, 2671–2678. [Google Scholar] [CrossRef]
- Nejati, H.R.; Ghazvinian, A.; Moosavi, S.A.; Sarfarazi, V. On the Use of the RMR System for Estimation of Rock Mass Deformation Modulus. Bull. Eng. Geol. Environ. 2014, 73, 531–540. [Google Scholar] [CrossRef]
- Alemdag, S.; Gurocak, Z.; Gokceoglu, C. A Simple Regression Based Approach to Estimate Deformation Modulus of Rock Masses. J. Afr. Earth Sci. 2015, 110, 75–80. [Google Scholar] [CrossRef]
- Khabbazi, A.; Ghafoori, M.; Lashkaripour, G.R.; Cheshomi, A. Estimation of the Rock Mass Deformation Modulus Using a Rock Classification System. Geomech. Geoengin. 2013, 8, 46–52. [Google Scholar] [CrossRef]
- Jose, M.; Galeral, M.; A’lvarez, Z.B.T. Evalution of the Deformation Modulus of Rock Masses: Comparison of Pressuremeter and Dil-Atometer Tests with RMR Prediction. In Proceedings of the ISP5-Pressio International Symposium, Marne-la-Vallee, France, 22–24 August 2005. [Google Scholar]
- Mehrotra, V.K. Estimation of Engineering Parameters of Rock Mass; University of Roorkee: Roorkee, India, 1992. [Google Scholar]
- Kim, G. Revaluation of geomechanics classification of rock masses. In Proceedings of the Korean Geotechnical Society of Spring National Conference, Seoul, South Korea, 27 March 1993; pp. 33–40. [Google Scholar]
- Jašarević, I.; Kovačević, M.S. Analyzing Applicability of Existing Classification for Hard Carbonate Rock in Mediterranean Area. In Proceedings of the ISRM International Symposium-EUROCK 1996, Turin, Italy, 16 September 1996; pp. 811–818. [Google Scholar]
- Aydan, O.; Ulusay, R.; Kawamoto, T. Assessment of Rock Mass Strength for Underground Excavations. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1997, 34, 705. [Google Scholar] [CrossRef]
- Read, S.A.L.; Perrin, N.D.; Richards, L.R. Applicability of the Hoek-Brown Failure Criterion to New Zealand Greywacke Rocks. In Proceedings of the 9th ISRM Congress, Paris, France, 24 August 1999; pp. 655–660. [Google Scholar]
- Diederichs, M.S.; Kaiser, P.K. Stability of Large Excavations in Laminated Hard Rock Masses: The Voussoir Analogue Revisited. Int. J. Rock Mech. Min. Sci. 1999, 36, 97–117. [Google Scholar] [CrossRef]
- Gokceoglu, C.; Sonmez, H.; Kayabasi, A. Predicting the Deformation Moduli of Rock Masses. Int. J. Rock Mech. Min. Sci. 2003, 40, 701–710. [Google Scholar] [CrossRef]
- Kayabasi, A.; Gokceoglu, C.; Ercanoglu, M. Estimating the Deformation Modulus of Rock Masses: A Comparative Study. Int. J. Rock Mech. Min. Sci. 2003, 40, 55–63. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering; Wiley: Hoboken, NJ, USA, 1989. [Google Scholar]
- Prasad, B.N.V.S.; Murthy, V.M.S.R.; Naik, S.R. Drillability Predictions in Aravalli and Himalayan Rocks—A Petro-Physico-Mechanical Approach. Curr. Sci. 2022, 122, 907–917. [Google Scholar] [CrossRef]
- Siva Prasad, B.N.V.; Murthy, V.M.S.R.; Naik, S.R. Influence of Static and Dynamic Rock Properties on Drillability Prognosis for Mining and Tunnelling Projects. Indian Geotech. J. 2022, 52, 765–779. [Google Scholar] [CrossRef]
- Siva Prasad, B.; Murthy, V.M.S.R.; Naik, S.R. Compendious Index for Drillability: A Rapid Tool to Assess Drill Penetration Rate and Bit Life for Rock Engineering Applications. Bull. Eng. Geol. Environ. 2023, 82, 1–20. [Google Scholar] [CrossRef]
- Sekar Bellapu, H.V.; Sinha, R.K.; Naik, S.R. Estimation of Deformation Modulus of Rock Mass for an Underground Cavern Based on Back Analysis. Lect. Notes Civ. Eng. 2022, 228, 393–404. [Google Scholar] [CrossRef]
- Bellapu, H.V.S.; Sinha, R.K.; Naik, S.R. Estimation of Modulus of Deformation by Different Methods for an Underground Cavern—A Case Study. Indian Geotech. J. 2022, 1–7. [Google Scholar] [CrossRef]
- Öge, İ.F. Determination of Deformation Modulus in a Weak Rock Mass by Using Menard Pressuremeter. Int. J. Rock Mech. Min. Sci. 2018, 112, 238–252. [Google Scholar] [CrossRef]
- Zhang, B.; Mu, J.; Zheng, J.; Lv, Q.; Deng, J. A New Estimation Method and an Anisotropy Index for the Deformation Modulus of Jointed Rock Masses. J. Rock Mech. Geotech. Eng. 2022, 14, 153–168. [Google Scholar] [CrossRef]
- Mehrotra, V.K.; Subhash, M. Use of In Situ Modulus for Classification of Rock Mass in Himalayas. In Proceedings of the International Symposium on Tunnelling for Water Resources and Power Projects, New Delhi, India, 19–23 January 1988; p. 402. [Google Scholar]
- Agarwal, K.; Saran, S.; Jain, P.; Chandra, S. A Case Study w.r.t Geotechnical Aspects for the Pressure Tunnel of Sanjay Vidyut Pariyojana-Bhaba. In Proceedings of the International Symposium on Tunnelling for Water Resources and Power Projects, New Delhi, India, 19–23 January 1988; p. 402. [Google Scholar]
- Sayeed, I.; Khanna, R. Geotechnical Investigations for Locating an Underground Powerhouse in Calcareous Rocks, Himachal Pradesh, India. In Proceedings of the Recent Advances in Rock Engineering (RARE), Bengaluru, India, 16–18 November 2016. [Google Scholar]
- Singh, R. Engineering in Rocks for Slopes, Foundations and Tunnels; Ramamurthy, T., Ed.; PHI: Delhi, India, 2015. [Google Scholar]
- Singh, R. Evaluation of Rock Mass Design Parameters for Tunneling at Tala Hydroelectric Project in Bhutan Himalayas. In Proceedings of the Seminar on Productivity and Speed in Tunnelling, Dehradun, India, 26–27 June 2003; pp. 41–54. [Google Scholar]
- Sarwade, D.V.; Mishra, K.K.; Kapoor, V.K.; Kumar, N. Rock Mass Deformability: Empirical and Practical Approach. In Proceedings of the ISRM International Symposium—6th Asian Rock Mechanics Symposium, ARMS, New Delhi, India, 25–27 October 2010; pp. 23–27. [Google Scholar]
- Naik, S.R.; Bhushan, R.; Bhusan, R.; Sekar, V.; Sudhakar, K. 3D Stress Analysis of Powerhouse Complex and Other Tunnels at PSP Tehri Project; NIRM: Bengaluru, India, 2014. [Google Scholar]
- Bellapu, H.V.S.; Bhusan, R.; Sudhakar, K.; Naik, S.R. 3D Numerical Model Studies for Stress Analysis of Underground Powerhouse Complex of Arun-3 H.E. Project (900 MW), Nepal; NIRM: Bengaluru, India, 2020. [Google Scholar]
- Vijay Sekar, B.; Bhusan, R.; Praveena, D.; Sudhakar, K.; Sivaprasad, B. 3D Numerical Modelling of Powerhouse Complex and Surge Tank for Vishnugad Pipalkoti Hydro Electric Project (444 MW), Uttarakhand; NIRM: Bengaluru, India, 2021. [Google Scholar]
- Naik, S.R.; Bhusan, R.; Sekar, B.H.V.; Sudhakar, K. 3D Stress Analysis of Underground Powerhouse Complex at Mangdechhu Hydroelectric Project, Bhutan; NIRM: Bengaluru, India, 2018. [Google Scholar]
- National Institute of Rock Mechanics, Annual Report (2010–11); NIRM: Bengaluru, India, 2011.
- Goyal, D.P.; Khazanchi, R.N. 1020 MW Tala Hydroelectric Project (Bhutan)–A Fast Construction Model. In International Conference on Accelrated Construction of Hydropower Projects; Central Board of Irrigation and Power: New Delhi, India; Tala Hydroelectric Project Authority: Gedu, Bhutan, 2003; pp. 26–27. [Google Scholar]
- Jeyaseelan, R. Design of Large Caverns. In International Conference on Accelrated Construction of Hydropower Projects; Central Board of Irrigation and Power: New Delhi, India; Tala Hydroelectric Project Authority: Gedu, Bhutan, 2003; pp. 15–17. [Google Scholar]
- Chopra, V.; Gupta, A. Roof Arch Failure of Machine Hall Cavern–Tala Hydroelectric Project. In International Conference on Accelrated Construction of Hydropower Projects; Central Board of Irrigation and Power: New Delhi, India; Tala Hydroelectric Project Authority: Gedu, Bhutan, 2003; pp. 29–31. [Google Scholar]
- Bhasin, R.; Pabst, T.; Li, C. Stability Analysis of Surrounding Rock of a Large Hydropower Cavern in the Himalayas. In Rock Characterisation, Modelling and Engineering Design Methods; CRC Press: Boca Raton, FL, USA, 2013; pp. 659–664. [Google Scholar]
- Singh, R.; Sharma, B.N.; Puri, P.K.; Gupta, M.; Goyal, D.P.; Chugh, I.K. Experience of Long Rock Bolts in Machine Hall Cavern at Tala Hydoelectric Project. In International Conference on Accelrated Construction of Hydropower Projects; Central Board of Irrigation and Power: New Delhi, India; Tala Hydroelectric Project Authority: Gedu, Bhutan, 2003; pp. 15–17. [Google Scholar]
- Sharma, B.N.; Engineer, S. Experience of Dywidag Rock Bolts in Machine Hall Cavern at Tala Project. In International Conference on Accelrated Construction of Hydropower Projects; Central Board of Irrigation and Power: New Delhi, India; Tala Hydroelectric Project Authority: Gedu, Bhutan, 2003; Volume 9, pp. 68–74. [Google Scholar]
- Singh, R. Quality Management of Powerhouse Cavern at Tala Hydoelectric Project in Bhutan Himalayas. In International Conference on Accelrated Construction of Hydropower Projects; Central Board of Irrigation and Power: New Delhi, India; Tala Hydroelectric Project Authority: Gedu, Bhutan, 2003; pp. 503–506. [Google Scholar]
- Venkatesh, H.S.R.N.; Gupta, B.N.; Sharma, M.C.D.; Puri, P.K. Rock Mass Damage Control in Machine Hall Cavern of Tala Hydroelectric Project (Bhutan) by Near Field Vibration Monitoring. In International Conference on Accelerated Construction of Hydropower Projects; Central Board of Irrigation and Power: New Delhi, India; Tala Hydroelectric Project Authority: Gedu, Bhutan, 2003; Volume I, pp. 23–31. [Google Scholar]
- Singh, R.; Dhawan, A.K. Experience of Deformability Measurement Using Goodman Jack. In Proceedings of the International Conference on Rock Engineering Techniques for Site Characterisation, ROCKSITE, Bangalore, India, 26 November 1999; pp. 29–36. [Google Scholar]
- Singh, R. Instrumentation at Tala Hydroelectric Project in Bhutan. In International Conference on Accelrated Construction of Hydropower Projects; Central Board of Irrigation and Power: New Delhi, India; Tala Hydroelectric Project Authority: Gedu, Bhutan, 2003; pp. 42–66. [Google Scholar]
Equation No. | Ref. | Year | Equation | Type of Equation | R2 | Limitations | Data Sets Used | RMR Range | Country of Origin | Lithology |
---|---|---|---|---|---|---|---|---|---|---|
(1) | [12] | 1978 | Linear | - | RMR > 50 | 3 Sites | 51–85 | South Africa | Shale, siltstone, dolerite, mudstone, and sandstone (hard rocks). | |
(2) | [14] | 1983 | Power | - | RMR ≤ 50 | 15 | 26–83 | - | Dolerite, sandstone, mudstone, shale, siltstone, gneiss, and granite (soft rocks). | |
(3) | [24] | 1992 | Power | 0.91 | - | 120 | - | India | ||
(4) | [25] | 1993 | Exponential | - | - | - | - | - | ||
(5) | [26] | 1996 | Exponential | - | - | - | - | Croatia | Limestone | |
(6) | [27] | 1997 | Power | - | - | - | - | - | Gneiss, granite, and sandstone. | |
(7) | [28] | 1999 | Power | - | - | 15 | 26–83 | New Zealand | Graywacke, sandstones, and mudstones. | |
(8) | [29] | 1999 | Non-linear | - | - | - | - | Various | ||
(9) | [30] | 2003 | Exponential | 0.62 | - | 115 | 20–85 | Various | Quartzdiorite, limestone, and shale. | |
(10) | [31] | 2003 | Logarithm | - | - | 57 | 38–84 | Turkey | Grey and pinky quartzdiorite. | |
(11) | [15] | 2006 | Exponential | 0.36 | - | 8 Sites | - | Korea | ||
(12) | [16] | 2008 | Linear | 0.94 | RMR ≥ 27 | 9 | 27–61 | Turkey | Graywacke | |
(13) | [17] | 2010 | Polynomial | 0.8446 | - | 42 | 10–85 | Iran | Limestone and marble | |
(14) | [18] | 2012 | Gaussian function | 0.932 | - | 43 | - | Various | Mudstone, siltstone, sandstone, shale, dolerite (hard rocks), granite, gneiss, mudstone, siltstone, sandstone, shale, and dolerite (soft rocks). | |
(15) | [19] | 2013 | Power | 0.64 | - | 420 | 7–92 | Korea | Gneiss | |
(16) | [20] | 2014 | Linear | 0.6709 | - | 52 | 30–76 | Iran | Sandy siltstone, mudstone, conglomerate, sandstone, dislocated rock mass, faulted rock mass, and shear zone. | |
(17) | [21] | 2015 | Exponential | 0.97 | - | 4 Sites | - | Turkey | Basalt, tuffites, and diabases. | |
(18) | [22] | 2013 | Power | 0.89 | - | 82 | 39–85 | Iran | Grey-green schist, phyllite, dark grey to black limestone, and limy dolomite. |
S.No. | Type of Equation | Equation | Coefficient of Regression, R2 |
---|---|---|---|
1 | Linear | 0.183RMR − 5.81 | 0.53 |
2 | Logarithmic | 5.8log(RMR) − 19.17 | 0.37 |
3 | Cubic | 0.75 | |
4 | Exponential | 0.708 |
Cavern | Support System |
---|---|
MHC–Crown | 32 mm diameter, 8 m and 6 m long rock bolts at 1.5 m × 1.5 m pattern Steel-fiber-reinforced shotcrete (SFRS) of 100 mm thickness Steel ribs of ISMB 300 at 0.6 m spacing 32 mm/26.5 mm diameter, 12 m long Dywidag rock bolts at 1.5 m spacing |
MHC–Walls | 32 mm/26.5 mm diameter, 12 m long Dywidag rock bolts at 1.5 m spacing |
THC–Crown | 32 mm diameter, 8 m and 6 m long rock bolts at 3 m × 1.5 m pattern Steel-fiber-reinforced shotcrete (SFRS) of 100 mm thickness Steel ribs of ISMB 350 at 0.6 m spacing |
THC–Walls | 32 mm/26.5 mm diameter, 8 m long Dywidag rock bolts at 1.5 m spacing |
MHC and THC Walls | Initial layer of shotcrete of 50 mm thickness Welded-wire mesh of 100 mm × 100 mm × 5 mm Final two shotcrete layers of 50 mm each |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellapu, H.V.S.; Sinha, R.K.; Naik, S.R. Estimation of Modulus of Deformation Using Rock Mass Rating—A Review and Validation Using 3D Numerical Modelling. Sustainability 2023, 15, 5721. https://doi.org/10.3390/su15075721
Bellapu HVS, Sinha RK, Naik SR. Estimation of Modulus of Deformation Using Rock Mass Rating—A Review and Validation Using 3D Numerical Modelling. Sustainability. 2023; 15(7):5721. https://doi.org/10.3390/su15075721
Chicago/Turabian StyleBellapu, Hema Vijay Sekar, Rabindra Kumar Sinha, and Sripad Ramchandra Naik. 2023. "Estimation of Modulus of Deformation Using Rock Mass Rating—A Review and Validation Using 3D Numerical Modelling" Sustainability 15, no. 7: 5721. https://doi.org/10.3390/su15075721
APA StyleBellapu, H. V. S., Sinha, R. K., & Naik, S. R. (2023). Estimation of Modulus of Deformation Using Rock Mass Rating—A Review and Validation Using 3D Numerical Modelling. Sustainability, 15(7), 5721. https://doi.org/10.3390/su15075721