A Blockchain-Based Recycling Platform Using Image Processing, QR Codes, and IoT System
Abstract
:1. Introduction
- A blockchain-based platform named Recycle Chain was developed to track recycling objects.
- A token named the Recycle Token (RT) was created for the deposit payments of recycling objects, calculating how much each Recycle Chain user contributes to the system on a per capita basis.
- A deep-learning-based AI software was developed to identify recycling objects, and a new dataset named Recycle Chain DS was generated to train the developed artificial intelligence software.
- An IoT-based smart device was developed to collect recycling objects. The embedded AI software on the developed device enables object identification and collection of recycling objects in different compartments. Additionally, the device improves the effectiveness of the waste collection system as it may send the weight and capacity information of the waste to the central system via GPS and GPRS systems.
2. Related Works
3. Materials and Methods
3.1. Performance Evaluation Metrics
3.2. Experimental New Recycling Dataset
3.3. Information about Blockchain Math
- Timestamp: It refers to the time interval required to create the block.
- Prev. Hash: It denotes the hash value of the previous block.
- Main data: It is a block of data possibly recorded on the blockchain.
- Data root: It refers to the calculated value for all data pieces. The Merkle tree root [35] method is used for value calculation.
- Nonce: A number generated by random number generators specified in the blockchain and meeting the target condition [36].
3.3.1. Smart Contract
3.3.2. Metamask
3.4. Deep Learning
Convolutional Neural Network (CNN)
3.5. Internet of Things (IoT)
3.6. Quick Response (QR) Codes
3.7. YOLO
4. A Blockchain-Based Recycling Platform
4.1. Recycle Chain Infrastructure Components
4.2. Information about the Recycle Token
- //SPDX-License-Identifier: MIT
- pragma solidity ^0.8.9;
- import “@openzeppelin/contracts/token/ERC20/ERC20.sol”;
- contract RecycleToken is ERC20 {
- constructor() ERC20(“Recycle Token”, “RT”) {
- _mint(msg.sender, 100,000,000 * 10 ** decimals());
- }
- }
Algorithm 1 Recycle Chain |
Input: |
RC_Total = 0; // RC_Amount earned |
MetaMask_UserID = 0; // User ID information to which the earned fee will be added |
if (Ultrasonic_Module == True) then |
Start.Camera = Record(Video) |
for Video.frame |
if ( QR_Code == True) && (Weight > 10gr) then |
RC_ Total = RC_ Total + Calculate_RC (QR_Code); |
else |
if (Weight >=10gr) then |
switch (DL_Classification){ |
case: 0 RC_Total = RC_Total + Calculate_RC(0); |
case: 1 RC_Total = RC_Total + Calculate_RC(1); |
case: 2 RC_Total = RC_Total + Calculate_RC(2); |
case: 3 RC_Total = RC_Total + Calculate_RC(3); |
default: LCD.Write ("Definication Error Detacted");} |
else |
LCD.Write ("Definication Error Detacted"); |
end if |
endfor |
if (User_Apporve == True) |
MetaMask_UserID. SendDeposit(RC_Total); |
LCD.Write ("Transaction Successful!"); |
else |
LCD.Write ("User Not Define"); |
end if |
1: end if |
4.3. Developed Deep Learning Model and Experimental Results
4.4. Developed Deep Learning Software and Application Software
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Accuracy |
AI | Artificial Intelligence |
CNN | Convolutional Neural Network |
DApps | Decentralized Applications |
DL | Deep Learning |
GPRS | General Packet Radio Service |
GPS | Global Positioning System |
IoT | Internet of Things |
MA | Mobile Application |
MLP | Multi-Layer Perceptron |
PoS | Proof-of-Stake |
PoW | Proof of Work |
QR | Quick Response |
RT | Recycle Token |
RT | Recycle Token |
SHA | Secure Hash Algorithm |
SOA | Service-Oriented Architecture |
UNFCCC | The United Nations Framework Convention on Climate Change |
WTO | The World Trade Organization |
References
- World Trade Organization, Economic Resilience and Trade. 2021. Available online: https://www.wto.org/english/res_e/booksp_e/wtr21_e/00_wtr21_e.pdf (accessed on 3 November 2022).
- E.A. Cozzi, T. International Energy Agency. Gould, World Energy Outlook 2021. 2021. Available online: https://www.iea.org/weo (accessed on 3 November 2022).
- Sher, F.; Curnick, O.; Azizan, M.T. Sustainable conversion of renewable energy sources. Sustainability 2021, 13, 2940. [Google Scholar] [CrossRef]
- Deng, R.; Chang, N.L.; Ouyang, Z.; Chong, C.M. A techno-economic review of silicon photovoltaic module recycling. Renew. Sustain. Energy Rev. 2019, 109, 532–550. [Google Scholar] [CrossRef]
- Du, K.; Li, J. Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Pol. 2019, 131, 240–250. [Google Scholar] [CrossRef]
- Borandag, E. Software Fault Prediction Using an RNN-Based Deep Learning Approach and Ensemble Machine Learning Techniques. Appl. Sci. 2023, 13, 1639. [Google Scholar] [CrossRef]
- Yu, F.; Lin, H.; Wang, X.; Yassine, A.; Hossain, M.S. Blockchain-empowered secure federated learning system: Architecture and applications. Comput. Commun. 2022, 196, 55–65. [Google Scholar] [CrossRef]
- Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 2009, 458, 1158–1162. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Liu, X.; Li, X.; Chen, Y. Quantifying the relationship between urban forms and carbon emissions using panel data analysis. Landsc. Ecol. 2013, 28, 1889–1907. [Google Scholar] [CrossRef]
- Bandara, R.; Indunil, G.M. Food packaging from recycled papers: Chemical, physical, optical properties and heavy metal migration. Heliyon 2022, 8, e10959. [Google Scholar] [CrossRef]
- Blömeke, S.; Scheller, C.; Cerdas, F.; Thies, C.; Hachenberger, R.; Gonter, M.; Herrmann, C.; Spengler, T.S. Material and energy flow analysis for environmental and economic impact assessment of industrial recycling routes for lithium-ion traction batteries. J. Clean. Prod. 2022, 377, 134344. [Google Scholar] [CrossRef]
- Elavarasan, S.; Poornima, S.; Priya, A.K. Steel fiber on the recycled aggregate hardened properties of concrete. Mater. Today Proc. 2023, 68, 2159–2162. [Google Scholar] [CrossRef]
- Taloba, A.I.; Elhadad, A.; Rayan, A.; Abd El-Aziz, R.M.; Salem, M.; Alzahrani, A.A.; Alharithi, F.S.; Park, C. A blockchain-based hybrid platform for multimedia data processing in IoT-Healthcare. Alex. Eng. J. 2022, 65, 263–274. [Google Scholar] [CrossRef]
- De Aguiar, E.J.; Dos Santos, A.J.; Meneguette, R.I.; De Grande, R.E.; Ueyama, J. A blockchain-based protocol for tracking user access to shared medical imaging. Future Gener. Comput. Syst. 2022, 134, 348–360. [Google Scholar] [CrossRef]
- Sri Sai, B.D.; Nikhil, R.; Prasad, S.; Naik, N.S. A decentralised KYC based approach for microfinance using blockchain technology. Cyber Secur. Appl. 2023, 1, 100009. [Google Scholar] [CrossRef]
- Ibrahim, M.; Lee, Y.; Kahng, H.K.; Kim, S.; Kim, D.H. Blockchain-based parking sharing service for smart city development. Comput. Electr. Eng. 2022, 103, 108267. [Google Scholar] [CrossRef]
- Khadke, S.; Gupta, P.; Rachakunta, S.; Mahata, C.; Dawn, S.; Sharma, M.; Verma, D.; Pradhan, A.; Krishna, A.M.S.; Ramakrishna, S.; et al. Efficient Plastic Recycling and Remolding Circular Economy Using the Technology of Trust–Blockchain. Sustainability 2021, 13, 9142. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, Y.; Xu, Q.; Liu, H.; Gao, Y.; Li, X.; Yu, G. NeuChain: A fast permissioned blockchain system with deterministic ordering. Proc. VLDB Endow. 2022, 15, 2585–2598. [Google Scholar] [CrossRef]
- Peng, Z.; Xu, J.; Chu, X.; Gao, S.; Yao, Y.; Gu, R.; Tang, Y. VFChain: Enabling Verifiable and Auditable Federated Learning via Blockchain Systems. IEEE Trans. Netw. Sci. Eng. 2022, 9, 173–186. [Google Scholar] [CrossRef]
- Ren, Y.; Zhu, F.; Sharma, P.K.; Wang, T.; Wang, J.; Alfarraj, O.; Tolba, A. Data Query Mechanism Based on Hash Computing Power of Blockchain in Internet of Things. Sensors 2020, 20, 207. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Leng, Y.; Qi, J.; Sharma, P.K.; Wang, J.; Almakhadmeh, Z.; Tolba, A. Multiple cloud storage mechanism based on blockchain in smart homes. Future Gener. Comput. Syst. 2021, 115, 304–313. [Google Scholar] [CrossRef]
- Ren, Y.; Zhu, F.; Wang, J.; Sharma, P.K.; Ghosh, U. Novel Vote Scheme for Decision-Making Feedback Based on Blockchain in Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1639–1648. [Google Scholar] [CrossRef]
- Gao, S.; Peng, Z.; Tan, F.; Zheng, Y.; Xiao, B. SymmeProof: Compact Zero-Knowledge Argument for Blockchain Confidential Transactions. IEEE Trans. Dependable Secur. Comput. 2022. [Google Scholar] [CrossRef]
- Li, Z.; Gao, S.; Peng, Z.; Guo, S.; Yang, Y.; Xiao, B. B-DNS: A Secure and Efficient DNS Based on the Blockchain Technology. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1674–1686. [Google Scholar] [CrossRef]
- Almadhoun, R.; Kadadha, M.; Alhemeiri, M.; Alshehhi, M.; Salah, K. A user authentication scheme of IoT devices using blockchain-enabled fog nodes. In Proceedings of the 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), Aqaba, Jordan, 28 October–1 November 2018; pp. 1–8. [Google Scholar]
- Ongena, G.; Smit, K.; Boksebeld, J.; Adams, G.; Roelofs, Y.; Ravesteyn, P. Blockchain-based Smart Contracts in Waste Management: A Silver Bullet? In Proceedings of the Bled EConference, Bled, Slovenia, 17–20 June 2018; p. 19. [Google Scholar]
- Gopalakrishnan, P.K.; Hall, J.; Behdad, S. A Blockchain-Based Traceability System for Waste Management in Smart Cities. In Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 25th Design for Manufacturing and the Life Cycle Conference (DFMLC), Virtual, 17–19 August 2020. [Google Scholar] [CrossRef]
- França AS, L.; Neto, J.A.; Gonçalves, R.F.; Almeida, C. Proposing the use of blockchain to improve the solid waste management in small municipalities. J. Clean. Prod. 2020, 244, 118529. [Google Scholar] [CrossRef]
- Gupta, N.; Bedi, P. E-waste Management Using Blockchain based Smart Contracts. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 915–921. [Google Scholar] [CrossRef]
- Akram, S.V.; Alshamrani, S.S.; Singh, R.; Rashid, M.; Gehlot, A.; AlGhamdi, A.S.; Prashar, D. Blockchain Enabled Automatic Reward System in Solid Waste Management. Secur. Commun. Netw. 2021, 2021, 6952121. [Google Scholar] [CrossRef]
- Borandağ, E.; Özçift, A.; Kaygusuz, Y. Development of majority vote ensemble feature selection algorithm augmentedwith rank allocation to enhance Turkish text categorization. J. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 514–530. [Google Scholar] [CrossRef]
- Waste Classification Data. 2022. Available online: https://www.kaggle.com/techsash/dringking-waste-classification-data (accessed on 20 October 2022).
- Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 21260. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 3 January 2023).
- Lin, I.C.; Liao, T.C. A survey of blockchain security issues and challenges. Int. J. Netw. Secur. 2017, 19, 653–659. [Google Scholar]
- Merkle, R. A Digital Signature Based on a Conventional Encryption Function. Comput. Sci. 1987, 293, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Banaeian Far, S.; Imani Rad, A.; Rajabzadeh Asaar, M. ACR-MLM: A privacy-preserving framework for anonymous and confidential rewarding in blockchain-based multi-level marketing. Data Sci. Manag. 2022, 5, 219–231. [Google Scholar] [CrossRef]
- Szabo, N. Formalizing and Securing Relationships on Public Networks. First Monday 1997, 2, 9. [Google Scholar] [CrossRef]
- Choi, N.; Kim, H. A Blockchain-based User Authentication Model Using MetaMask. J. Internet Comput. Serv. 2019, 20, 119–127. [Google Scholar]
- Karasulu, B.; Yücalar, F.; Borandağ, E. A hybrid approach based on deep learning for gender recognition using human ear images Full-text available. J. Fac. Eng. Archit. Gazi Univ. 2022, 37, 1579–1594. [Google Scholar]
- Ozbaysar, E.; Borandag, E. Vehicle plate tracking system. In Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018. [Google Scholar] [CrossRef]
- Ullah, Z.; Usman, M.; Jeon, M.; Gwak, J. Cascade multiscale residual attention CNNs with adaptive ROI for automatic brain tumor segmentation. Inf. Sci. 2022, 608, 1541–1556. [Google Scholar] [CrossRef]
- Ullah, Z.; Usman, M.; Latif, S.; Gwak, J. Densely attention mechanism based network for COVID-19 detection in chest X-rays. Sci. Rep. 2023, 13, 261. [Google Scholar] [CrossRef] [PubMed]
- Ullah, Z.; Usman, M.; Gwak, J. MTSS-AAE: Multi-task semi-supervised adversarial autoencoding for COVID-19 detection based on chest X-ray images. Expert Syst. Appl. 2023, 216, 119475. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.S.; Wasid, M.; Rahman, S.A. Devanagari Handwritten Character Recognition using Transfer Learning with Deep CNN and SVM. In Proceedings of the 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), Dalian, China, 26–27 November 2022; pp. 1–5. [Google Scholar]
- Poojary, R.; Raina, R.; Krishanmurthy, S. Application of CNNs in Home Security. In Proceedings of the 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 23–25 November 2022; pp. 322–327. [Google Scholar]
- Vaziri, M.; Jahanirad, H. Low-Cost and Hardware Efficient Implementation of Pooling Layers for Stochastic CNN Accelerators. In Proceedings of the 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 17–18 November 2022; pp. 24–29. [Google Scholar]
- Aggarwal, R.; Lal Das, M. RFID Security in the Context of “Internet of Things”. In Proceedings of the First International Conference on Security of Internet of Things, Kerala, India, 17–19 August 2012; pp. 51–56. [Google Scholar] [CrossRef]
- Jayavardhana, G.; Rajkumar, B.; Marusic, S.; Palaniswami, M. Internet of Things: A Vision, Architectural Elements, and Future Directions. Future Gener. 2013, 29, 1645–1660. [Google Scholar]
- Tiwari, S. An Introduction to QR Code Technology. In Proceedings of the 2016 International Conference on Information Technology (ICIT), Bhubaneswar, India, 22–24 December 2016; pp. 39–44. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Gerard, D. Attack of the 50 Foot Blockchain: Bitcoin, Blockchain, Ethereum & Smart Contracts Paperback; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017. [Google Scholar]
- Nadal, S. PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake Sunny King. 2012. Available online: https://www.semanticscholar.org/paper/PPCoin%3A-Peer-to-Peer-Crypto-Currency-with-King-Nadal/0db38d32069f3341d34c35085dc009a85ba13c13 (accessed on 3 November 2022).
- Kıvrak, O.; Gürbüz, M.Z. Performance Comparison of YOLOv3, YOLOv4 and YOLOv5 Algorithms: A Case Study for Poultry Recognition. Avrupa Bilim Teknol. Derg. 2022, 38, 392–397. [Google Scholar] [CrossRef]
Author | Objective | IoT | QR | Reward System | Deep Learning Model |
---|---|---|---|---|---|
Almadhoun et al. (2018) [25] | Monitoring the end of life of waste | No | No | No | No |
Ongena et al. (2018) [26] | Waste management practice | No | No | No | No |
Gopalakrishnan (2020) [27] | A blockchain-based traceability system for waste management in smart cities | No | No | Yes | Yes |
França (2020) [28] | Proposing the use of blockchain to improve the solid waste management in small municipalities | No | No | Yes | No |
Gupta et al. (2017) [29] | E-waste management using blockchain-based smart contracts | No | No | Yes | No |
Akram et al. (2021) [30] | Blockchain-enabled automatic reward system in solid waste management | Yes | No | Yes | No |
The present study | A blockchain-based recycling platform using image processing, QR Codes, and IoT System | Yes | Yes | Yes | Yes |
Actual True | Actual False | |
---|---|---|
Predicted True | True Positive (TP) | False Positive (FP) |
Predicted False | False Negative (FN) | True Negative (TN) |
Category ID | Category Name | Number of Samples |
---|---|---|
0 | Battery | 1.000 |
1 | Glass Bottle | 1.000 |
2 | High-Density Polyethylene | 1.000 |
3 | Plastic Bottle | 1.000 |
Layers | Output |
---|---|
Con2D | (None, 128, 128, 128) |
Batch Normalization | (None, 126, 126, 128) |
Conv2D | (None, 124, 124, 128) |
Batch Normalization | (None, 124, 124, 128) |
Max Pooling2d | (None, 41, 41, 128) |
Drop Out | (None, 41, 41, 128) |
Conv2D | (None, 39, 39, 256) |
Batch Normalization | (None, 39, 39, 256) |
Conv2D | (None, 37, 37, 128) |
Batch Normalization | (None, 37, 37, 128) |
MaxPooling2d | (None, 12, 12, 128) |
Drop Out | (None, 12, 12, 128) |
Flatten | (None, 18,432) |
Dense | (None, 512) |
Batch Normalization | (None, 512) |
Dropout | (None, 512) |
Dense | (None, 4) |
Parameter | Value |
---|---|
Batch size | 16 |
Epoch | 100 |
Optimization Algorithm | ADAM |
Learning rate | 0.001 |
Epsilon | 1.0 × 10−8 |
Activation Function | ReLU |
Pooling Operation | Max Pool |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borandag, E. A Blockchain-Based Recycling Platform Using Image Processing, QR Codes, and IoT System. Sustainability 2023, 15, 6116. https://doi.org/10.3390/su15076116
Borandag E. A Blockchain-Based Recycling Platform Using Image Processing, QR Codes, and IoT System. Sustainability. 2023; 15(7):6116. https://doi.org/10.3390/su15076116
Chicago/Turabian StyleBorandag, Emin. 2023. "A Blockchain-Based Recycling Platform Using Image Processing, QR Codes, and IoT System" Sustainability 15, no. 7: 6116. https://doi.org/10.3390/su15076116
APA StyleBorandag, E. (2023). A Blockchain-Based Recycling Platform Using Image Processing, QR Codes, and IoT System. Sustainability, 15(7), 6116. https://doi.org/10.3390/su15076116