Analysis and Optimization of Thermal Environment in Old Urban Areas from the Perspective of “Function–Form” Differentiation
Abstract
:1. Introduction
2. Literature Review
2.1. Links between Morphological Parameters and the Surface Temperature
2.2. Links between Urban Functional Zone (UFZ) and Urban Surface Temperature Studies
2.3. The Application of GWR and MGWR to Model the Surface Temperature
3. Materials and Methods
3.1. Study Area
3.2. Data Sources
3.3. Research Methods
3.3.1. Surface Temperature Inversion
3.3.2. Selection of Fitting Model
4. Results
4.1. Spatial Morphological Characteristics of High-Density Old Urban Areas
4.2. Spatial and Temporal Distribution Characteristics of Heat Islands
4.2.1. Temporal and Spatial Distribution of Urban Surface Temperature
4.2.2. Spatial and Temporal Distribution Characteristics of Urban Heat Island Footprint
4.3. Regression Results Analysis
4.3.1. Model Accuracy Comparison
4.3.2. Model Scale Comparison
4.4. Analysis of the Dominant Regional Division of Summer Heat Island Drivers
5. Discussion
5.1. Does MGWR Provide a New Perspective for Urban Thermal Environment Research?
5.2. What Are the Different Heat Island Impact Parameters within Different Functional Parcels?
5.3. Optimization of Planning Strategies for Mitigating the Heat Island Effect in Old High-Density Urban Areas
5.3.1. Land Use Adjustment
5.3.2. Spatial Form Optimization
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hsu, A.; Sheriff, G.; Chakraborty, T.; Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 2021, 12, 2721. [Google Scholar] [CrossRef] [PubMed]
- Aram, F.; García, E.H.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Z.; Tang, Y.; Chen, K.; Han, G. Assessing the Heat Vulnerability of Different Local Climate Zones in the Old Areas of a Chinese Megacity. Sustainability 2019, 11, 2032. [Google Scholar] [CrossRef] [Green Version]
- Parvez, I.M.; Aina, Y.A.; Balogun, A.-L. The influence of urban form on the spatiotemporal variations in land surface temperature in an arid coastal city. Geocarto Int. 2019, 36, 640–659. [Google Scholar] [CrossRef]
- Lee, S.; Kim, D. Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning. Int. J. Environ. Res. Public Health 2022, 19, 10249. [Google Scholar] [CrossRef]
- Zaki, S.A.; Othman, N.E.; Syahidah, S.W.; Yakub, F.; Muhammad-Sukki, F.; Ardila-Rey, J.A.; Shahidan, M.F.; Saudi, A.S.M. Effects of Urban Morphology on Microclimate Parameters in an Urban University Campus. Sustainability 2020, 12, 2962. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ren, C.; Ma, P.; Ho, J.; Wang, W.; Lau, K.K.-L.; Lin, H.; Ng, E. Urban morphology detection and computation for urban climate research. Landsc. Urban Plan. 2017, 167, 212–224. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.-L.; Ng, E. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Li, Z.; Hu, D. Exploring the relationship between the 2D/3D architectural morphology and urban land surface temperature based on a boosted regression tree: A case study of Beijing, China. Sustain. Cities Soc. 2022, 78, 103392. [Google Scholar] [CrossRef]
- Berger, C.; Rosentreter, J.; Voltersen, M.; Baumgart, C.; Schmullius, C.; Hese, S. Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature. Remote Sens. Environ. 2017, 193, 225–243. [Google Scholar] [CrossRef]
- Gardes, T.; Schoetter, R.; Hidalgo, J.; Long, N.; Marquès, E.; Masson, V. Statistical prediction of the nocturnal urban heat island intensity based on urban morphology and geographical factors—An investigation based on numerical model results for a large ensemble of French cities. Sci. Total. Environ. 2020, 737, 139253. [Google Scholar] [CrossRef]
- Verdonck, M.-L.; Demuzere, M.; Hooyberghs, H.; Beck, C.; Cyrys, J.; Schneider, A.; Dewulf, R.; Van Coillie, F. The potential of local climate zones maps as a heat stress assessment tool, supported by simulated air temperature data. Landsc. Urban Plan. 2018, 178, 183–197. [Google Scholar] [CrossRef]
- Feng, Y.; Du, S.; Myint, S.W.; Shu, M. Do Urban Functional Zones Affect Land Surface Temperature Differently? A Case Study of Beijing, China. Remote Sens. 2019, 11, 1802. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI analysis using Local Climate Zones—A comparison of 50 cities. Urban Clim. 2019, 28, 100451. [Google Scholar] [CrossRef]
- Wu, Z.; Yao, L.; Ren, Y. Characterizing the spatial heterogeneity and controlling factors of land surface temperature clusters: A case study in Beijing. Build. Environ. 2020, 169, 106598. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Kashki, A.; Karami, M.; Zandi, R.; Roki, Z. Evaluation of the effect of geographical parameters on the formation of the land surface temperature by applying OLS and GWR, A case study Shiraz City, Iran. Urban Clim. 2021, 37, 100832. [Google Scholar] [CrossRef]
- Baqa, M.F.; Lu, L.; Chen, F.; Nawaz-Ul-Huda, S.; Pan, L.; Tariq, A.; Qureshi, S.; Li, B.; Li, Q. Characterizing Spatiotemporal Variations in the Urban Thermal Environment Related to Land Cover Changes in Karachi, Pakistan, from 2000 to 2020. Remote Sens. 2022, 14, 2164. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.; Weng, Q.; Weaver, R. A Geographically Weighted Regression Analysis of the Underlying Factors Related to the Surface Urban Heat Island Phenomenon. Remote Sens. 2018, 10, 1428. [Google Scholar] [CrossRef] [Green Version]
- Duncan, J.M.A.; Boruff, B.; Saunders, A.; Sun, Q.; Hurley, J.; Amati, M. Turning down the heat: An enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Sci. Total Environ. 2019, 656, 118–128. [Google Scholar] [CrossRef]
- Simon, O.; Yamungu, N.; Lyimo, J. Simulating land surface temperature using biophysical variables related to building density and height in Dar Es Salaam, Tanzania. Geocarto Int. 2022, 1–18. [Google Scholar] [CrossRef]
- Basu, T.; Das, A. Urbanization induced degradation of urban green space and its association to the land surface temperature in a medium-class city in India. Sustain. Cities Soc. 2023, 90, 104373. [Google Scholar] [CrossRef]
- Kurkcuoglu, M.A.S. Analysis of the energy justice in natural gas distribution with Multiscale Geographically Weighted Regression (MGWR). Energy Rep. 2023, 9, 325–337. [Google Scholar] [CrossRef]
- Nazarian, N.; Krayenhoff, E.S.; Bechtel, B.; Hondula, D.M.; Paolini, R.; Vanos, J.; Cheung, T.; Chow, W.T.L.; de Dear, R.; Jay, O.; et al. Integrated Assessment of Urban Overheating Impacts on Human Life. Earth’s Future 2022, 10, e2022EF002682. [Google Scholar] [CrossRef]
- Mazutis, D.; Sweet, L. The business of accelerating sustainable urban development: A systematic review and synthesis. J. Clean. Prod. 2022, 357, 131871. [Google Scholar] [CrossRef]
- Shaker, R.R.; Altman, Y.; Deng, C.; Vaz, E.; Forsythe, K. Investigating urban heat island through spatial analysis of New York City streetscapes. J. Clean. Prod. 2019, 233, 972–992. [Google Scholar] [CrossRef]
- Gao, S.; Zhan, Q.; Yang, C.; Liu, H. The Diversified Impacts of Urban Morphology on Land Surface Temperature among Urban Functional Zones. Int. J. Environ. Res. Public Health 2020, 17, 9578. [Google Scholar] [CrossRef]
- Soltanifard, H.; Kashki, A.; Karami, M. Analysis of spatially varying relationships between urban environment factors and land surface temperature in Mashhad city, Iran. Egypt. J. Remote Sens. Space Sci. 2022, 25, 987–999. [Google Scholar] [CrossRef]
- Nelson, J.; Grubesic, T.; Miller, J.; Chamberlain, A. The equity of tree distribution in the most ruthlessly hot city in the United States: Phoenix, Arizona. Urban For. Urban Green. 2021, 59, 127016. [Google Scholar] [CrossRef]
- Shahfahad; Naikoo, M.W.; Islam, A.R.M.T.; Mallick, J.; Rahman, A. Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Clim. 2021, 41, 101052. [Google Scholar] [CrossRef]
- Budhiraja, B.; Agrawal, G.; Pathak, P. Urban heat island effect of a polynuclear megacity Delhi—Compactness and thermal evaluation of four sub-cities. Urban Clim. 2020, 32, 100634. [Google Scholar] [CrossRef]
- Gong, P.; Chen, B.; Li, X.; Liu, H.; Wang, J.; Bai, Y.; Chen, J.; Chen, X.; Fang, L.; Feng, S.; et al. Mapping essential urban land use categories in China (EULUC-China): Preliminary results for 2018. Sci. Bull. 2019, 65, 182–187. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Shen, Y.; Jiang, C.; Li, T.; Guo, M.; Yao, L. Spatiotemporal Big Data for PM2.5 Exposure and Health Risk Assessment during COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 7664. [Google Scholar] [CrossRef]
- Equere, V.; Mirzaei, P.A.; Riffat, S.; Wang, Y. Integration of topological aspect of city terrains to predict the spatial distribution of urban heat island using GIS and ANN. Sustain. Cities Soc. 2021, 69, 102825. [Google Scholar] [CrossRef]
- Mashhoodi, B. Feminization of surface temperature: Environmental justice and gender inequality among socioeconomic groups. Urban Clim. 2021, 40, 101004. [Google Scholar] [CrossRef]
- Yang, L.; Yu, K.; Ai, J.; Liu, Y.; Yang, W.; Liu, J. Dominant Factors and Spatial Heterogeneity of Land Surface Temperatures in Urban Areas: A Case Study in Fuzhou, China. Remote Sens. 2022, 14, 1266. [Google Scholar] [CrossRef]
- Liu, H.; Zhan, Q.; Gao, S.; Yang, C. Seasonal Variation of the Spatially Non-Stationary Association Between Land Surface Temperature and Urban Landscape. Remote Sens. 2019, 11, 1016. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Zhan, Q.; Fan, Y.; Liu, H.; Fan, Z. Exploring the impacts of greenspace spatial patterns on land surface temperature across different urban functional zones: A case study in Wuhan metropolitan area, China. Ecol. Indic. 2023, 146, 109787. [Google Scholar] [CrossRef]
- Sun, R.; Lü, Y.; Chen, L.; Yang, L.; Chen, A. Assessing the stability of annual temperatures for different urban functional zones. Build. Environ. 2013, 65, 90–98. [Google Scholar] [CrossRef]
- He, W.; Cao, S.; Du, M.; Hu, D.; Mo, Y.; Liu, M.; Zhao, J.; Cao, Y. How Do Two- and Three-Dimensional Urban Structures Impact Seasonal Land Surface Temperatures at Various Spatial Scales? A Case Study for the Northern Part of Brooklyn, New York, USA. Remote Sens. 2021, 13, 3283. [Google Scholar] [CrossRef]
- Moazzam, M.F.U.; Doh, Y.H.; Lee, B.G. Impact of urbanization on land surface temperature and surface urban heat Island using optical remote sensing data: A case study of Jeju Island, Republic of Korea. Build. Environ. 2022, 222, 109368. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Yu, K. Effects of block morphology on the surface thermal environment and the corresponding planning strategy using the geographically weighted regression model. Build. Environ. 2022, 216, 109037. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Handayani, H.H.; Zhang, X.; Morimoto, T.; Tadono, T.; Murayama, Y. Relation between Urban Volume and Land Surface Temperature: A Comparative Study of Planned and Traditional Cities in Japan. Sustainability 2018, 10, 2366. [Google Scholar] [CrossRef] [Green Version]
- Adulkongkaew, T.; Satapanajaru, T.; Charoenhirunyingyos, S.; Singhirunnusorn, W. Effect of land cover composition and building configuration on land surface temperature in an urban-sprawl city, case study in Bangkok Metropolitan Area, Thailand. Heliyon 2020, 6, e04485. [Google Scholar] [CrossRef] [PubMed]
- Nasehi, S.; Yavari, A.; Salehi, E.; Emmanuel, R. Role of local climate zone and space syntax on land surface temperature (case study: Tehran). Urban Clim. 2022, 45, 101245. [Google Scholar] [CrossRef]
- Coutts, A.M.; Harris, R.J.; Phan, T.; Livesley, S.J.; Williams, N.S.G.; Tapper, N.J. Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sens. Environ. 2016, 186, 637–651. [Google Scholar] [CrossRef]
- Mohan, M.; Singh, V.K.; Bhati, S.; Lodhi, N.; Sati, A.P.; Sahoo, N.R.; Dash, S.; Mishra, P.C.; Dey, S. Industrial heat island: A case study of Angul-Talcher region in India. Theor. Appl. Clim. 2020, 141, 229–246. [Google Scholar] [CrossRef]
- Gao, J.; Meng, Q.; Zhang, L.; Hu, D. How does the ambient environment respond to the industrial heat island effects? An innovative and comprehensive methodological paradigm for quantifying the varied cooling effects of different landscapes. GIScience Remote Sens. 2022, 59, 1643–1659. [Google Scholar] [CrossRef]
- Mirzaee, S.; Özgun, O.; Ruth, M.; Binita, K. Neighborhood-scale sky view factor variations with building density and height: A simulation approach and case study of Boston. Urban Clim. 2018, 26, 95–108. [Google Scholar] [CrossRef]
- Reinwald, F.; Brandenburg, C.; Gabor, A.; Hinterkörner, P.; Kainz, A.; Kraus, F.; Ring, Z.; Scharf, B.; Tötzer, T.; Damyanovic, D. Multi-Level Toolset for Steering Urban Green Infrastructure to Support the Development of Climate-Proofed Cities. Sustainability 2021, 13, 12111. [Google Scholar] [CrossRef]
- Antoszewski, P.; Świerk, D.; Krzyżaniak, M. Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone. Int. J. Environ. Res. Public Health 2020, 17, 7093. [Google Scholar] [CrossRef]
- Lai, S.; Zhao, Y.; Fan, Y.; Ge, J. Characteristics of daytime land surface temperature in wind corridor: A case study of a hot summer and warm winter city. J. Build. Eng. 2021, 44, 103370. [Google Scholar] [CrossRef]
- Wicht, M.; Wicht, A.; Osińska-Skotak, K. Detection of ventilation corridors using a spatio-temporal approach aided by remote sensing data. Eur. J. Remote Sens. 2017, 50, 254–267. [Google Scholar] [CrossRef] [Green Version]
- Aboelata, A.; Sodoudi, S. Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo. Build. Environ. 2019, 168, 106490. [Google Scholar] [CrossRef]
Author | Research | Cities | Methodology | Parameters |
---|---|---|---|---|
Simon [21] | Determine the relationship between biophysical variables and building spatial forms and surface temperatures. | Dar es Salaam Metropolitan, Tanzania | OLS, GWR | NDVI, NDBI, SAVI, building density |
Shaker [26] | Use geographically weighted regression (GWR) to assess local patterns of correlated associations. | New York, US | OLS, GWR | SVF, land use cover, tree canopy class configuration, buildings class configuration, roads class configuration |
Sihang Gao [27] | Explore the spatial heterogeneity in the relationship between landscape composition, urban morphology, urban functions, and land surface temperature (LST). | Wuhan, China | OLS, random forest model, SGWR, MGWR | BD, BH, BVD, SVF, NDVI, ISF |
Duncan [20] | The effects of different vegetation configurations on land surface temperature were studied. | Perth, Australia | OLS, GWR, random forest model | Proportion of vegetation, land use cover |
Soltanifard [28] | Discuss the spatial non-stationarity and spatial scale effect of land surface temperature in urban areas. | Mashhad, Iran | PCA OLS, GWR | Land use cover, population density, building density and height |
J.R.Nelson [29] | The unequal community heat exposure caused by spatial differences in vegetation cover is studied. | Arizona metropolitan, US | OLS, GWR | Dwelling density, population density, tree density |
Shahfahad [30] | The effects of land use/land cover (LU/LC) change on surface heat island intensity (SUHII) and urban thermal comfort were analyzed. | Delhi, India | OLS, GWR | Land use cover |
Basu [22] | The patch-level correlation between green space and land surface temperature was discussed based on time and space. | Raiganj, India | OLS, GWR, MGWR | Landscape metrics |
Budhiraja [31] | Four sub-cities in Delhi NCR, India, are classified using local climate zone (LCZ) and then analyzed for thermal performance and compactness. | Delhi, India | OLS | Area, population density, LCZ composition |
Imaging Time | Satellites and Sensors | Strip Number | Cloud Cover/% | |
---|---|---|---|---|
12 August 2017 | Landsat 8 OLI_TIRS | 122 | 33 | 3.91 |
23 August 2018 | Landsat 8 OLI_TIRS | 122 | 33 | 3.38 |
27 September 2019 | Landsat 8 OLI_TIRS | 122 | 33 | 2.95 |
5 March 2020 | Landsat 8 OLI_TIRS | 122 | 33 | 0.9 |
28 August 2020 | Landsat 8 OLI_TIRS | 122 | 33 | 1.74 |
16 November 2020 | Landsat 8 OLI_TIRS | 122 | 33 | 2.83 |
3 January 2021 | Landsat 8 OLI_TIRS | 122 | 33 | 5.28 |
Traffic | Public Administration | Commercial | Residential | Industrial | Park | ||
---|---|---|---|---|---|---|---|
2D | BD | 0–0.64 | 0–0.83 | 0–0.899 | 0–0.94 | 0–0.95 | 0–0.83 |
ISP | 0.801–1 | 0.01–1 | 0.293–1 | 0–1 | 0.017–1 | 0.01–1 | |
NDVI | 0–0.484 | 0–0.699 | 0–0.564 | 0–0.72 | 0–0.66 | 0–0.72 | |
3D | BH | 0–86 | 0–177 | 0–360 | 0–199 | 0–141 | 0–72 |
FAR | 0–9.99 | 0–62 | 0–95 | 0–39.89 | 0–16.19 | 0–8.21 | |
BSD | 0–77 | 0–86 | 0–174 | 0–123.66 | 0–136.99 | 0–64.93 | |
SVF | 0.49–1 | 0.232–1 | 0.29–1 | 0–1 | 0–1 | 0.349–1 |
Variable | Spring | Summer | Autumn | Winter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VIF | Tolerance | Index | VIF | Tolerance | Index | VIF | Tolerance | Index | VIF | Tolerance | Index | |
SVF | 1.302 | 0.768 | 2.9 | 1.309 | 0.763 | 29.356 | 1.311 | 0.763 | 2.87 | 1.314 | 0.761 | 4.214 |
ISP | 1.378 | 0.726 | 4.417 | 1.391 | 0.719 | 13.649 | 1.384 | 0.722 | 4.286 | 1.393 | 0.718 | 6.278 |
NDVI | 1.008 | 0.992 | 29.079 | 1.071 | 0.934 | 2.873 | 1.067 | 0.937 | 29.178 | 1.073 | 0.932 | 2.836 |
FAR | 2.486 | 0.402 | 6.933 | 2.518 | 0.397 | 8.889 | 2.517 | 0.397 | 6.931 | 2.511 | 0.398 | 7.216 |
BSD | 2.279 | 0.439 | 8.27 | 2.301 | 0.435 | 7.825 | 2.299 | 0.435 | 7.709 | 2.293 | 0.436 | 8.773 |
BH | 3.414 | 0.293 | 8.757 | 3.414 | 0.293 | 6.984 | 3.414 | 0.293 | 8.851 | 3.414 | 0.293 | 13.601 |
BD | 1.645 | 0.608 | 13.926 | 1.639 | 0.610 | 4.3 | 1.638 | 0.611 | 13.636 | 1.639 | 0.611 | 28.917 |
Spring | Summer | Autumn | Winter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Index | OLS | GWR | MGWR | OLS | GWR | MGWR | OLS | GWR | MGWR | OLS | GWR | MGWR |
R2 | 0.226 | 0.58 | 0.656 | 0.396 | 0.717 | 0.773 | 0.2 | 0.744 | 0.755 | 0.09 | 0.529 | 0.593 |
AICc | 8912 | 7583 | 7350 | 12502 | 6490.7 | 6222 | 5727 | 6862 | 6554 | 6274 | 8098 | 7700 |
Rss | 2972 | 1356 | 1111 | 9037 | 915.02 | 731.7 | 1108 | 826 | 790.1 | 1312 | 1520 | 1313 |
Spring | Summer | Autumn | Winter | |||||
---|---|---|---|---|---|---|---|---|
Variable | MGWR | GWR | MGWR | GWR | MGWR | GWR | MGWR | GWR |
SVF | 174 | 106 | 343 | 92 | 152 | 64 | 184 | 94 |
ISP | 44 | 106 | 44 | 92 | 44 | 64 | 44 | 94 |
NDVI | 70 | 106 | 44 | 92 | 44 | 64 | 44 | 94 |
BD | 44 | 106 | 44 | 92 | 52 | 64 | 44 | 94 |
BH | 44 | 106 | 44 | 92 | 904 | 64 | 1380 | 94 |
BSD | 3222 | 106 | 884 | 92 | 60 | 64 | 1440 | 94 |
FAR | 962 | 106 | 68 | 92 | 44 | 64 | 130 | 94 |
Minimum | Maximum | Average | Std | Positive | Negative | Minimum | Maximum | Average | Std | Positive | Negative | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Industrial functional block | Residential functional block | |||||||||||
SVF | −0.188 | 0.104 | −0.056 | 0.0834 | 28.218 | 71.782 | −0.191 | 0.067 | −0.081 | 0.0578 | 9.861 | 90.139 |
ISP | −0.317 | 1.676 | 0.483 | 0.3724 | 89.109 | 10.891 | −0.462 | 2.8 | 0.638 | 0.5439 | 95.43 | 4.57 |
NDVI | −0.753 | 0.274 | −0.128 | 0.2233 | 36.139 | 63.861 | −3.223 | 0.897 | −0.053 | 0.2041 | 41.655 | 58.345 |
BD | −0.499 | 0.866 | 0.222 | 0.2715 | 78.713 | 21.287 | −0.784 | 0.949 | 0.21 | 0.2936 | 75.854 | 24.146 |
BH | −1.069 | 0.693 | −0.224 | 0.3663 | 22.277 | 77.723 | −1.448 | 1.795 | −0.112 | 0.3821 | 26.936 | 73.064 |
BSD | −0.245 | −0.057 | −0.158 | 0.0553 | 0 | 100 | −0.236 | −0.05 | −0.102 | 0.0347 | 0 | 100 |
FAR | 0.62 | 1.418 | 0.218 | 0.3112 | 81.683 | 18.317 | −0.795 | 1.619 | 0.107 | 0.3472 | 58.249 | 41.751 |
Commercial functional block | Public management service block | |||||||||||
SVF | −0.183 | 0.028 | −0.063 | 0.0441 | 9.167 | 90.833 | −0.183 | 0.099 | −0.068 | 0.0588 | 13.567 | 86.433 |
ISP | −0.52 | 2.837 | 0.781 | 0.7026 | 91.389 | 8.611 | 0.483 | 2.818 | 0.565 | 0.5152 | 96.28 | 3.72 |
NDVI | −1.52 | 0.51 | −0.03 | 0.2544 | 51.667 | 48.333 | −1.384 | 0.838 | −0.024 | 0.2344 | 52.516 | 47.484 |
BD | 0.433 | 0.872 | 0.269 | 0.2098 | 90.278 | 9.722 | −0.551 | 0.904 | 0.127 | 0.2812 | 38.95 | 61.05 |
BH | −1.131 | 0.734 | −0.11 | 0.2402 | 29.167 | 70.833 | −1.389 | 1.049 | −0.05 | 0.3172 | 62.582 | 37.418 |
BSD | −0.195 | −0.057 | −0.084 | 0.0288 | 0 | 100 | −0.23 | −0.049 | −0.094 | 0.0385 | 0 | 100 |
FAR | −0.601 | 0.774 | 0.05 | 0.2067 | 50 | 50 | −0.801 | 0.943 | 0.096 | 0.2417 | 76.368 | 23.632 |
Traffic block | Green park functional block | |||||||||||
SVF | −0.103 | 0.06 | −0.041 | 0.0501 | 23.81 | 76.19 | −0.19 | 0.076 | −0.084 | 0.0594 | 8.257 | 91.743 |
ISP | 0.063 | 1.281 | 0.583 | 0.3341 | 100 | 0 | −0.195 | 2.07 | 0.437 | 0.3852 | 95.413 | 4.587 |
NDVI | −0.296 | 0.246 | 0.011 | 0.1373 | 52.381 | 47.619 | −0.81 | 0.411 | −0.1 | 0.2103 | 35.78 | 64.22 |
BD | −0.378 | 0.68 | 0.021 | 0.3066 | 52.381 | 47.619 | −0.382 | 0.845 | 0.162 | 0.3094 | 62.385 | 37.615 |
BH | −0.615 | 0.408 | −0.079 | 0.2619 | 33.333 | 66.667 | −1.126 | 0.649 | −0.081 | 0.2634 | 38.532 | 61.468 |
BSD | −0.209 | −0.065 | −0.104 | 0.0401 | 0 | 100 | −0.215 | −0.052 | −0.115 | 0.0371 | 0 | 100 |
FAR | −0.038 | 0.684 | 0.248 | 0.2573 | 76.19 | 23.81 | −0.339 | 1.658 | 0.253 | 0.3178 | 79.817 | 20.183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, S.; Zhang, J.; Tian, J. Analysis and Optimization of Thermal Environment in Old Urban Areas from the Perspective of “Function–Form” Differentiation. Sustainability 2023, 15, 6172. https://doi.org/10.3390/su15076172
Zeng S, Zhang J, Tian J. Analysis and Optimization of Thermal Environment in Old Urban Areas from the Perspective of “Function–Form” Differentiation. Sustainability. 2023; 15(7):6172. https://doi.org/10.3390/su15076172
Chicago/Turabian StyleZeng, Suiping, Jiahao Zhang, and Jian Tian. 2023. "Analysis and Optimization of Thermal Environment in Old Urban Areas from the Perspective of “Function–Form” Differentiation" Sustainability 15, no. 7: 6172. https://doi.org/10.3390/su15076172
APA StyleZeng, S., Zhang, J., & Tian, J. (2023). Analysis and Optimization of Thermal Environment in Old Urban Areas from the Perspective of “Function–Form” Differentiation. Sustainability, 15(7), 6172. https://doi.org/10.3390/su15076172