Study on the Progress in Climate-Change-Oriented Human Settlement Research
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Analysis of Literature Sources
3.2. Co-Citation Analysis of the Literature
3.2.1. Co-Citation Journals
3.2.2. Co-Citation Literature
3.2.3. Co-Citation Authors
3.3. Collaboration Analysis of the Literature
3.3.1. Author Collaboration
3.3.2. Institutional Collaboration
3.3.3. National Collaboration
3.4. Analysis of Key Topics Based on Keyword Clustering
3.4.1. Keyword Clustering Analysis
3.4.2. Summary of Key Issues
3.5. Analysis of Research Trends Based on Keyword Burst
3.5.1. Analysis of Keyword Burst Results
3.5.2. Research Trend Forecasting
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
CCHSR | Climate-Change-Oriented Human Settlement Research |
COVID-19 | Coronavirus Disease 2019 |
DRR | Disaster Risk Reduction |
FAO | Food and Agriculture Organization |
IPCC | Intergovernmental Panel on Climate Change |
PNAS | Proceedings of the National Academy of Sciences |
SDGs | Sustainable Development Goals |
WOS | Web of Science |
References
- UN Office for Disaster Risk Reduction. The Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019); UN Office for Disaster Risk Reduction (UNDRR): Geneva, Switzerland, 2020. [Google Scholar]
- An, N.; Yao, Q.; Shen, Q. A Review of Human Settlement Research on Climate Change Response under Carbon-Oriented: Literature Characteristics, Progress and Trends. Buildings 2022, 12, 1614. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Zheng, Y. Systemic Risk’s of Climate Change and Coping Strategy. Environ. Prot. 2021, 49, 15–19. [Google Scholar] [CrossRef]
- Lenton, T.M.; Rockström, J.; Gaffney, O.; Rahmstorf, S.; Richardson, K.; Steffen, W.; Schellnhuber, H.J. Climate Tipping Points—Too Risky to Bet Against. Nature 2019, 575, 592–595. [Google Scholar] [CrossRef] [Green Version]
- UNFCCC. Available online: https://unfccc.int/ (accessed on 19 March 2023).
- The Paris Agreement|UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 5 June 2022).
- What Is the Kyoto Protocol?|UNFCCC. Available online: https://unfccc.int/kyoto_protocol (accessed on 19 March 2023).
- Doxiadis, C.A. An Introduction to the Science of Human Settlements. Science 1968, 170, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Serrao-Neumann, S.; Schuch, G.; Harman, B.; Crick, F.; Sano, M.; Sahin, O.; van Staden, R.; Baum, S.; Low Choy, D. One Human Settlement: A Transdisciplinary Approach to Climate Change Adaptation Research. Futures 2015, 65, 97–109. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, C.; Lu, M.; Lu, Y. Assessing the Suitability of Regional Human Settlements Environment from a Different Preferences Perspective: A Case Study of Zhejiang Province, China. Habitat Int. 2017, 70, 1–12. [Google Scholar] [CrossRef]
- Baiocchi, G.; Creutzig, F.; Minx, J.; Pichler, P.-P. A Spatial Typology of Human Settlements and Their CO2 Emissions in England. Glob. Environ. Chang. 2015, 34, 13–21. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The Rising Tide: Assessing the Risks of Climate Change and Human Settlements in Low Elevation Coastal Zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Wang, L.J. Sustainable Human Settlement and Climate Change Adaptation in China. Adv. Mater. Res. 2012, 524–527, 3674–3677. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global Fatal Landslide Occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; An, N.; Yao, J. Characteristics, Progress and Trends of Urban Microclimate Research: A Systematic Literature Review and Bibliometric Analysis. Buildings 2022, 12, 877. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Wang, P.; Ma, X.; Yang, L.; Zhou, L. Progress in Ecosystem Health Research and Future Prospects. Sustainability 2022, 14, 15814. [Google Scholar] [CrossRef]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. CiteSpace II: Detecting and Visualising Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The Structure and Dynamics of Cocitation Clusters: A Multiple-Perspective Cocitation Analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.-P.; Hu, J.-M.; Gao, Y.; Zhang, Y.-K. A Journal Co-Citation Analysis of Library and Information Science in China. Scientometrics 2011, 86, 657–670. [Google Scholar] [CrossRef]
- McCain, K.W. Mapping Economics through the Journal Literature: An Experiment in Journal Cocitation Analysis. J. Am. Soc. Inf. Sci. 1991, 42, 290–296. [Google Scholar] [CrossRef]
- Chen, C.; Song, M. Visualising a field of research: A methodology of systematic scientometric reviews. PLoS ONE 2019, 14, e0223994. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, Y. Searching for Clinical Evidence in CiteSpace. AMIA Annu. Symp. Proc. 2005, 2005, 121–125. [Google Scholar]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years Cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Baillie, M.G.L.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Burr, G.S.; Edwards, R.L.; et al. IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BP. Radiocarbon 2009, 51, 1111–1150. [Google Scholar] [CrossRef] [Green Version]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; 1535p. [Google Scholar]
- Hughes, T.P.; Kerry, J.T.; Álvarez-Noriega, M.; Álvarez-Romero, J.G.; Anderson, K.D.; Baird, A.H.; Babcock, R.C.; Beger, M.; Bellwood, D.R.; Berkelmans, R.; et al. Global Warming and Recurrent Mass Bleaching of Corals. Nature 2017, 543, 373–377. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Reimer, P.J. Composition and consequences of the IntCal20 radiocarbon calibration curve. Quat. Res. 2020, 96, 22–27. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- IPCC. AR5 Synthesis Report: Climate Change 2014—IPCC. Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 31 July 2022).
- Chen, F.; Dong, G.H.; Zhang, D.J.; Liu, X.Y.; Jia, X.; An, C.B.; Ma, M.M.; Xie, Y.W.; Barton, L.; Ren, X.Y.; et al. Agriculture Facilitated Permanent Human Occupation of the Tibetan Plateau after 3600 B.P. Science 2015, 347, 248–250. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hughes, T.P.; Anderson, K.D.; Connolly, S.R.; Heron, S.F.; Kerry, J.T.; Lough, J.M.; Baird, A.H.; Baum, J.K.; Berumen, M.L.; Bridge, T.C.; et al. Spatial and Temporal Patterns of Mass Bleaching of Corals in the Anthropocene. Science 2018, 359, 80–83. [Google Scholar] [CrossRef] [Green Version]
- Bevan, A.; Colledge, S.; Fuller, D.; Fyfe, R.; Shennan, S.; Stevens, C. Holocene Fluctuations in Human Population Demonstrate Repeated Links to Food Production and Climate. Proc. Natl. Acad. Sci. USA 2017, 114, E10524–E10531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Working Group I the Physical Science Basis. Available online: https://www.ipcc.ch/working-group/wg1/ (accessed on 28 February 2023).
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package; R Package: Vienna, Austria, 2022. [Google Scholar]
- Bernstein, L.; Bosch, P.; Canziani, O.; Chen, Z.; Christ, R.; Riahi, K. Climate Change 2007: Synthesis Report; IPCC: Geneva, Switzerland, 2008. [Google Scholar]
- Blaauw, M. Methods and Code for ‘Classical’ Age-Modelling of Radiocarbon Sequences. Quat. Geochronol. 2010, 5, 512–518. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Alexander, L.V.; Allen, S.K.; Bindoff, N.L.; Bréon, F.-M.; Church, J.A.; Cubasch, U.; Emori, S.; et al. Technical Summary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 33–115. [Google Scholar]
- Stuiver, M.; Reimer, P.J.; Bard, E.; Beck, J.W.; Burr, G.S.; Hughen, K.A.; Kromer, B.; McCormac, G.; Plicht, J.V.D.; Spurk, M. INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP. Radiocarbon 1998, 40, 1041–1083. [Google Scholar] [CrossRef] [Green Version]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Grimm, E.C.; Jacobson, G.L.; Watts, W.A.; Hansen, B.C.S.; Maasch, K.A. A 50,000-Year Record of Climate Oscillations from Florida and Its Temporal Correlation with the Heinrich Events. Science 1993, 261, 198–200. [Google Scholar] [CrossRef]
- Huang, X.; Liu, S.; Dong, G.; Qiang, M.; Bai, Z.; Zhao, Y.; Chen, F. Early Human Impacts on Vegetation on the Northeastern Qinghai-Tibetan Plateau during the Middle to Late Holocene. Prog. Phys. Geogr. Earth Environ. 2017, 41, 286–301. [Google Scholar] [CrossRef]
- Dong, G.; Yang, Y.; Zhao, Y.; Zhou, A.; Zhang, X.; Li, X.; Chen, F. Human Settlement and Human–Environment Interactions during the Historical Period in Zhuanglang County, Western Loess Plateau, China. Quat. Int. 2012, 281, 78–83. [Google Scholar] [CrossRef]
- Dong, G.; Liu, F.; Chen, F. Environmental and Technological Effects on Ancient Social Evolution at Different Spatial Scales. Sci. China Earth Sci. 2017, 60, 2067–2077. [Google Scholar] [CrossRef]
- Tinganelli, L.; Erlendsson, E.; Eddudóttir, S.D.; Gísladóttir, G. Impacts of Climate, Tephra and Land Use upon Holocene Landscape Stability in Northwest Iceland. Geomorphology 2018, 322, 117–131. [Google Scholar] [CrossRef]
- Gathorne-Hardy, F.J.; Erlendsson, E.; Langdon, P.G.; Edwards, K.J. Lake Sediment Evidence for Late Holocene Climate Change and Landscape Erosion in Western Iceland. J. Paleolimnol. 2009, 42, 413–426. [Google Scholar] [CrossRef]
- Schneider, J.W. Mapping Scientific Frontiers: The Quest for Knowledge Visualization. J. Am. Soc. Inf. Sci. Technol. 2004, 55, 363–365. [Google Scholar] [CrossRef]
- Foster, D.R.; Zebryk, T.M. Long-Term Vegetation Dynamics and Disturbance History of a Tsuga-Dominated Forest in New England. Ecology 1993, 74, 982–998. [Google Scholar] [CrossRef] [Green Version]
- Bush, M.B.; Colinvaux, P.A. Tropical Forest Disturbance: Paleoecological Records from Darien, Panama. Ecology 1994, 75, 1761–1768. [Google Scholar] [CrossRef]
- Whitmore, T.J.; Brenner, M.; Curtis, J.H.; Dahlin, B.H.; Leyden, B.W. Holocene Climatic and Human Influences on Lakes of the Yucatan Peninsula, Mexico: An Interdisciplinary, Palaeolimnological Approach. Holocene 1996, 6, 273–287. [Google Scholar] [CrossRef]
- Geel, B.V.; Plicht, J.V.D.; Kilian, M.R.; Klaver, E.R.; Kouwenberg, J.H.M.; Renssen, H.; Reynaud-Farrera, I.; Waterbolk, H.T. The Sharp Rise of Δ14C ca. 800 cal BC: Possible Causes, Related Climatic Teleconnections and the Impact on Human Environments. Radiocarbon 1997, 40, 535–550. [Google Scholar] [CrossRef] [Green Version]
- Royer, P.D.; Cobb, N.S.; Clifford, M.J.; Huang, C.-Y.; Breshears, D.D.; Adams, H.D.; Villegas, J.C. Extreme Climatic Event-Triggered Overstorey Vegetation Loss Increases Understorey Solar Input Regionally: Primary and Secondary Ecological Implications. J. Ecol. 2011, 99, 714–723. [Google Scholar] [CrossRef]
- Bigelow, G.F.; Ferrante, S.M.; Hall, S.T.; Kimball, L.M.; Proctor, R.E.; Remington, S.L. Researching Catastrophic Environmental Changes on Northern Coastlines: A Geoarchaeological Case Study from the Shetland Islands. Arct. Anthropol. 2005, 42, 88–102. [Google Scholar] [CrossRef]
- Williams, C.M.; Ragland, G.J.; Betini, G.; Buckley, L.B.; Cheviron, Z.A.; Donohue, K.; Hereford, J.; Humphries, M.M.; Lisovski, S.; Marshall, K.E.; et al. Understanding Evolutionary Impacts of Seasonality: An Introduction to the Symposium. Integr. Comp. Biol. 2017, 57, 921–933. [Google Scholar] [CrossRef] [Green Version]
- Drejza, S.; Bernatchez, P.; Dugas, C. Effectiveness of Land Management Measures to Reduce Coastal Georisks, Eastern Québec, Canada. Ocean Coast. Manag. 2011, 54, 290–301. [Google Scholar] [CrossRef]
- Tellman, B.; Bausch, J.; Eakin, H.; Anderies, J.; Mazari-Hiriart, M.; Manuel-Navarrete, D.; Redman, C. Adaptive Pathways and Coupled Infrastructure: Seven Centuries of Adaptation to Water Risk and the Production of Vulnerability in Mexico City. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/ (accessed on 2 February 2023).
- Serdar, M.Z.; Macauley, N.; Al-Ghamdi, S.G. Building Thermal Resilience Framework (BTRF): A Novel Framework to Address the Challenge of Extreme Thermal Events, Arising from Climate Change. Front. Built Environ. 2022, 8, 1029992. [Google Scholar] [CrossRef]
- Abdollahzadeh, N.; Biloria, N. Outdoor Thermal Comfort: Analysing the Impact of Urban Configurations on the Thermal Performance of Street Canyons in the Humid Subtropical Climate of Sydney. Front. Archit. Res. 2021, 10, 394–409. [Google Scholar] [CrossRef]
- Gervásio, H. Structural Eco-Efficiency: Harmonising Structural and Environmental Assessments. Eur. J. Environ. Civ. Eng. 2022, 26, 2463–2474. [Google Scholar] [CrossRef]
- Klankermayer, J.; Leitner, W. Love at Second Sight for CO2 and H2 in Organic Synthesis. Science 2015, 350, 629–630. [Google Scholar] [CrossRef]
- Wang, L.; Witte, M.J. Integrating Building Energy Simulation with a Machine Learning Algorithm for Evaluating Indoor Living Walls’ Impacts on Cooling Energy Use in Commercial Buildings. Energy Build. 2022, 272, 112322. [Google Scholar] [CrossRef]
- Zeng, H.; Elnashar, A.; Wu, B.; Zhang, M.; Zhu, W.; Tian, F.; Ma, Z. A Framework for Separating Natural and Anthropogenic Contributions to Evapotranspiration of Human-Managed Land Covers in Watersheds Based on Machine Learning. Sci. Total Environ. 2022, 823, 153726. [Google Scholar] [CrossRef]
- Mazhar, S.; Sun, G.; Bilal, A.; Li, Y.; Farhan, M.; Awan, H.H. Digital and Geographical Feature Detection by Machine Learning Techniques Using Google Earth Engine for CPEC Traffic Management. Wirel. Commun. Mob. Comput. 2022, 2022, e1192752. [Google Scholar] [CrossRef]
- Petrea, S.M.; Zamfir, C.; Simionov, I.A.; Mogodan, A.; Nuţă, F.M.; Rahoveanu, A.T.; Nancu, D.; Cristea, D.S.; Buhociu, F.M. A Forecasting and Prediction Methodology for Improving the Blue Economy Resilience to Climate Change in the Romanian Lower Danube Euroregion. Sustainability 2021, 13, 11563. [Google Scholar] [CrossRef]
- Yu, D.; Xu, Z.; Pedrycz, W.; Wang, W. Information Sciences 1968–2016: A Retrospective Analysis with Text Mining and Bibliometric. Inf. Sci. 2017, 418–419, 619–634. [Google Scholar] [CrossRef]
- Fraser, A. The Missing Politics of Urban Vulnerability: The State and the Co-Production of Climate Risk. Environ. Plan. A Econ. Space 2017, 49, 2835–2852. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Niyogi, D. Resilience of Human Settlements to Climate Change Needs the Convergence of Urban Planning and Urban Climate Science. Comput. Urban Sci. 2022, 2, 6. [Google Scholar] [CrossRef]
- Fedele, G.; Donatti, C.I.; Harvey, C.A.; Hannah, L.; Hole, D.G. Transformative Adaptation to Climate Change for Sustainable Social-Ecological Systems. Environ. Sci. Policy 2019, 101, 116–125. [Google Scholar] [CrossRef]
- Zuniga-Teran, A.A.; Gerlak, A.K.; Mayer, B.; Evans, T.P.; Lansey, K.E. Urban Resilience and Green Infrastructure Systems: Towards a Multidimensional Evaluation. Curr. Opin. Environ. Sustain. 2020, 44, 42–47. [Google Scholar] [CrossRef]
- BuHamdan, S.; Alwisy, A.; Danel, T.; Bouferguene, A.; Lafhaj, Z. The Use of Reinforced Learning to Support Multidisciplinary Design in the AEC Industry: Assessing the Utilization of Markov Decision Process. Int. J. Archit. Comput. 2022, 20, 216–237. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, R.; Jindal, N. Machine Learning and Deep Learning Applications-A Vision. Glob. Transit. Proc. 2021, 2, 24–28. [Google Scholar] [CrossRef]
- Thaler, T.; Witte, P.A.; Hartmann, T.; Geertman, S.C.M. Smart Urban Governance for Climate Change Adaptation. Urban Plan. 2021, 6, 223–226. [Google Scholar] [CrossRef]
- Cowls, J.; Tsamados, A.; Taddeo, M.; Floridi, L. The AI Gambit: Leveraging Artificial Intelligence to Combat Climate Change—Opportunities, Challenges, and Recommendations. AI Soc. 2023, 38, 283–307. [Google Scholar] [CrossRef]
- Filho, W.L.; Balogun, A.-L.; Ayal, D.Y.; Bethurem, E.M.; Murambadoro, M.; Mambo, J.; Taddese, H.; Tefera, G.W.; Nagy, G.J.; Fudjumdjum, H.; et al. Strengthening Climate Change Adaptation Capacity in Africa- Case Studies from Six Major African Cities and Policy Implications. Environ. Sci. Policy 2018, 86, 29–37. [Google Scholar] [CrossRef]
- Grasham, C.F.; Korzenevica, M.; Charles, K.J. On Considering Climate Resilience in Urban Water Security: A Review of the Vulnerability of the Urban Poor in Sub-Saharan Africa. WIREs Water 2019, 6, e1344. [Google Scholar] [CrossRef] [Green Version]
- Corburn, J.; Karanja, I. Informal Settlements and a Relational View of Health in Nairobi, Kenya: Sanitation, Gender and Dignity. Health Promot. Int. 2016, 31, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.; Schindler, D. Getting Ahead of Climate Change for Ecological Adaptation and Resilience. Science 2022, 376, 1421–1426. [Google Scholar] [CrossRef]
- Andres, R.J.; Boden, T.A.; Bréon, F.-M.; Ciais, P.; Davis, S.; Erickson, D.; Gregg, J.S.; Jacobson, A.; Marland, G.; Miller, J.; et al. A Synthesis of Carbon Dioxide Emissions from Fossil-Fuel Combustion. Biogeosciences 2012, 9, 1845–1871. [Google Scholar] [CrossRef] [Green Version]
- Balaban, O. Climate Change and Cities: A Review On The Impacts And Policy Responses. METUJFA 2012, 29, 21–24. [Google Scholar] [CrossRef]
- About Carbon Pricing|UNFCCC. Available online: https://unfccc.int/about-us/regional-collaboration-centres/the-ciaca/about-carbon-pricing?gclid=CjwKCAjw5dqgBhBNEiwA7PryaDEjszSnex7oEo6iWrM7rR-HTtQRz9JNCTlUQ8z32OanE1UvXbg4EhoC47sQAvD_BwE#What-is-Carbon-Pricing?- (accessed on 19 March 2023).
- Schmitt, G.; Aydt, H.; Fonseca, J.A.; Acero, J.; Perhac, J.; Nevat, I. Responsive Carbon Neutral Settlements. In Intelligent Decarbonisation: Can Artificial Intelligence and Cyber-Physical Systems Help Achieve Climate Mitigation Targets? Inderwildi, O., Kraft, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 149–162. ISBN 978-3-030-86215-2. [Google Scholar]
- Armanfar, A.; Khanmohammadi, M. Renewable Energies in the Settlements (A Step Toward a Clean City). IJESG 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Sitthi, A.; Hassan, S.-U. Al-Based Remoted Sensing Model for Sustainable Landcover Mapping and Monitoring in Smart City Context. In Proceedings of the Research and Innovation Forum 2022; Visvizi, A., Troisi, O., Grimaldi, M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 345–355. [Google Scholar]
- Li, Y.; Chen, C.; Wang, Y.; Liu, Y. Urban-Rural Transformation and Farmland Conversion in China: The Application of the Environmental Kuznets Curve. J. Rural. Stud. 2014, 36, 311–317. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Yang, Y. Research Progress on Human Settlement Evolution. Prog. Geogr. 2013, 32, 710–721. [Google Scholar]
- Five Key Takeaways from COP27|UNFCCC. Available online: https://unfccc.int/process-and-meetings/conferences/sharm-el-sheikh-climate-change-conference-november-2022/five-key-takeaways-from-cop27 (accessed on 19 March 2023).
- Zheng, Y. Resilient City: Mainstreaming Climate Risk Management and Adaptation to Climate Change into Urban Planning. Urban Dev. Stud. 2012, 19, 47–51. [Google Scholar]
- Abdelhady, A.U.; Spence, S.M.J.; McCormick, J. A Framework for the Probabilistic Quantification of the Resilience of Communities to Hurricane Winds. J. Wind Eng. Ind. Aerodyn. 2020, 206, 104376. [Google Scholar] [CrossRef]
- Leal Filho, W.; Wall, T.; Rui Mucova, S.A.; Nagy, G.J.; Balogun, A.-L.; Luetz, J.M.; Ng, A.W.; Kovaleva, M.; Safiul Azam, F.M.; Alves, F.; et al. Deploying Artificial Intelligence for Climate Change Adaptation. Technol. Forecast. Soc. Chang. 2022, 180, 121662. [Google Scholar] [CrossRef]
- Nunes, J.A.C.C.; Cruz, I.C.S.; Nunes, A.; Pinheiro, H.T. Speeding up Coral Reef Conservation with AI-Aided Automated Image Analysis. Nat. Mach. Intell. 2020, 2, 292. [Google Scholar] [CrossRef]
- Deng, S.; Wu, S.; Bian, A.; Zhang, J.; Di, B.; Nienkötter, A.; Deng, T.; Feng, T. Scattered Mountainous Area Building Extraction From an Open Satellite Imagery Dataset. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Fuso Nerini, F. The Role of Artificial Intelligence in Achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [Green Version]
- Maka, A.O.M.; Alabid, J.M. Solar Energy Technology and Its Roles in Sustainable Development. Clean Energy 2022, 6, 476–483. [Google Scholar] [CrossRef]
- Uyar, T.S.; Beşikci, D. Integration of Hydrogen Energy Systems into Renewable Energy Systems for Better Design of 100% Renewable Energy Communities. Int. J. Hydrogen Energy 2017, 42, 2453–2456. [Google Scholar] [CrossRef]
- Fritzsche, K.; Niehoff, S.; Beier, G. Industry 4.0 and Climate Change—Exploring the Science-Policy Gap. Sustainability 2018, 10, 4511. [Google Scholar] [CrossRef] [Green Version]
- Bildirici, M.; Ersin, Ö.Ö. Nexus between Industry 4.0 and Environmental Sustainability: A Fourier Panel Bootstrap Cointegration and Causality Analysis. J. Clean. Prod. 2023, 386, 135786. [Google Scholar] [CrossRef]
Number | Journal Name | Reference | Years |
---|---|---|---|
1 | Science | 3180 | 1992 |
2 | Nature | 2788 | 1992 |
3 | Proceedings of the National Academy of Sciences of the USA | 2477 | 1997 |
4 | Plos One | 1759 | 2009 |
5 | Quaternary Science Reviews | 1291 | 1994 |
6 | Ecology | 1248 | 1991 |
7 | Global Change Biology | 1192 | 1998 |
8 | Climatic Change | 1096 | 1993 |
9 | Quaternary Research | 1042 | 1992 |
10 | Palaeogeography, Palaeoclimatology, Palaeoecology | 1041 | 1990 |
11 | Holocene | 1034 | 1995 |
12 | Quaternary International | 1032 | 2004 |
13 | Geophysical Research Letters | 979 | 1997 |
14 | Trends in Ecology & Evolution | 972 | 1994 |
15 | Science of The Total Environment | 970 | 1998 |
16 | Scientific Reports | 953 | 1999 |
17 | Nature Climate Change | 906 | 2014 |
18 | Proceedings of the Royal Society B: Biological Sciences | 897 | 2012 |
19 | Journal of Archaeological Science | 771 | 1994 |
20 | Journal of Biogeography | 767 | 1997 |
Number | Literature Study Name | Cited Number | Years |
---|---|---|---|
1 | Intcal13 and marine13 radiocarbon age calibration curves, 0–50,000 years cal BP [26] | 103 | 2013 |
2 | Intcal09 and marine09 radiocarbon age calibration curves 0–50,000 years cal BP [27] | 72 | 2014 |
3 | WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas [28] | 57 | 2018 |
4 | Evaluation of climate models. in: climate change 2013 [29] | 51 | 2009 |
5 | Global warming and recurrent mass bleaching of corals [30] | 47 | 2020 |
6 | R: A language and environment for statistical computing [31] | 46 | 2016 |
7 | Fitting linear mixed-effects models using lme4 [32] | 44 | 2019 |
8 | Composition and consequences of the intcal20 radiocarbon calibration curve [33] | 38 | 2017 |
9 | Climate change 2014 [34] | 33 | 2019 |
10 | Ar5 synthesis report: climate change 2014 [35] | 31 | 2014 |
11 | Agriculture facilitated permanent human occupation of the Tibetan plateau after 3600 B.P. [36] | 28 | 2015 |
12 | Planetary boundaries: guiding human development on a changing planet [37] | 28 | 2013 |
13 | Google earth engine: planetary-scale geospatial analysis for everyone [38] | 28 | 2017 |
14 | Spatial and temporal patterns of mass bleaching of corals in the Anthropocene [39] | 25 | 2018 |
15 | Holocene fluctuations in human population demonstrate repeated links to food production and climate [40] | 24 | 2015 |
16 | A report of working group I of the intergovernmental panel on climate change [41] | 24 | 2015 |
17 | A language and environment for statistical computing [42]. | 24 | 2017 |
18 | Vegan: community ecology package. R package version 2.5-6. 2019 [43] | 23 | 2017 |
19 | Ar4 climate change 2007: the physical science basis [44] | 23 | 2011 |
20 | Methods and code for ‘classical’ age-modelling of radiocarbon sequences [45] | 21 | 2018 |
Number | Cited Author | Cited Number | Year |
---|---|---|---|
1 | R Core Team | 400 | 2014 |
2 | Reimer PJ | 385 | 2008 |
3 | IPCC | 349 | 1998 |
4 | STUIVER M | 248 | 1997 |
5 | United Nations | 237 | 2007 |
6 | Ramsey CB | 192 | 2005 |
7 | FAO | 185 | 2010 |
8 | Adger WN | 185 | 2008 |
9 | GRIMM EC | 164 | 1997 |
10 | Faegri K | 162 | 1996 |
11 | Parmesan C | 161 | 1999 |
12 | Blaauw M | 157 | 2012 |
13 | Hoegh-Guldberg O | 152 | 2007 |
14 | World Bank | 142 | 2011 |
15 | World Health Organization | 130 | 2000 |
16 | Portner HO | 128 | 2005 |
17 | HUEY RB | 111 | 2009 |
18 | Moore PD | 108 | 1994 |
19 | Hughes TP | 108 | 2008 |
20 | MAGNY M | 101 | 1996 |
Number | Authors | Counts |
---|---|---|
1 | Guanghui Dong | 17 |
2 | Fahu Chen | 10 |
3 | Alessio Palmisano | 9 |
4 | Egill Erlendsson | 9 |
5 | Stephen Shennan | 7 |
6 | Cheng Zhu | 7 |
7 | C Neil Roberts | 7 |
8 | Kevin J Edwards | 7 |
9 | Andrew Bevan | 7 |
10 | Jessie Woodbridge | 7 |
Number | Institution | Year | Cooperation |
---|---|---|---|
1 | Chinese Academy of Sciences | 2001 | 922 |
2 | University of Chinese Academy of Sciences | 2013 | 344 |
3 | Peking University | 2004 | 180 |
4 | Max Planck Inst Biogeochemistry | 1999 | 172 |
5 | Lund University | 2001 | 168 |
6 | The University of Exeter | 2011 | 154 |
7 | US Forest Service | 2000 | 147 |
8 | National Oceanic and Atmospheric Administration | 2000 | 134 |
9 | University of Helsinki | 2002 | 132 |
10 | Tsinghua University | 2011 | 129 |
11 | University of California, Berkeley | 1998 | 128 |
12 | US Geological Survey | 1998 | 124 |
13 | University Maryland | 2005 | 123 |
14 | University Colorado | 2002 | 122 |
15 | Columbia University | 2003 | 122 |
16 | National Aeronautics and Space Administration | 1992 | 120 |
17 | University of Copenhagen | 1999 | 117 |
18 | Russian Academy of Sciences | 1998 | 109 |
19 | Oak Ridge National Laboratory | 1998 | 109 |
20 | Colorado State University | 1998 | 108 |
Number | Country | Year | Cooperation | Centrality |
---|---|---|---|---|
1 | USA | 1991 | 1753 | 0.54 |
2 | PEOPLES R CHINA | 1996 | 666 | 0.13 |
3 | ENGLAND | 1988 | 652 | 0.22 |
4 | AUSTRALIA | 1993 | 516 | 0.48 |
5 | GERMANY | 1992 | 492 | 0.11 |
6 | CANADA | 1993 | 397 | 0.28 |
7 | FRANCE | 1992 | 396 | 0.13 |
8 | ITALY | 1992 | 316 | 0.06 |
9 | SPAIN | 1991 | 316 | 0.06 |
10 | NORWAY | 2001 | 169 | 0.05 |
11 | NETHERLANDS | 1997 | 167 | 0.07 |
12 | INDIA | 1993 | 162 | 0.03 |
13 | SWEDEN | 1992 | 147 | 0.07 |
14 | SWITZERLAND | 1995 | 140 | 0.08 |
15 | SOUTH AFRICA | 1996 | 135 | 0.04 |
16 | BRAZIL | 1997 | 130 | 0.16 |
17 | POLAND | 1995 | 123 | 0.04 |
18 | SCOTLAND | 1998 | 118 | 0.05 |
19 | JAPAN | 1988 | 118 | 0.06 |
20 | CAS | 1997 | 115 | 0.01 |
Number | Reference | Centrality | Years | Keywords |
---|---|---|---|---|
1 | 305 | 0.03 | 1991 | holocene |
2 | 717 | 0.08 | 1992 | climate |
3 | 220 | 0.04 | 1993 | land use |
4 | 406 | 0.04 | 1994 | environment |
5 | 243 | 0.02 | 1994 | environmental change |
6 | 238 | 0.03 | 1994 | history |
7 | 206 | 0.01 | 1994 | conservation |
8 | 296 | 0.05 | 1995 | vegetation |
9 | 229 | 0.03 | 1997 | model |
10 | 368 | 0.02 | 1998 | adaptation |
11 | 272 | 0.02 | 1998 | evolution |
12 | 227 | 0.05 | 1998 | pattern |
13 | 259 | 0.05 | 1999 | record |
14 | 234 | 0.02 | 2000 | biodiversity |
15 | 226 | 0.03 | 2000 | dynamics |
16 | 417 | 0.03 | 2001 | temperature |
17 | 302 | 0.03 | 2003 | variability |
18 | 259 | 0.04 | 2003 | management |
19 | 198 | 0.02 | 2004 | settlements |
20 | 239 | 0.01 | 2008 | vulnerability |
Cluster Name | Size | Contour | Years | Main Keyword |
---|---|---|---|---|
#0.urban heat island | 227 | 0.659 | 2014 | built environment; urbanisation; gender; COVID-19; human health; poverty; mitigation; risk perception; policy; |
#1.holocene | 214 | 0.683 | 2005 | human occupation; soil erosion; adaptation; vegetation history; cultural change; |
#2.phenotypic plasticity. | 184 | 0.682 | 2007 | diversity; thermal tolerance; temperature; ocean acidification; conservation; heat; environment; |
#3.arctic | 78 | 0.861 | 2004 | permafrost; tree mortality; forest management; human settlements suitability; earthquake; infrastructure; |
#4.sustainable development goals | 67 | 0.815 | 2007 | economy; adaptation; historical consciousness; integrated management; water limitation; ecological restoration; |
#5.fire suppression | 54 | 0.85 | 2002 | transmission; fire; fire regime; landscape ecology; microclimate; water use; spatial model; risk assessment; |
#6.deforestation | 53 | 0.877 | 2005 | transmission; fire; fire regime; landscape ecology; microclimate; water use; spatial model; risk assessment; l |
#7.rainfall | 51 | 0.812 | 2011 | disease outbreak; drinking water; deep learning; adaptation; land management; extreme events; land restoration; cover; risk analysis; |
#8.carbon dioxide | 26 | 0.928 | 1997 | fossil forest; temperature; resilience; vegetation; human impact; vulnerability; agriculture; biodiversity; ecology; cities; remote sensing; drought; |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Q.; An, N.; Yang, E.; Song, Z. Study on the Progress in Climate-Change-Oriented Human Settlement Research. Sustainability 2023, 15, 5733. https://doi.org/10.3390/su15075733
Yao Q, An N, Yang E, Song Z. Study on the Progress in Climate-Change-Oriented Human Settlement Research. Sustainability. 2023; 15(7):5733. https://doi.org/10.3390/su15075733
Chicago/Turabian StyleYao, Qiang, Na An, Ende Yang, and Zhengjiang Song. 2023. "Study on the Progress in Climate-Change-Oriented Human Settlement Research" Sustainability 15, no. 7: 5733. https://doi.org/10.3390/su15075733
APA StyleYao, Q., An, N., Yang, E., & Song, Z. (2023). Study on the Progress in Climate-Change-Oriented Human Settlement Research. Sustainability, 15(7), 5733. https://doi.org/10.3390/su15075733