Availability and the Possibility of Employing Wastes and Biomass Materials Energy in Jordan
Abstract
:1. Introduction
2. Electricity Generation in Jordan
Electricity Consumption in Jordan
3. Energy in Jordan
3.1. Non-Renewable Energy in Jordan
3.2. Renewable Energy in Jordan
4. Methodology
- Assessing the quantity of biomass generated in Jordan, as well as defining the type and diversity of crops planted and their harvests. A six-year average (2014–2019) was used as the study period.
- The quantity of Jordan’s dry biomass residues was approximated based on the amount of biomass produced by a variety of sources. In particular, the quantity of animal manure was dependent on the livestock population.
- The factors for accessibility and potential energy for agricultural, MSW, and livestock residues were set at 0.25, 0.75, and 0.125, respectively, to determine the potential power generation that could be obtained from these residues.
- The volume of biogas and the amount of energy that could be generated from various biomass resources in Jordan were approximated using data from similar field research.
- The availability and the applicability of adopting biomass as an energy resource in Jordan were investigated from several socioeconomic and environmental perspectives.
5. Biomass Resources in Jordan
5.1. Solid Waste in the Southern Cities of Jordan
5.1.1. Animal Manure
5.1.2. Municipal Solid Waste (MSW)
5.2. Agricultural Residues in Jordan
5.2.1. Vegetable Residue
5.2.2. Fruit Residues
5.2.3. Field Crop Residues
5.3. Electricity Generation from Biomass
6. Biomass Technologies
6.1. Biogas Technologies
6.2. Electricity Generation from Biomass
7. Potential Biomass Production and Discussion
8. Challenges
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Rawashdeh, H.; Hasan, A.O.; Al-Shakhanbeh, H.A.; Al-Dhaifallah, M.; Gomaa, M.R.; Rezk, H. Investigation of the Effect of Solar Ventilation on the Cabin Temperature of Vehicles Parked under the Sun. Sustainability 2021, 13, 13963. [Google Scholar] [CrossRef]
- Mustafa, R.J.; Gomaa, M.R.; Al-Dhaifallah, M.; Rezk, H. Environmental Impacts on the Performance of Solar Photovoltaic Systems. Sustainability 2020, 12, 608. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, M.R.; Al-Bawwat, A.K.; Al-Dhaifallah, M.; Rezk, H.; Ahmed, M. Optimal design and economic analysis of a hybrid renewable energy system for powering and desalinating seawater. Energy Rep. 2023, 9, 2473–2493. [Google Scholar] [CrossRef]
- Gomaa, M.R.; Rezk, H.; Mustafa, R.J.; Al-Dhaifallah, M. Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study. Energies 2019, 12, 3263. [Google Scholar] [CrossRef] [Green Version]
- Hasan, A.O.; Osman, A.I.; Al-Muhtaseb, A.H.; Al-Rawashdeh, H.; Abu-Jrai, A.; Ahmad, R.; Gomaa, M.R.; Deka, T.J.; Rooney, D.W. An experimental study of engine characteristics and tailpipe emissions from modern DI diesel engine fuelled with methanol/diesel blends. Fuel Process. Technol. 2021, 220, 106901. [Google Scholar] [CrossRef]
- Gomaa, M.R.; Al-Dmour, N.; Al-Rawashdeh, H.A.; Shalby, M. Theoretical model of a fluidized bed solar reactor design with the aid of MCRT method and synthesis gas production. Renew. Energy 2020, 148, 91–102. [Google Scholar] [CrossRef]
- Gomaa, M.R.; Mustafa, R.J.; Al-Dmour, N. Solar thermochemical conversion of carbonaceous materials into syngas by Co-Gasification. J. Clean. Prod. 2020, 248, 119185. [Google Scholar] [CrossRef]
- Gomaa, M.R.; Mustafa, R.J.; Al-Dhaifallah, M.; Rezk, H. A low-grade heat Organic Rankine Cycle driven by hybrid solar collectors and a waste heat recovery system. Energy Rep. 2020, 6, 3425–3445. [Google Scholar] [CrossRef]
- Hashmi, S.; Gohar, S.; Mahmood, T.; Nawaz, U.; Farooqi, H. Biodiesel production by using CaO-Al2O3 nano Catalyst. Int. J. Eng. Res. Sci. (IJOER) 2016, 2, 2395–6992. [Google Scholar]
- Weber, C.T.; Trierweiler, L.F.; Trierweiler, J.O. Food waste biorefinery advocating circular economy: Bioethanol and distilled beverage from sweet potato. J. Clean. Prod. 2020, 268, 121788. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Lee, H. Use of magnetic nanoparticles to enhance bioethano production in syngas fermentation. Bioresour. Technol. 2016, 204, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Tse, H.; Leung, C.W.; Cheung, C.S. Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends. Energy 2015, 83, 343–350. [Google Scholar] [CrossRef]
- Mishra, A.; Bhatt, R.; Bajpai, J.; Bajpai, A. Nanomaterials based biofuel cells: A review. Int. J. Hydrog. Energy 2021, 46, 19085–19105. [Google Scholar] [CrossRef]
- Gomaa, M.R.; Hammad, W.; Al-Dhaifallah, M.; Rezk, H. Performance enhancement of grid-tied PV system through proposed design cooling techniques: An experimental study and comparative analysis. Sol. Energy 2020, 211, 1110–1127. [Google Scholar] [CrossRef]
- Mustafa, R.J.; Al-Rawashdeh, H.A.; Hassan, A.O.; Gomaa, M.R. Enhancement of a Hydrogen Engine Cavitation Utilizing Mixed Fuel: A Review and Experimental Case Study. Int. Rev. Mech. Eng. (IREME) 2020, 14, 33. [Google Scholar] [CrossRef]
- Li, J.; Gan, C.; Zhou, J.; Novakovic, V. Performance analysis of biomass direct combustion heating and centralized biogas supply system for rural districts in China. Energy Convers. Manag. 2023, 278, 116730. [Google Scholar] [CrossRef]
- Hamidzadeh, Z.; Ghorbannezhad, P.; Ketabchi, M.R.; Yeganeh, B. Biomass-derived biochar and its application in agriculture. Fuel 2023, 341, 127701. [Google Scholar] [CrossRef]
- Wang, K.; Tester, J.W. Sustainable management of unavoidable biomass wastes. Green Energy Resour. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Løkke, S.; Aramendia, E.; Malskær, J. A review of public opinion on liquid biofuels in the EU: Current knowledge and future challenges. Biomass Bioenergy 2021, 150, 106094. [Google Scholar] [CrossRef]
- Bidir, M.G.; Millerjothi, N.; Adaramola, M.S.; Hagos, F.Y. The role of nanoparticles on biofuel production and as an additive in ternary blend fuelled diesel engine: A review. Energy Rep. 2021, 7, 3614–3627. [Google Scholar] [CrossRef]
- Al Momani, F.A.; Shawaqfah, M. Agricultural Solids Waste in South of Jordan: Facts and Figures. Renew. Sustain. J. Environ. Prot. 2013, 4, 309–314. [Google Scholar] [CrossRef] [Green Version]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Overend, R. Biomass for Energy. Energy Stud. Rev. 1989, 1, 181–236. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; van der Werf, E.; van Ierland, E.C.; Keesman, K.J. The potential role of waste biomass in the future urban electricity system. Biomass- Bioenergy 2017, 107, 182–190. [Google Scholar] [CrossRef]
- Al-Hamamre, Z.; Al-Matar, A.; Sweis, F.; Rawajfeh, K. Assessment of the status and outlook of biomass energy in Jordan. Energy Convers. Manag. 2014, 77, 183–192. [Google Scholar] [CrossRef]
- Al-Hamamre, Z.; Saidan, M.; Hararah, M.; Rawajfeh, K.; Alkhasawneh, H.E.; Al-Shannag, M. Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew. Sustain. Energy Rev. 2017, 67, 295–314. [Google Scholar] [CrossRef]
- Abu-Ashour, J.; Abu Qdais, H.; Al-Widyan, M. Estimation of animal and olive solid wastes in Jordan and their potential as a supplementary energy source: An overview. Renew. Sustain. Energy Rev. 2010, 14, 2227–2231. [Google Scholar] [CrossRef]
- Kirubakaran, V.; Sivaramakrishnan, V.; Premalatha, M.; Subramanian, P. Investigation of energy recovery from poultry litter and municipal solid waste by thermo chemical conversion method in India. J. Environ. Sci. Eng. 2005, 47, 266–275. [Google Scholar]
- Baba Shehu, U.A.; Nasir, I. An aerobic digestion of cow dung for biogas production. ARPN J. Eng. Appl. Sci. 2012, 7, 169–172. [Google Scholar]
- Qdais, H.A. Techno-economic assessment of municipal solid waste management in Jordan. Waste Manag. 2007, 27, 1666–1672. [Google Scholar] [CrossRef]
- Kishore, V.V.N. (Ed.) Renewable Energy Engineering and Technology a Knowledge Compendium; The Energy and Resources Institute: New Delhi, India, 2008. [Google Scholar]
- Koopmans, A.; Koppejan, J. Agricultural and Forest Residues—Generation, Utilization and Availability. Reg. Consult. Mod. Appl. Biomass Energy 1997, 6, 10. [Google Scholar]
- Roberts, J.J.; Cassula, A.M.; Prado, P.O.; Dias, R.A.; Balestieri, J.A.P. Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina. Renew. Sustain. Energy Rev. 2015, 41, 568–583. [Google Scholar] [CrossRef]
- Halder, P.K.; Paul, N.; Beg, M. Assessment of biomass energy resources and related technologies practice in Bangladesh. Renew. Sustain. Energy Rev. 2014, 39, 444–460. [Google Scholar] [CrossRef]
- Abu-Qudais, M.; A Abu-Qdais, H. Energy content of municipal solid waste in Jordan and its potential utilization. Energy Convers. Manag. 2000, 41, 983–991. [Google Scholar] [CrossRef]
- Zhang, Y.; Dubé, M.; McLean, D.; Kates, M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Technol. 2003, 90, 229–240. [Google Scholar] [CrossRef]
- Demirbas, M.F.; Balat, M.; Balat, H. Biowastes-to-biofuels. Energy Convers. Manag. 2011, 52, 1815–1828. [Google Scholar] [CrossRef]
- Balat, M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manag. 2011, 52, 858–875. [Google Scholar] [CrossRef]
- Demirbas, M.F.; Balat, M.; Balat, H. Potential contribution of biomass to the sustainable energy development. Energy Convers. Manag. 2009, 50, 1746–1760. [Google Scholar] [CrossRef]
- Mousa, T.Y. Food Security, Food Waste, and Food Donation and Redistribution in Jordan. Austin J. Nutr. Food Sci. 2020, 8, 1145. Available online: www.austinpublishinggroup.com (accessed on 15 March 2022).
- Kherissat, F.; Al-Esawi, D. Checklist of Wadi Hassan flora, Northeastern Badia, Jordan. Plant Divers. 2019, 41, 166–173. [Google Scholar] [CrossRef]
- Kaptijn, E.; Ertsen, M.W. ‘All sunshine makes a desert’. Building interdisciplinary understanding of survival strategies of ancient communities in the arid Zerqa Triangle, Jordan Valley. J. Arid. Environ. 2019, 163, 114–126. [Google Scholar] [CrossRef]
- Ministry of Energy and Mineral Resources (MEMR), Amman, Jordan, Annual Reports. 2018; p. 30. Available online: https://www.memr.gov.jo/echobusv3.0/SystemAssets/56dcb683-2146-4dfd-8a15-b0ce6904f501.pdf (accessed on 19 October 2022).
- Hajar, H.A.A.; Tweissi, A.; Abu Hajar, Y.A.; Al-Weshah, R.; Shatanawi, K.M.; Imam, R.; Murad, Y.Z.; Abu Hajer, M.A. Assessment of the municipal solid waste management sector development in Jordan towards green growth by sustainability window analysis. J. Clean. Prod. 2020, 258, 120539. [Google Scholar] [CrossRef]
- Al-Omary, M.; Kaltschmitt, M.; Becker, C. Electricity system in Jordan: Status & prospects. Renew. Sustain. Energy Rev. 2018, 81, 2398–2409. [Google Scholar] [CrossRef]
- National Electric Power Company, Amman, Jordan, Annual Reports. Available online: http://www.nepco.com.jo (accessed on 5 November 2022).
- Malkawi, S.; Al-Nimr, M.; Azizi, D. A multi-criteria optimization analysis for Jordan’s energy mix. Energy 2017, 127, 680–696. [Google Scholar] [CrossRef]
- Kiwan, S.; Al-Gharibeh, E. Jordan toward a 100% renewable electricity system. Renew. Energy 2020, 147, 423–436. [Google Scholar] [CrossRef]
- Albatayneh, A.; Juaidi, A.; Abdallah, R.; Peña-Fernández, A.; Manzano-Agugliaro, F. Effect of the subsidised electrical energy tariff on the residential energy consumption in Jordan. Energy Rep. 2022, 8, 893–903. [Google Scholar] [CrossRef]
- Alrwashdeh, S.S. Energy sources assessment in Jordan. Results Eng. 2022, 13, 100329. [Google Scholar] [CrossRef]
- Al Alawin, A.; Abu Rahmeh, T.; Jaber, J.O.; Loubani, S.; Abu Dalu, S.; Awad, W.; Dalabih, A. Renewable energy education in engineering schools in Jordan: Existing courses and level of awareness of senior students. Renew. Sustain. Energy Rev. 2016, 65, 308–318. [Google Scholar] [CrossRef]
- Palaniappan, K. An overview of applications of nanotechnology in biofuel production. World Appl. Sci. J. 2017, 35, 1305–1311. [Google Scholar] [CrossRef]
- Alawneh, R.; Ghazali, F.E.M.; Ali, H.; Asif, M. Assessing the contribution of water and energy efficiency in green buildings to achieve United Nations sustainable development goals in Jordan. Build. Environ. 2018, 146, 119–132. [Google Scholar] [CrossRef]
- Al-Masri, R.A.; Chenoweth, J.; Murphy, R.J. Exploring the Status Quo of Water-Energy Nexus Policies and Governance in Jordan. Environ. Sci. Policy 2019, 100, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Abu-Rumman, G.; Khdair, A.I.; Khdair, S.I. Current status and future investment potential in renewable energy in Jordan: An overview. Heliyon 2020, 6, e03346. [Google Scholar] [CrossRef]
- Novosel, T.; Ćosić, B.; Pukšec, T.; Krajačić, G.; Duić, N.; Mathiesen, B.; Lund, H.; Mustafa, M. Integration of renewables and reverse osmosis desalination—Case study for the Jordanian energy system with a high share of wind and photovoltaics. Energy 2015, 92, 270–278. [Google Scholar] [CrossRef]
- Sandouqa, A.; Al-Hamamre, Z. Economical evaluation of jojoba cultivation for biodiesel production in Jordan. Renew. Energy 2021, 177, 1116–1132. [Google Scholar] [CrossRef]
- Hamed, T.A.; Bressler, L. Energy security in Israel and Jordan: The role of renewable energy sources. Renew. Energy 2016, 148, 169–177. [Google Scholar] [CrossRef]
- Kayed, Maram, Jordan among Leading Countries in Region for Wind Energy Production, Report. Available online: https://jordantimes.com/news/local/jordan-among-leading-countries-region-wind-energy-production-%E2%80%94-report (accessed on 9 July 2021).
- Sid, M.N.; Becherif, M.; Aboubou, A.; Benmouna, A. Power control techniques for fuel cell hybrid electric vehicles: A comparative study. Comput. Electr. Eng. 2021, 97, 107602. [Google Scholar] [CrossRef]
- Sharifi, M.; Pothu, R.; Boddula, R.; Bardajee, G.R. Trends of biofuel cells for smart biomedical devices. Int. J. Hydrog. Energy 2021, 46, 3220–3229. [Google Scholar] [CrossRef]
- Green Watts International. Al Rajef Wind Farm 86 MW Jordan Renewable Energy. Available online: http://www.greenwatts.biz/al-rajef-wind-farm-86mw (accessed on 14 November 2022).
- Atmanli, A.; İleri, E.; Yüksel, B. Experimental investigation of engine performance and exhaust emissions of a diesel engine fueled with diesel–n-butanol–vegetable oil blends. Energy Convers Manag. 2014, 81, 312–321. [Google Scholar] [CrossRef]
- Vellaiyan, S.; Subbiah, A.; Chockalingam, P. Effect of titanium dioxide nanoparticle as an additive on the exhaust characteristics of diesel-water emulsion fuel blends. Pet. Sci. Technol. 2019, 38, 194–202. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Munuswamy, D.B.; Devarajan, Y.; Mahalingam, A. Effect of nanoparticle on emission and performance characteristics of a diesel engine fueled with cashew nut shell biodiesel. Energy Sources A Recover. Util. Environ. Eff. 2018, 40, 2485–2493. [Google Scholar] [CrossRef]
- Franceschini, B.; Guardo, A.; Renzulli, A.; Alshamali, H.Z.A.; Reem. Renewable Energy Sector Development in Jordan: Ministry of Energy and Mineral Resources. 2019. Available online: https://www.export.gov/apex/article2?id=Jordan-Renewable-Energy (accessed on 13 May 2021).
- Jaber, J.; Elkarmi, F.; Alasis, E.; Kostas, A. Employment of renewable energy in Jordan: Current status, SWOT and problem analysis. Renew. Sustain. Energy Rev. 2015, 49, 490–499. [Google Scholar] [CrossRef]
- JT. Jordan Tops Region in Clean Energy Investment Ranking for 2019. The Jordan Times, 30 November 2019. [Google Scholar]
- Ghazal, M. Gas, Oil Exploration Deal Signed with New Investor. The Jordan Times (Local), 3 April 2016. [Google Scholar]
- Jordan Country Commercial Guide. U.S. Companies Export (17 December 2018). Jordan-Renewable Energy. Available online: https://www.export.gov/apex/article/Jordan-Renewable-Energy (accessed on 27 June 2022).
- Hrayshat, E.S. Analysis of renewable energy situation in Jordan. Renew. Sustain. Energy Rev. 2007, 11, 1873–1887. [Google Scholar] [CrossRef]
- DSS (Department of Statistical Studies, Ministry of Agriculture) Annual Reports. Amman, Jordan. Available online: https://www.moa.gov.jo/ (accessed on 7 November 2022).
- Jafar, R.; Awad, A. State and development of anaerobic technology for biogas production in Syria. Clean. Eng. Technol. 2021, 5, 100253. [Google Scholar] [CrossRef]
- Tatlidil, F.; Bayramoglu, Z.; Akturk, D. Animal manure as one of the main biogas production resources: Case of Turkey. J. AnimVet. Adv. 2009, 8, 2473–2476. [Google Scholar]
- The Asian Biomass Handbook: A Guide for Biomass Production and Utilization; Japan Institute of Energy: Tokyo, Japan, 2008. Available online: https://docplayer.net/20573409-The-asian-biomass-handbook.html (accessed on 10 September 2022).
- Hall, D.O.; Rosillo-calle, F.; Williams, R.H.; Woods, J. Biomass for energy: Supply prospects. In Renewable Energy; Johansson, T.B., Ed.; Island Press: Washington, DC, USA, 1993; pp. 593–651. [Google Scholar]
- Surendra, K.C.; Khanal, S.K.; Shrestha, P.; Lamsal, B. Current status of renewable energy in Nepal: Opportunities and challenges. Renew. Sustain. Energy Rev. 2011, 15, 4107–4117. [Google Scholar] [CrossRef]
- Abu Qdais, H.; Abdulla, F.; Qrenawi, L. Solid waste landfills as a source of green energy:case study of Al Akeeder landfill. Jordan J. Mech. Indust. Eng. 2010, 4, 69–74. [Google Scholar]
- Hatamleh, R.I.; Jamhawi, M.M.; Al-Kofahi, S.D.; Hijazi, H. The Use of a GIS System as a Decision Support Tool for Municipal Solid Waste Management Planning: The Case Study of Al Nuzha District, Irbid, Jordan. Procedia Manuf. 2020, 44, 189–196. [Google Scholar] [CrossRef]
- Di Blasi, C.; Tanzi, V.; Lanzetta, M. A study on the production of agricultural residues in Italy. Biomass Bioenergy 1997, 12, 321–331. [Google Scholar] [CrossRef]
- Amoo-Gottfried, K.; Hall, D. A biomass energy flow chart for Sierra Leone. Biomass Bioenergy 1999, 16, 361–376. [Google Scholar] [CrossRef]
- Ibrahim, K.A.; Abu-Sbeih, K.A.; Al-Trawneh, I.; Bourghli, L. Preparation and Characterization of Alkyd Resins of Jordan Valley Tomato Oil. J. Polym. Environ. 2014, 22, 553–558. [Google Scholar] [CrossRef]
- Sarno, M.; Iuliano, M. Highly active and stable Fe3O4/Au nanoparticles supporting lipase catalyst for biodiesel production from waste tomato. Appl. Surf. Sci. 2019, 474, 135–146. [Google Scholar] [CrossRef]
- Kumar, M.N.S.; Yaakob, Z.; Maimunah, S.; Siddaramaiah; Abdullah, S.R.S. Synthesis of Alkyd Resin from Non-Edible Jatropha Seed Oil. J. Polym. Environ. 2010, 18, 539–544. [Google Scholar] [CrossRef]
- Weiss, K.D. Paint and coatings: A mature industry in transition. Prog. Polym. Sci. 1997, 22, 203–245. [Google Scholar] [CrossRef]
- Hanandeh, A.E.; Gharaibeh, M.A. Environmental efficiency of olive oil production by small and micro-scale farmers in northern Jordan:Life cycle assessment. Agric. Syst. 2016, 135, 378–389. [Google Scholar] [CrossRef]
- Eugene, D.S.; Thomas, J.L.; Thomas, M.A. Thermodynamic Data for Biomass Conversion and Waste Incineration; Solar Energy Research Institute: Golden, CO, USA, 1986. [Google Scholar]
- Hiloidhari, M.; Das, D.; Baruah, D.C. Bioenergy potential from crop residue biomass in India. Renew. Sustain. Energy Rev. 2014, 32, 504–512. [Google Scholar] [CrossRef]
- Dixit, P.N.; Telleria, R.; Al Khatib, A.N.; Allouzi, S.F. Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: A case of Jordan. Sci. Total. Environ. 2018, 610-611, 219–233. [Google Scholar] [CrossRef]
- Shahzad, M.K.; Zahid, A.; Rashid, T.U.; Rehan, M.A.; Ali, M.; Ahmad, M. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renew. Energy 2017, 106, 264–273. [Google Scholar] [CrossRef]
- Sagani, A.; Hagidimitriou, M.; Dedoussis, V. Perennial tree pruning biomass waste exploitation for electricity generation: The perspective of Greece. Sustain. Energy Technol. Assess. 2019, 31, 77–85. [Google Scholar] [CrossRef]
- Gandiglio, M.; Lanzini, A. Biogas Resource Potential and Technical Exploitation. Compr. Renew. Energy (Second Ed.) 2022, 5131, 91–125. [Google Scholar] [CrossRef]
- Obaideen, K.; Abdelkareem, M.A.; Wilberforce, T.; Elsaid, K.; Sayed, E.T.; Maghrabie, H.M.; Olabi, A. Biogas role in achievement of the sustainable development goals: Evaluation, Challenges, and Guidelines. J. Taiwan Inst. Chem. Eng. 2022, 131, 104207. [Google Scholar] [CrossRef]
- Milbrandt, A.; Overend, R. Assessment of Biomass Resources in Afghanistan, Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2011. [Google Scholar] [CrossRef] [Green Version]
- Wang, G. Biogas Production from Energy Crops and Agriculture Residues. Ph.D. Thesis. In Rissø National Laboratory for Sustainable Energy; Technical University of Denmark: Lyngby, Denmark, 2010. Available online: https://www.osti.gov/etdeweb/servlets/purl/1001402 (accessed on 13 August 2022).
- Jeong, K.; Abbas, A.; Shin, J.; Son, M.; Kim, Y.M.; Cho, K.H. Prediction of biogas production in anaerobic co-digestion of organic wastes using deep learning models. Water Res. 2021, 205, 117697. [Google Scholar] [CrossRef] [PubMed]
- Arthur, R.; Baidoo, M.F.; Antwi, E. Biogas as a potential renewable energy source:a Ghanaian case study. Renew. Energy 2011, 36, 1510–1516. [Google Scholar] [CrossRef]
- Aggarangsi, P.; Tippayawong, N.; Moran, J.; Rerkkriangkrai, P. Overview of livestock biogas technology development and implementation in Thailand. Energy Sustain. Dev. 2013, 17, 371–377. [Google Scholar] [CrossRef]
- Islam, M.S.; Akhter, R.; Rahman, M.A. A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural off-grid areas or not? Energy 2017, 145, 338–355. [Google Scholar] [CrossRef]
- Obernberger, I.; Thek, O. Techno-economic evaluation of selected decentralized CHP applications based on biomass combustion in IEA partner countries. In IEA Task 32 Project Performed in Co-Operation with the Institute for Research Efficient and Sustainable Systems; Graz University of Technology: Graz, Austria, 2004. [Google Scholar]
- Kamel, S.; El-Sattar, H.A.; Vera, D.; Jurado, F. Bioenergy potential from agriculture residues for energy generation in Egypt. Renew. Sustain. Energy Rev. 2018, 94, 28–37. [Google Scholar] [CrossRef]
- Al-Bawwat, A.K.; Cano, A.; Gomaa, M.R.; Jurado, F. Availability of Bio-mass and Potential of Nanotechnologies for Bioenergy Production in Jordan. Processes 2023, 11, 994. [Google Scholar] [CrossRef]
- Amer, M.W.; Alhesan, J.S.A.; Ibrahim, S.; Qussay, G.; Marshall, M.; Al-Ayed, O.S. Potential use of corn leaf waste for biofuel production in Jordan (physio-chemical study). Energy 2021, 214, 118863. [Google Scholar] [CrossRef]
- Lyakurwa, F.S. Assessment of the energy potential of crop residues and animal wastes in Tanzania. Indep. J. Manag. Prod. 2016, 7, 1227–1239. [Google Scholar] [CrossRef] [Green Version]
Description | Type | Unit | Year | Average Yearly Growth Rate | |||
---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | (%/Year) | |||
Peak Load (MW) | MW | 3205 | 3320 | 3380 | 3630 | 4.4 | |
Available Capacity (MW) | MW | 4300 | 5236 | 5255 | 5424 | 8.5 | |
Generated Energy (GWh) | - | GWh | 19,287 | 18,913 | 19,273 | 19,194 | 1.4 |
Consumed Energy (GWh) | - | GWh | 18,963 | 18,539 | 18,853 | 18,863 | 1.4 |
Imported Energy (GWh) | - | GWh | 51 | 188 | 239 | 381 | 118.4 |
Fuel Consumption for Electricity (Thousand tons of oil equivalent, T.T.O.E) | - | - | 3804 | 3526 | 3361 | 3202 | 5.9 |
Year | Energy Demands (Max.) | Electrical Energy Produced | ||
---|---|---|---|---|
(MW) | Growth Rate | (TWh) | Growth Rate | |
(%) | (%) | |||
2014 | 2915 | 10.0 | 18.2 | 5.1 |
2015 | 3096 | 6.2 | 19.1 | 5.1 |
2016 | 3281 | 6.0 | 20.2 | 5.4 |
2017 | 3482 | 6.1 | 21.3 | 5.7 |
2018 | 3704 | 6.4 | 22.6 | 6.0 |
2020 | 4198 | 6.5 | 25.6 | 6.4 |
2030 | 8014 | 6.7 | 48.3 | - |
Livestock | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Year/Thousand Head | Average Heads Number | Annual Dry Wastes Ratio | Dry Waste Yield | Calorific Value | Energy Content of Waste | Availability Factor of Energy | Potential Energy of Wastes | |||||
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | ||||||||
(103 Heads) | (103 Heads) | (103 Heads) | (103 Heads) | (103 Heads) | (103 Heads) | (kton) | (ton/Head/Year) | (kton/Year) | (MJ/kg) | (TJ) | (-) | (TJ) | |
Sheep | 2680.3 | 3170.0 | 3279.1 | 3833.3 | 3458.8 | 3107.2 | 3254.8 | 0.7 | 2278.0 | 17.8 | 40,548.9 | 0.125 | 5068.6 |
Goat | 857.0 | 1007.0 | 1098.0 | 1146.0 | 1035.0 | 0.9 | 857.3 | 0.7 | 600.0 | 17.8 | 10,680.6 | 0.125 | 1335.1 |
Cattle | 857.0 | 1007.0 | 1098.0 | 1146.0 | 4494.0 | 3018.1 | 1936.7 | 3.6 | 6972.0 | 15.0 | 104,580.6 | 0.90 | 94,122.5 |
Camel | 13.0 | 13.0 | 11.0 | 11.0 | 10.9 | 10.9 | 11.6 | 3.6 | 41.8 | 14.9 | 623.5 | 0.125 | 77.9 |
Poultry | 45,368.0 | 42,517.4 | 42,521.4 | 44,244.4 | 46,431.8 | 56,453.9 | 46,256.2 | 0.022 | 1017.6 | 13.5 | 13,738.1 | 0.90 | 12,364.3 |
Total | 49,775.3 | 47,714.4 | 48,007.5 | 50,380.7 | 55,430.5 | 62,590.9 | 52,316.6 | - | 10,909.6 | - | 170,171.6 | - | 112,968.4 |
Vegetables | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Yearly Production (Kilo-Ton) | Average Yearly Cultivation | Moisture | Dry Waste Yield | Calorific Value | Potential Energy of Residues | Availability Factor of Energy | Potential Energy of Residues | |||||
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | ||||||||
(kton) | (kton) | (kton) | (kton) | (kton) | (kton) | (kton) | (%) | (kton) | (MJ/kg) | (TJ) | (-) | (TJ) | |
Tomatoes | 727.9 | 892.0 | 774.9 | 643.7 | 750.6 | 483.7 | 712.1 | 80–90 | 106.8 | 6 | 640.9 | 0.25 | 160.2 |
Potato | 127.5 | 126.8 | 120.0 | 74.0 | 272.7 | 182.0 | 150.5 | 55–65 | 48.8 | 6 | 292.5 | 0.25 | 73.1 |
Eggplants | 124.1 | 141.0 | 136.1 | 132.6 | 60.5 | 52.8 | 107.9 | 80–90 | 8.1 | 6 | 48.5 | 0.25 | 12.1 |
Cucumber | 164.4 | 291.1 | 293.6 | 217.5 | 286.5 | 209.7 | 243.8 | 80–90 | 18.3 | 6 | 109.7 | 0.25 | 27.4 |
Watermelon | 92.8 | 90.1 | 47.8 | 30.2 | 49.9 | 75.8 | 64.5 | 80–90 | 4.8 | 6 | 29.0 | 0.25 | 7.3 |
Melon | 57.6 | 54.5 | 23.9 | 24.4 | 25.8 | 38.5 | 37.4 | 80–90 | 2.8 | 6 | 16.8 | 0.25 | 4.2 |
Others | 358.7 | 57.6 | 256.6 | 530.6 | 1131.6 | 631.9 | 494.5 | 80–90 | 37.1 | 6 | 222.5 | 0.25 | 55.6 |
Total | 1653.0 | 1653.0 | 1653.0 | 1653.0 | 2577.5 | 1674.4 | 1810.6 | - | 226.7 | - | 1360.1 | - | 340.0 |
Fruits | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Yearly Production (Kilo-Ton) | Average Yearly Cultivation | Moisture | Dry Waste Yield | Calorific Value | Potential Energy of Residues | Availability Factor of Energy | Potential Energy of Residues | |||||
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | ||||||||
(kton) | (kton) | (kton) | (kton) | (kton) | (kton) | (kton) | (%) | (kton) | (MJ/kg) | (TJ) | (-) | (TJ) | |
Olive | 128.2 | 263.3 | 263.3 | 245.4 | 212.5 | 365.5 | 246.4 | - | 344.9 | 15.2 | 5242.5 | 0.75 | 3931.9 |
Citrus | 161.0 | 161.0 | 161.0 | 245.5 | 131.7 | 176.9 | 172.8 | 35–45 | 207.4 | 13.0 | 2696.4 | 0.25 | 674.1 |
Apricot | 16.8 | 28.8 | 28.8 | 29.5 | 26.5 | 16.8 | 24.5 | 35–46 | 29.4 | 13.0 | 382.8 | 0.25 | 95.7 |
Grapes | 47.1 | 138.6 | 138.6 | 13.2 | 58.8 | 47.1 | 73.9 | 35–47 | 88.7 | 13.75 | 1219.8 | 0.25 | 304.9 |
Banana | 62.2 | 32.2 | 73.1 | 45.0 | 56.7 | 62.2 | 55.2 | 35–48 | 66.3 | 13.0–17.4 | 861.6 | 0.25 | 215.4 |
Apple | 7.3 | 18.1 | 18.1 | 14.4 | 39.6 | 7.3 | 17.5 | 35–49 | 26.2 | 13.0 | 340.8 | 0.25 | 85.2 |
Others | 492.3 | 273.0 | 232.0 | 165.3 | 131.4 | 479.3 | 295.5 | 35–50 | 177.3 | 13 | 2695.4 | 0.25 | 673.8 |
Total | 915.0 | 915.0 | 915.0 | 758.3 | 657.2 | 917.9 | 846.4 | - | 940.3 | - | 13,439.3 | - | 5981.1 |
Farming Crops | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Yearly Production (Kilo-Ton) | Average Yearly Cultivation | Moisture | Dry Waste Yield | Calorific Value | Potential Energy of Residues | Availability Factor of Energy | Potential Energy of Residues | |||||
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | ||||||||
(kton) | (kton) | (kton) | (kton) | (kton) | (kton) | (kton) | (%) | (kton) | (MJ/kg) | (TJ) | (-) | (TJ) | |
Wheat | 25.1 | 30.6 | 34.4 | 53.7 | 29.9 | 31.9 | 34.3 | (10–20) | 52.1 | 17.39 | 906.6 | 0.25 | 226.6 |
Barely | 28.4 | 41.6 | 39.5 | 27.2 | 38.8 | 51.3 | 37.8 | (10–20) | 41.8 | 18.60 | 777.1 | 0.25 | 194.3 |
Maize | 6.5 | 6.5 | 6.4 | 6.5 | 0.3 | 5.1 | 5.2 | (11–22) | 10.0 | 17.39 | 174.5 | 0.25 | 43.6 |
Chickpeas | 2.1 | 2.1 | 0.7 | 0.7 | 3.3 | 3.4 | 2.1 | (10–20) | 2.4 | 17.25 | 42.1 | 0.25 | 10.5 |
Lentils | 2.2 | 2.6 | 2.0 | 2.4 | 0.6 | 0.3 | 1.7 | (10–20) | 2.7 | 14.65 | 39.5 | 0.25 | 9.9 |
Others | 20.5 | 1.4 | 1.8 | 3.2 | 2.9 | 1.5 | 5.2 | (10–20) | 8.1 | 17.25 | 139.4 | 0.25 | 34.8 |
Total | 84.9 | 84.9 | 84.9 | 94.0 | 75.2 | 93.6 | 86.2 | - | 117.2 | - | 2079.2 | - | 519.8 |
Biomass Resources | |||||||
---|---|---|---|---|---|---|---|
Type | Dry Waste Yield | Availability Factor of Energy | Heating Value | Energy Content Based on Theoretical | Electricity Generation Based on Theoretical | Production of Biogas | Electricity Generation from Biogas |
(kton) | (-) | (MJ/kg) | (TJ/kg) | (TJ) | (MCM) | (GWh) | |
Residues of Vegetables | 226.7 | 0.25 | 6.0 | 340.0 | 19.5 | 21.8 | 35.7 |
Residues of Fruits | 940.3 | 0.25–0.75 | 13.0–17.4 | 5981.1 | 350.7 | 137.3 | 224.9 |
Residues of Crops | 117.2 | 0.25 | 14.7–18.6 | 519.8 | 29.7 | 7.6 | 12.4 |
Animal Manure | 10,909.6 | 0.125–0.90 | 13.5–17.8 | 112,968.4 | 3403.8 | 498.6 | 440.7 |
MSW | 3900 | 0.75 | 11.49 | 16,356 | 954.1 | 150.9 | 247.2 |
Total | 16,093.8 | - | - | 136,165.3 | 4757.8 | 816.2 | 960.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Bawwat, A.K.; Jurado, F.; Gomaa, M.R.; Cano, A. Availability and the Possibility of Employing Wastes and Biomass Materials Energy in Jordan. Sustainability 2023, 15, 5879. https://doi.org/10.3390/su15075879
Al-Bawwat AK, Jurado F, Gomaa MR, Cano A. Availability and the Possibility of Employing Wastes and Biomass Materials Energy in Jordan. Sustainability. 2023; 15(7):5879. https://doi.org/10.3390/su15075879
Chicago/Turabian StyleAl-Bawwat, Ala’a K., Francisco Jurado, Mohamed R. Gomaa, and Antonio Cano. 2023. "Availability and the Possibility of Employing Wastes and Biomass Materials Energy in Jordan" Sustainability 15, no. 7: 5879. https://doi.org/10.3390/su15075879