Clustering Travelers’ Lifestyle Destination Image from Five Asian Traveler-Generated Content
Abstract
:1. Introduction
2. Literature Review
2.1. The Traveler’s Lifestyle in Destination
2.2. Understanding the Traveler’s Lifestyle and Destination Image Formation
2.3. Destination Image and TGC from Social Media
2.4. Analysing Traveler-Generated Content
3. Methodology
3.1. Gathering Travelers Generated Content
3.2. Analyzing Traveler-Generated Content Process
3.2.1. Data Filtering
3.2.2. Text Mining
3.2.3. Content Analysis
4. Research Findings
4.1. Keyword Analysis of Traveler-Generated Content
4.2. Analyzing Cognitive and Affective Images from Cross-National Travelers
4.3. Analyzing Key Sentences from Travelers’ Generated Content
5. Discussion and Conclusions
5.1. Findings
5.2. Managerial Implications
5.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srihadi, T.F.; Sukandar, D.; Soehadi, A.W. Segmentation of the tourism market for Jakarta: Classification of foreign visitors’ lifestyle typologies. Tour. Manag. Perspect. 2016, 19, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Nematpour, M.; Ghaffari, M. Typology of inbound tourists Who visited Tehran grand bazaar using cluster analysis: Introducing New combining dimensional base to realize actual behavior. Almatour.-J. Tour. Cult. Territ. Dev. 2018, 9, 45–72. [Google Scholar]
- Vyncke, P. Lifestyle segmentation from attitudes, interests and opinions, to values, aesthetic styles, life visions and media preferences. Eur. J. Commun. 2002, 17, 445–463. [Google Scholar] [CrossRef]
- Gahwiler, P.; Havitz, M.E. Toward a relational understanding of leisure social worlds, involvement, psychological commitment, and behavioral loyalty. Leis. Sci. 1998, 20, 1–23. [Google Scholar] [CrossRef]
- Baloglu, S.; McCleary, K.W. A model of destination image formation. Ann. Tour. Res. 1999, 26, 868–897. [Google Scholar] [CrossRef]
- Crick, A.P. Internal marketing of attitudes in Caribbean tourism. Int. J. Contemp. Hosp. Manag. 2003, 15, 161–166. [Google Scholar] [CrossRef]
- Beerli, A.; Martín, J.D. Tourists’ characteristics and the perceived image of tourist destinations: A quantitative analysis—A case study of Lanzarote, Spain. Tour. Manag. 2004, 25, 623–636. [Google Scholar] [CrossRef]
- Lee, S.; Bai, B. Influence of popular culture on special interest tourists’ destination image. Tour. Manag. 2016, 52, 161–169. [Google Scholar] [CrossRef]
- Veasna, S.; Wu, W.Y.; Huang, C.H. The impact of destination source credibility on destination satisfaction: The mediating effects of destination attachment and destination image. Tour. Manag. 2013, 36, 511–526. [Google Scholar] [CrossRef]
- Marine-Roig, E. Destination image analytics through traveller-generated content. Sustainability 2019, 11, 3392. [Google Scholar] [CrossRef] [Green Version]
- Peterson, R.A.; Kern, R.M. Changing highbrow taste: From snob to omnivore. Am. Sociol. Rev. 1996, 61, 900–907. [Google Scholar] [CrossRef] [Green Version]
- Tasci, A.D.; Gartner, W.C. Destination image and its functional relationships. J. Travel Res. 2007, 45, 413–425. [Google Scholar] [CrossRef]
- Lim, C.C.; Bendle, L.J. Arts tourism in Seoul: Tourist -orientated performing arts as a sustainable niche market. J. Sustain. Tour. 2012, 20, 667–682. [Google Scholar] [CrossRef]
- Pan, S.; Tao, J.; Li, Y. The CASIA audio emotion recognition method for audio/visual emotion challenge 2011. In International Conference on Affective Computing and Intelligent Interaction; Springer: Berlin/Heidelberg, Germany, 2011; pp. 388–395. [Google Scholar]
- Qu, H.; Kim, L.H.; Im, H.H. A model of destination branding: Integrating the concepts of the branding and destination image. Tour. Manag. 2011, 32, 465–476. [Google Scholar] [CrossRef]
- Leung, D.; Law, R.; Lee, H.A. The perceived destination image of Hong Kong on Ctrip. com. Int. J. Tour. Res. 2011, 13, 124–140. [Google Scholar]
- Gonzalez, A.M.; Bello, L. The construct “lifestyle” in market segmentation: The behaviour of tourist consumers. Eur. J. Mark. 2002, 36, 51–85. [Google Scholar] [CrossRef]
- Konu, H. Identifying potential wellbeing tourism segments in Finland. Tour. Rev. 2010, 65, 41–51. [Google Scholar] [CrossRef]
- Um, S.; Crompton, J.L. Attitude determinants in tourism destination choice. Ann. Tour. Res. 1990, 17, 432–448. [Google Scholar] [CrossRef]
- Gelman, A. Analysis of variance—Why it is more important than ever. Ann. Stat. 2005, 33, 1–53. [Google Scholar] [CrossRef] [Green Version]
- Veal, A.J. Research Methods for Leisure and Tourism; Pearson: London, UK, 2017. [Google Scholar]
- Wang, Y.; Davidson, M.C. A review of micro-analyses of tourist expenditure. Curr. Issues Tour. 2010, 13, 507–524. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Gretzel, U. Role of social media in online travel information search. Tour. Manag. 2010, 31, 179–188. [Google Scholar] [CrossRef]
- Yamada, T.; Hayashida, T. Analysis of shopping behavior characteristics in the Keihanshin metropolitan area in Japan based on a person trip survey. Geo-Spat. Inf. Sci. 2020, 23, 305–315. [Google Scholar] [CrossRef]
- Budak, C.; Goel, S.; Rao, J.M. Fair and balanced? Quantifying media bias through crowdsourced content analysis. Public Opin. Q. 2016, 80, 250–271. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Lehto, X.Y.; Morrison, A.M. Destination image representation on the web: Content analysis of Macau travel related websites. Tour. Manag. 2007, 28, 118–129. [Google Scholar] [CrossRef]
- Crotts, J. Consumer decision making and prepurchase information search. Consum. Behav. Travel Tour. 1999, 11, 149–168. [Google Scholar]
- Kayar, Ç.H.; Kozak, N. Measuring destination competitiveness: An application of the travel and tourism competitiveness index (2007). J. Hosp. Mark. Manag. 2010, 19, 203–216. [Google Scholar] [CrossRef]
- Fakeye, P.C.; Crompton, J.L. Image differences between prospective, first-time, and repeat visitors to the Lower Rio Grande Valley. J. Travel Res. 1991, 30, 10–16. [Google Scholar] [CrossRef]
- Li, Y.R.; Lin, Y.C.; Tsai, P.H.; Wang, Y.Y. Traveller-generated contents for destination image formation: Mainland China travellers to Taiwan as a case study. J. Travel Tour. Mark. 2015, 32, 518–533. [Google Scholar] [CrossRef]
- Ross, G.F. Destination evaluation and vacation preferences. Ann. Tour. Res. 1993, 20, 477–489. [Google Scholar] [CrossRef]
- Coshall, J.T. Measurement of tourist s’ images: The repertory grid approach. J. Travel Res. 2000, 39, 85–89. [Google Scholar] [CrossRef]
- Mak, A.H. Online destination image: Comparing national tourism organisation’s and tourists’ perspectives. Tour. Manag. 2017, 60, 280–297. [Google Scholar] [CrossRef]
- Kim, H.; Richardson, S.L. Motion picture impacts on destination images. Ann. Tour. Res. 2003, 30, 216–237. [Google Scholar] [CrossRef]
- Niwattanakul, S.; Singthongchai, J.; Naenudorn, E.; Wanapu, S. Using of Jaccard coefficient for keywords similarity. In Proceedings of the International Multiconference of Engineers and Computer Scientists, Hong Kong, China, 13–15 March 2013; Volume 1, pp. 380–384. [Google Scholar]
- Gartner, W.C. Image formation process. J. Travel Tour. Mark. 1994, 2, 191–216. [Google Scholar] [CrossRef]
- Yan, Q.; Zhou, S.; Wu, S. The influences of tourist s’ emotions on the selection of electronic word of mouth platforms. Tour. Manag. 2018, 66, 348–363. [Google Scholar] [CrossRef]
- Banyai, M.; Glover, T.D. Evaluating research methods on travel blogs. J. Travel Res. 2012, 51, 267–277. [Google Scholar] [CrossRef]
- O’connor, P. User-generated content and travel: A case study on Tripadvisor.com. In Information and Communication Technologies in Tourism 2008; Springer: Vienna, Austria, 2008; Volume 2008, pp. 47–58. [Google Scholar]
- Pan, B.; MacLaurin, T.; Crotts, J.C. Travel blogs and the implications for destination marketing. J. Travel Res. 2007, 46, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Echtner, C.M.; Ritchie, J.B. The measurement of destination image: An empirical assessment. J. Travel Res. 1993, 31, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Chew, E.Y.T.; Jahari, S.A. Destination image as a mediator between perceived risks and revisit intention: A case of post-disaster Japan. Tour. Manag. 2014, 40, 382–393. [Google Scholar] [CrossRef]
- O’leary, S.; Deegan, J. People, pace, place: Qualitative and quantitative images of Ireland as a tourism destination in France. J. Vacat. Mark. 2003, 9, 213–226. [Google Scholar] [CrossRef]
- Jia, S. Behind the ratings: Text mining of restaurant customers’ online reviews. Int. J. Mark. Res. 2018, 60, 561–572. [Google Scholar] [CrossRef]
- Do Valle, P.O.; Mendes, J.; Guerreiro, M. Residents’ participation in events, events image, and destination image: A correspondence analysis. J. Travel Tour. Mark. 2012, 29, 647–664. [Google Scholar] [CrossRef]
- San Martín, H.; Del Bosque, I.A.R. Exploring the cognitive–affective nature of destination image and the role of psychological factors in its formation. Tour. Manag. 2008, 29, 263–277. [Google Scholar] [CrossRef]
- Song, H.; Veen, R.; Li, G.; Chen, J. The Hong Kong Tourist Satisfaction Index. Ann. Tour. Res. 2012, 39, 459–479. [Google Scholar] [CrossRef] [Green Version]
- Chase, D.R.; Harada, M. Response error in self-reported recreation participation. J. Leis. Res. 1984, 16, 322–329. [Google Scholar] [CrossRef]
- Chen, P.J.; Kerstetter, D.L. International students’ image of rural Pennsylvania as a travel destination. J. Travel Res. 1999, 37, 256–266. [Google Scholar] [CrossRef]
- Echtner, C.M.; Ritchie, J.B. The meaning and measurement of destination image. J. Tour. Stud. 1991, 2, 2–12. [Google Scholar]
- Gupta, V.; Lehal, G.S. A survey of text mining techniques and applications. J. Emerg. Technol. Web Intell. 2009, 1, 60–76. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Tepanon, Y.; Uysal, M. Measuring tourist satisfaction by attribute and motivation: The case of a nature-based resort. J. Vacat. Mark. 2008, 14, 41–56. [Google Scholar] [CrossRef]
- Pike, S.; Ryan, C. Destination positioning analysis through a comparison of cognitive, affective, and conative perceptions. J. Travel Res. 2004, 42, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Aizawa, A. An information-theoretic perspective of tf–idf measures. Inf. Process. Manag. 2003, 39, 45–65. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C. Interpretation of epidemiological data using multiple correspondence analysis and log-linear models. J. Data Sci. 2004, 2, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Baloglu, S. An Empirical Investigation of Determinants of tourist Destination Image; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1996. [Google Scholar]
- Hao, X.; Xu, S.; Zhang, X. Barrage participation and feedback in travel reality shows: The effects of media on destination image among Generation Y. J. Destin. Mark. Manag. 2019, 12, 27–36. [Google Scholar] [CrossRef]
- Hunter, W.C. Projected destination image: A visual analysis of Seoul. Tour. Geogr. 2012, 14, 419–443. [Google Scholar] [CrossRef]
- Parrott, W.G. (Ed.) Emotions in Social Psychology: Essential Readings; Psychology Press: London, UK, 2001. [Google Scholar]
- Schultz, R.L.; Zaltman, G.; Burger, P.C. (Eds.) Cases in Marketing Research; Dryden Press: Hinsdale, IL, USA, 1975. [Google Scholar]
- Yong, A.G.; Pearce, S. A beginner’s guide to factor analysis: Focusing on exploratory factor analysis. Tutor. Quant. Methods Psychol. 2013, 9, 79–94. [Google Scholar] [CrossRef] [Green Version]
- Fabrigar, L.R.; Wegener, D.T. Structural equation modeling. In Applied Multivariate Statistics for the Social Sciences; Routledge: Oxford, UK, 2012; pp. 549–594. [Google Scholar]
- Stylianou-Lambert, T. Gazing from home: Cultural tourism and art museums. Ann. Tour. Res. 2011, 38, 403–421. [Google Scholar] [CrossRef]
- Hsu, C.H.; Song, H. Projected images of major Chinese outbound destinations. Asia Pac. J. Tour. Res. 2012, 17, 577–593. [Google Scholar] [CrossRef] [Green Version]
- Choe, J.Y.J.; Kim, S.S. Effects of tourist s’ local food consumption value on attitude, food destination image, and behavioral intention. Int. J. Hosp. Manag. 2018, 71, 1–10. [Google Scholar] [CrossRef]
- James, A.; Ravichandran, S.; Chuang, N.K.; Bolden III, E. Using lifestyle analysis to develop lodging packages for staycation travelers: An exploratory study. J. Qual. Assur. Hosp. Tour. 2017, 18, 387–415. [Google Scholar] [CrossRef]
Items | Descriptions | Sample Size | Percentage |
---|---|---|---|
Traveler from | Japan | 1255 | 5.5% |
Malaysia | 3317 | 14.4% | |
Singapore | 11,230 | 48.8% | |
Korea | 1056 | 4.6% | |
Mainland China | 1284 | 5.6% | |
Hong Kong | 4221 | 18.3% | |
Taiwan | 656 | 2.8% | |
Destinations | Tokyo | 2028 | 8.8% |
Seoul | 1899 | 8.2% | |
Singapore | 10,936 | 47.5% | |
Hong Kong | 6537 | 28.4% | |
Taipei | 1619 | 7.0% | |
Opinion roles | Contributor | 5295 | 23.0% |
Senior contributor | 8578 | 37.3% | |
Top contributor | 9146 | 39.7% | |
The destination categories | Museum | 1563 | 6.8% |
Culture | 5256 | 22.8% | |
Zoo | 1747 | 7.6% | |
Outdoor | 5209 | 22.6% | |
Landmark | 4402 | 19.1% | |
Performance | 1351 | 5.9% | |
Shopping | 1541 | 6.7% | |
Activities | 1950 | 8.5% | |
Rating | 1 star | 251 | 1.1% |
2 stars | 549 | 2.4% | |
3 stars | 2994 | 13.0% | |
4 stars | 8400 | 36.5% | |
5 stars | 10,825 | 47.0% | |
Total count | 23,019 | 100% |
Rank | Word | TF | % Cases | TF-IDF | Hong Kong | Singapore | Tokyo | Seoul | Taiwan |
---|---|---|---|---|---|---|---|---|---|
1 | view | 7043 | 22.6% | 4556 | 1 | 6 | 4 | 15 | 1 |
2 | walk | 6247 | 20.2% | 4334 | 4 | 1 | 1 | 2 | 2 |
3 | great | 6231 | 22.0% | 4102 | 3 | 2 | 5 | 4 | 3 |
4 | good | 5728 | 20.1% | 3993 | 5 | 3 | 3 | 3 | 5 |
5 | ride | 4199 | 11.7% | 3908 | 2 | 18 | 18 | 20 | |
6 | garden | 4021 | 10.1% | 4004 | 5 | 11 | 21 | ||
7 | people | 3681 | 13.0% | 3265 | 11 | 13 | 6 | 9 | 9 |
8 | enjoy | 3602 | 13.3% | 3153 | 6 | 8 | 14 | 7 | 16 |
9 | nice | 3566 | 13.1% | 3149 | 12 | 15 | 7 | 8 | 7 |
10 | show | 3427 | 10.4% | 3368 | 9 | 9 | 13 | ||
11 | make | 3335 | 12.3% | 3035 | 15 | 14 | 13 | 17 | 15 |
12 | night | 3267 | 11.3% | 3088 | 14 | 11 | 26 | 33 | 31 |
13 | experience | 3157 | 11.6% | 2955 | 18 | 10 | 21 | 31 | 25 |
14 | traveler | 3136 | 11.2% | 2988 | 16 | 19 | 10 | 19 | 8 |
15 | shop | 3117 | 10.2% | 3096 | 21 | 21 | 2 | 11 | 12 |
16 | animal | 3038 | 7.6% | 3408 | 4 | ||||
17 | kid | 2865 | 8.8% | 3029 | 16 | 16 | 32 | 23 | 34 |
18 | zoo | 2834 | 6.5% | 3364 | 7 | 17 | |||
19 | park | 2786 | 7.6% | 3118 | 13 | 28 | 9 | 30 | |
20 | photo | 2762 | 9.6% | 2807 | 22 | 24 | 22 | 6 | 21 |
21 | city | 2755 | 10.0% | 2752 | 19 | 20 | 25 | 27 | 14 |
22 | tour | 2710 | 6.9% | 3140 | 23 | 25 | 5 | 26 | |
23 | buy | 2513 | 8.4% | 2699 | 24 | 29 | 18 | 16 | 28 |
24 | top | 2398 | 8.3% | 2589 | 10 | 34 | 31 | 35 | 13 |
25 | beautiful | 2389 | 9.3% | 2465 | 30 | 26 | 20 | 26 | 27 |
26 | easy | 2347 | 9.1% | 2442 | 25 | 31 | 24 | 29 | 22 |
27 | spend | 2339 | 9.2% | 2427 | 31 | 27 | 27 | 22 | 29 |
28 | museum | 2316 | 6.3% | 2789 | 12 | 1 | 6 | ||
29 | bus | 2238 | 6.3% | 2688 | 7 | 24 | |||
30 | love | 2222 | 8.5% | 2382 | 20 | 12 | 16 | 14 | 30 |
31 | tram | 2152 | 6.0% | 2632 | 8 | 30 | |||
32 | amaze | 2071 | 8.1% | 2255 | 26 | 22 | 30 | 32 | |
33 | building | 2046 | 7.1% | 2357 | 33 | 19 | 20 | 4 | |
34 | interest | 1997 | 7.8% | 2213 | 34 | 23 | 17 | 12 | 18 |
35 | worth | 1992 | 8.2% | 2168 | 17 | 17 | 23 | 28 | 19 |
36 | recommend | 1985 | 8.0% | 2180 | 32 | 32 | 28 | 25 | 33 |
37 | metro | 1857 | 7.0% | 2143 | 29 | 33 | 34 | 11 | |
38 | crowd | 1815 | 6.8% | 2117 | 28 | 33 | 15 | 32 | 10 |
39 | fun | 1734 | 6.5% | 2055 | 27 | 29 | 10 | ||
40 | temple | 1721 | 4.4% | 2332 | 8 | 23 |
Categories | Label | Keywords, Frequency, and Related Articles % |
---|---|---|
Cognitive | Attraction (34,472, 62%) | zoo (2834, 6.5%), park (2786, 7.6%), museum (2316, 6.3%), building (2046, 7.1%), temple (3062, 4.4%), victoria peak (1340, 3.5%), disney (1253, 2.5%), island (1166, 3.9%), ferry wheel (1038, 2.9%) |
Transportation (15,328, 30.5%) | bus (2238, 6.3%), tram (2152, 7.0%), metro (1860, 6.0%), cable car (1587, 4.2%), line (1491, 4.8%), taxi (876, 3.0%), train (833, 2.8%), boat (771, 2.6%), trail (703, 2.1%), station (425, 1.5%) | |
Food and Beverage (10,096, 24.8%) | food (3035, 10.6%), restaurant (2368, 9%), coffee (825, 3%), food court (395, 1.6%), sea food cuisine (332, 1.2%), soft drink (324, 1.1%), food stall (262, 1.0%), ice cream (177, 0.5%), satay (169, 0.7%), coffee shop (164, 0.7%) | |
Shopping (8757, 21.5%) | shop (3117, 10.2%), market (1036, 3.2%), store (932, 3.0%), shopping mall (637, 2.4%), orchard road (274, 1.0%), taipei101 (240, 0.8%), souvenir shop (227, 1.0%), night market (226, 0.9%), gift shop (206, 0.7%), Mustafa (124, 0.4%) | |
Accommodation (1588, 5.6%) | hotel (1292, 4.6%), marina bay sand hotel (119, 0.5%), cloud dome (110, 0.4%), hostel (28, 0.1%), accommodation (23, 0.1%), hotel concierge (15, 0.1%) | |
Affective | Love (5580, 19.3%) | love (3215, 8.5%), attract (162, 0.3%) |
Joy (5498, 19.2%) | enjoy (4029, 13.3%), exciting (385, 1.4%), happy (331, 1.0%), hope (216, 0.9%), amusement (105, 0.4%), delight (156, 0.4%) | |
Surprise (2863, 11%) | amaze (2322, 6.8%), surprise (498, 1.3%) | |
Sadness (1144, 4.6%) | disappoint (750, 1.2%), sad (169, 0.4%), shame (81, 0.3%), suffer (34, 0.1%), hurt (23, 0.1%), isolate (16, 0.1%) | |
Anger (277, 1.1%) | complain (103, 0.3%), hate (71, 0.2%), dislike (48, 0.2%) | |
Fear (270, 1.1%) | worry (140, 0.6%), fear (63, 0.2%), shock (40, 0.2%) |
Concept of AIO | Related Keywords |
---|---|
Activities | walk, intend, go, visit, join, participate, take, partake, enter, access |
Interests | Interest, enjoy, fun, experience, focus, use, try, fascinate |
Opinions | recommend, prefer, feel, see, worth, like, compare, choose, think |
AIO | Number of Sentences |
---|---|
Activities | 34,222 |
Interests | 16,789 |
Opinions | 17,375 |
Total | 68,386 |
Groups | Lifestyle Related Keywords (Factor Loadings) | Variation% | Eigenvalues | Naming |
---|---|---|---|---|
1 | transportation (0.73), take (0.663), top (0.613), walk (0.445), attraction (0.333), view (0.393), easy (0.335) | 8.251 | 3.053 | Comprehensive activities |
2 | food_beverage (0.694), shopping (0.643), fresh (0.53), try (0.304) | 4.205 | 1.556 | Food and shopping activities |
3 | go (0.575), amaze (0.551), see (0.524) | 3.581 | 1.325 | Exciting experiences |
4 | free (0.636), enter (0.487), accommodation (0.434), use (0.342) | 3.452 | 1.277 | Accommodation recommendations |
5 | visit (0.741), worth (0.661), attraction (0.359) | 3.296 | 1.219 | Attraction recommendations |
6 | crowd (0.636), queue (0.579), go (0.306) | 3.174 | 1.175 | Activities recommendations |
7 | fun (0.576), show (0.507), view (−0.394) | 3.038 | 1.124 | Performance recommendations |
8 | recommend (0.536), feel (0.534), atmosphere (0.416) | 2.938 | 1.087 | Life recommendations |
9 | great (0.696), experience (0.432) | 2.916 | 1.079 | Interesting experiences |
10 | relax (0.637), nice (0.555), walk (0.38) | 2.8 | 1.036 | Relaxing activities |
11 | beautiful (0.638), wonderful (0.556), enjoy (0.423), easy (0.383) | 2.781 | 1.029 | Comfortable experiences |
12 | like (0.698), interest (0.36) | 2.744 | 1.015 | Enjoyable experiences |
13 | awesome (0.731), interest (−0.315) | 2.717 | 1.005 | Special experiences |
Blue represents Activities; Red represents Interests; Purple represents Opinions |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | F-Value | Scheffe Pos Hoc Analysis | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Attraction (n = 8171) | 4.17 | 4.24 | 4.56 | 4.35 | 4.16 | 4.81 | 4.02 | 4.51 | 4.17 | 4.18 | 4.2 | 3.71 | 4.31 | 25.502 (***) | 1 > 12, 2 > 12, 3 > 1, 3 > 5, 3 > 7, 3 > 9, 3 > 10, 3 > 11, 3 > 12, 4 > 7, 4 > 10, 4 > 12, 5 > 12, 6 > 7, 6 > 12, 8 > 1, 8 > 2, 8 > 5, 8 > 7, 8 > 9, 8 > 10, 8 > 11, 8 > 12, 9 > 12, 10 > 12, 11 > 12, 13 > 12 |
Transportations (n = 5427) | 4.18 | 4.35 | 4.5 | 4.36 | 4.15 | 4.73 | 4.08 | 4.56 | 4.21 | 4.21 | 4.19 | 3.69 | 4.36 | 19.78 (***) | 1 > 12, 2 > 12, 3 > 7, 3 > 12, 4 > 12, 5 > 12, 6 > 12, 7 > 12, 8 > 5, 8 > 10, 8 > 11, 8 > 12, 9 > 12, 10 > 12, 11 > 12, 13 > 12 |
Shopping (n = 3001) | 4.09 | 4.08 | 4.46 | 4.27 | 4.20 | 4.89 | 4.02 | 4.49 | 4.00 | 4.07 | 4.04 | 3.86 | 4.29 | 8.181 (***) | 8 > 1, 8 > 2, 8 > 7, 8 > 9, 8 > 10, 8 > 11, 8 > 12 |
Food and beverage (n = 3954) | 4.20 | 4.20 | 4.5 | 4.35 | 4.29 | 4.78 | 4.08 | 4.47 | 4.09 | 4.18 | 4.13 | 3.74 | 4.34 | 11.845 (***) | 1 > 12, 2 > 12, 3 > 7, 3 > 12, 4 > 7, 4 > 12, 5 > 12, 6 > 12, 8 > 7, 8 > 9, 8 > 10, 8 > 11, 8 > 12, 10 > 12, 11 > 12, 13 > 12 |
Accommodation (n = 1250) | 3.80 | 4.18 | 4.63 | 4.31 | 4.14 | 4.83 | 3.89 | 4.56 | 4.07 | 4.23 | 4.27 | 3.88 | 4.38 | 5.784 (***) | 3 > 1, 8 > 1, 8 > 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, P.-H.; Hsaio, C.-C.; Li, Y.-R.; Lin, C.-C. Clustering Travelers’ Lifestyle Destination Image from Five Asian Traveler-Generated Content. Sustainability 2023, 15, 5887. https://doi.org/10.3390/su15075887
Tsai P-H, Hsaio C-C, Li Y-R, Lin C-C. Clustering Travelers’ Lifestyle Destination Image from Five Asian Traveler-Generated Content. Sustainability. 2023; 15(7):5887. https://doi.org/10.3390/su15075887
Chicago/Turabian StyleTsai, Ping-Heng, Chia-Chi Hsaio, Yan-Ru Li, and Chun-Chieh Lin. 2023. "Clustering Travelers’ Lifestyle Destination Image from Five Asian Traveler-Generated Content" Sustainability 15, no. 7: 5887. https://doi.org/10.3390/su15075887