Community Structure and Growth Rate of Korean Quercus mongolica Forests by Vegetation Climate Zone
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Community Distribution by Vegetation Climate Zone
3.2. Community Structure of Q. mongolica Forests by Vegetation Climate Zone
3.3. Growth Rate of Q. mongolica Forests by Vegetation Climate Zone
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; p. 104. [Google Scholar]
- Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Shiyatov, S.G.; Vaganov, E.A. Reduced Sensitivity of Recent Tree-growth to Temperature at High Northern Latitudes. Nature 1998, 391, 678–682. [Google Scholar] [CrossRef]
- Choi, K.; Kim, M.; Lee, W.K.; Gang, H.U.; Chung, D.J.; Ko, E.J.; Yun, B.H.; Kim, C.H. Estimating Radial Growth Response of Major Tree Species using Climatic and Topographic Condition in South Korea. J. Clim. Chang. Res. 2014, 5, 127–137. [Google Scholar] [CrossRef]
- Downs, R.J. Environment and the Experimental Control of Plant Growth (Vol. 6). Ecology 2012, 31, 434–455. [Google Scholar]
- Chung, J.; Kim, H.; Lee, S.; Lee, K.; Kim, M.; Chun, Y. Correlation Analysis and Growth Prediction between Climatic Elements and Radial Growth for Pinus koraiensis. Korean J. Agric. For. Meteor. 2015, 17, 85–92. [Google Scholar] [CrossRef]
- Yoo, J.H.; Cho, H.W.; Jung, S.G.; Lee, C.H. Correlation Analysis between Growth and Environmental Characteristics in Abeliophyllum distichum Habitats. Korean J. Environ. Ecol. 2004, 18, 210–220. [Google Scholar]
- Way, D.A.; Oren, R. Differential Responses to Changes in Growth Temperature between Trees from Different Functional Groups and Biomes: A Review and synthesis of data. Tree Physiol. 2010, 30, 669–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schippers, P.; Sterck, F.; Vlam, M.; Zuidema, P.A. Tree Growth Variation in the Tropical Forest: Understanding Effects of Temperature, Rainfall and CO2. Glob. Chang. Biol. 2015, 21, 2749–2761. [Google Scholar] [CrossRef]
- Kim, C.H.; Kim, D.P. A Study on the Management of Trees by Analysis of Relationship between Growth of Soils and Trees. Korean Soc. Environ. Ecol. Conf. Proc. 2017, 2017, 33–34. [Google Scholar]
- Oh, D.K.; Yoon, Y.H.; Kim, W.T. Evaluation of Quercus serrata Growth Characteristics by Conditions based on Planting Ground Utilizing Civil Work Soil. Seoul. Stud. 2020, 21, 51–65. [Google Scholar]
- Kim, G.N.; Han, S.H. Effects on growth, Photosynthesis and Pigment Contents of Liriodendron tulipifera under Elevated Temperature and Drought. Korean J. Agric. For. Meteorol. 2015, 17, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Schweingruber, F.H. Tree Rings: Basics and Applications of Dendrochronology; Springer: Dordrecht, The Netherlands, 1998; p. 276. [Google Scholar]
- Haeckel, E. Generelle Morphologie der Organismen. In Allgemeine Grundzüge der Organischen Formen-Wissenschaft, Mechanisch Begründet durch die von C. Darwin Reformirte Descendenz-Theorie, etc.; MBLWHOI Library: Woods Hole, MA, USA, 1866; Volume 1. [Google Scholar]
- Warming, E. Oecology of Plants; Clarendon Press: Oxford, UK, 1909. [Google Scholar]
- Eom, B.C.; Kim, J.W. A Phytoclimatic Review of Warm-temperate Vegetation Zone of Korea. Korean J. Environ. Ecol. 2020, 53, 195–207. [Google Scholar] [CrossRef]
- Korea National Arboretum. Flora Regions and Vegetation Climate in Korea; Sumeungil: Seoul, Korea, 2020; pp. 28–89. [Google Scholar]
- Yim, Y.J.; Kira, T. Distribution of Forest Vegetation and Climate in the Korean peninsula.: I. Distribution of some indices of thermal climate. Jpn. J. Ecol. 1975, 25, 77–88. [Google Scholar]
- Kira, T. On the Altitudinal Arrangement of Climatic Zones in Japan. Kanchi-Nogaku 1948, 2, 143–173. [Google Scholar]
- Kira, T. Forest Zones of Japan. In Forestry Explanation Series; Ringyô-gizyutu-kyôkai: Tokyo/Sapporo, Japan, 1949; 17, Volume 17. [Google Scholar]
- Kim, J.E.; Gil, B.S. Quercus mongolica Forests in Korea: Their Environment, Vegetation, and Life; Wonkwang University Press: Iksan, Korea, 2000. [Google Scholar]
- Choi, J.G.; Yoo, B.O. Diameter Growth Characteristics of Quercus mongolica and Quercus variabilis in Natural Deciduous Forests. J. Korean Soc. Forest Sci. 2006, 95, 131–138. [Google Scholar]
- Kang, H.M.; Choi, S.H.; Kim, D.H.; Song, J.T. A Study on the Restoration Effects of Vegetation Restoration Types. Korean J. Environ. Ecol. 2017, 31, 174–187. [Google Scholar] [CrossRef]
- National Institute of Forest Science. Development of Dynamic Growth Models for Major Forest Tree Species; National Institute of Forest Science: Seoul, Korea, 2018; pp. 3–56.
- Jeon, G.S. A Study on the Secular Change Analysis of Monitoring Plant for Revegetation of Ecological Restoration on the Unused Road. J. Korea Soc. For. Eng. Technol. 2018, 16, 165–182. [Google Scholar]
- Park, B.J.; Byeon, J.G.; Huwanbin, B.; Cheon, K.I. Study for Change of Woody Vegetation in Quercus mongolica Forest, Mt. Myeonbong. J. Agric. Life Sci. 2019, 53, 173–189. [Google Scholar] [CrossRef]
- Park, B.J.; Cheon, K.I.; Kim, J.J.; Joo, S.H.; Byeon, J.G. Stand Structure of Long-Term Monitoring Sites for Quercus mongolica in Mt. Myeonbong. J. Agric. Life. Sci. 2018, 52, 133–144. [Google Scholar] [CrossRef]
- Kwon, K.C.; Han, S.A.; Lee, D.K.; Jung, I.K.; Seo, Y.J.; Shin, K.T.; Jeon, C.S. Site Characteristics and Stand Structure of Quercus mongolica Forests in the Republic of Korea. J. Korean For. Sci. 2022, 111, 100–107. [Google Scholar]
- Jang, K.K.; Song, H.K. Study of Dominance-diversity on Quercus mongolica Forests in Kangwon-do. Korean J. Environ. Ecol. 1997, 11, 160–165. [Google Scholar]
- Moon, G.H.; Moon, N.H.; Lim, J.S.; Kang, J.T. Methodological Consideration for Estimating Growing Stock of Young Forests based on Early Growth Characteristics of Standing Trees in Korea. J. Korean Soc. For. Sci. 2020, 109, 300–312. [Google Scholar]
- Lee, K.J.; Choi, S.H.; Kang, H.K. Natural vegetation restoration and management plan by ecological approach. Korean J. Environ. Ecol. 1994, 8, 58–67. [Google Scholar]
- Kang, H.K. Structural Characteristics and Vegetation Model for Naturalness Restoration of Urban Plant Community. Doctorate Thesis, Graduate School of Sangmyung University, Seoul, Korea, 2000. [Google Scholar]
- Lee, M.J.; Song, H.G. Vegetation Structure and Ecological Restoration Model of Quercus mongolica Community. J. Korean Soc. Environ. Restor. Technol. 2011, 14, 57–65. [Google Scholar]
- Clewell, A.F.; Aronson, J. Ecological Restoration; Island Press: Washington, DC, USA, 2007. [Google Scholar]
- Sousa, W.P. The Role of Disturbance in Natural Communities. Ann. Rev. Ecol. Syst. 1984, 15, 353–391. [Google Scholar] [CrossRef]
- Oh, G.G. A Study on Planting Design Criteria Considering the Ecological Characteristics of Natural Vegetation. Master’s Thesis, Graduate School of Seoul National University, Seoul, Korea, 1986. [Google Scholar]
- Cho, W. Vegetation Structure and Management Planning of Mountain Type Urban Green Space in Inchon, Korea: A Case Study of Kangwhado Area. Korean J. Environ. Ecol. 1998, 12, 119–130. [Google Scholar]
- Ministry of Land, Infrastructure and Transport. Cadastral Statistical Yearbook; Ministry of Land, Infrastructure and Transport: Jeonju, Korea, 2022. Available online: https://stat.molit.go.kr/portal/cate/statView.do?hRsId=24&hFormId=&hDivEng=&month_yn= (accessed on 9 December 2022).
- Curtis, J.T.; McIntosh, R.P. The Interrelations of Certain Analytic and Synthetic Phytosociological Characters. Ecology 1950, 31, 434–455. [Google Scholar] [CrossRef]
- Smith, W.R.; Farrar, R.M.; Murphy, P.A., Jr.; Yeiser, J.L.; Meldahl, R.S.; Kush, J.S. Crown and Basal Area Relationships of Open-grown Southern Pines for Modelling Competition and Growth. Can. J. For. Res. 1992, 22, 341–347. [Google Scholar] [CrossRef]
- Mitchell, J.E.; Popovich, S.J. Effectiveness of Basal Area for Estimating Canopy Cover of Ponderosa Pine. For. Ecol. Manag. 1997, 95, 45–51. [Google Scholar] [CrossRef]
- Korea Forest Service. Standard Textbook for Forest Care-Forest Management; National Institute of Forest Science: Seoul, Korea, 2007; p. 14.
Criteria | Northern Temperate Zone | Central Temperate Zone | Southern Temperate Zone | Total |
---|---|---|---|---|
No. of NFI plots (7th) | 3159 | 4834 | 6821 | 14,814 |
No. of plots included Q. mongolica (7th) | 2324 | 2783 | 1672 | 6779 |
No. of plots dominated more than 50% by Q. mongolica (7th) | 618 | 452 | 262 | 1332 |
Permanent sample plots of Q. mongolica forests monitored for 10 years | 493 | 295 | 151 | 940 |
Criteria | Thermal Climate | Area (km2) (%) | Community Distribution | Relative Distribution Ratio (%) | |
---|---|---|---|---|---|
Northern temperate zone | Coniferous and broad-leaved mixed forests | WI < 45 | 203 km2 (0.21%) | Quercus mongolica | 85.15% |
Quercus mongolica-Pinus densiflora | 10.50% | ||||
Larix kaempferi plantation forest | 1.03% | ||||
Quercus mongolica-Quercus variabilis | 0.83% | ||||
Quercus mongolica-Betula ermanii | 0.51% | ||||
Deciduous forests | 45 < WI < 85 | 18,876 km2 (19.31%) | Quercus mongolica | 19.89% | |
Pinus densiflora | 15.35% | ||||
Quercus mongolica-Pinus densiflora | 7.90% | ||||
Quercus mongolica-Quercus variabilis | 6.50% | ||||
Pinus densiflora-Quercus mongolica | 6.05% | ||||
Central temperate zone | Deciduous forests | 85 < WI < 100 | 30,937 km2 (31.64%) | Pinus densiflora | 19.92% |
Quercus mongolica | 8.48% | ||||
Pinus densiflora-Quercus variabilis | 7.16% | ||||
Quercus variabilis | 5.50% | ||||
Quercus variabilis-Pinus densiflora | 4.72% | ||||
Southern temperate zone | Deciduous forests | 100 > WI | 17,439 km2 (17.84%) | Pinus densiflora | 26.95% |
Pinus densiflora-Quercus variabilis | 7.25% | ||||
Pinus densiflora-Quercus acutissima | 5.20% | ||||
Quercus variabilis | 5.07% | ||||
Pinus rigida plantation forest | 4.45% | ||||
Evergreen-deciduous mixed forests | CI > −10 | 30,320 km2 (31.01%) | Pinus densiflora | 21.62% | |
Pinus densiflora-Quercus variabilis | 7.56% | ||||
Q. mongolica | 6.70% | ||||
Quercus variabilis | 5.78% | ||||
Pinus thunbergia | 5.41% |
Tree Species | No. of Trees | Appearance Rate (%) | Basal Area (m2/ha) | Relative Coverage RC (%) | Relative Density RD (%) | Relative Frequency RF (%) | Importance Percentage IP (%) |
---|---|---|---|---|---|---|---|
Quercus mongolica | 20,077 | 100.00% | 29.08 | 71.39% | 63.35% | 16.86% | 50.53% |
Pinus densiflora | 918 | 39.16% | 3.18 | 7.81% | 2.90% | 6.60% | 5.77% |
A. pseudosieboldianum | 2163 | 48.06% | 0.54 | 1.33% | 6.83% | 8.10% | 5.42% |
Fraxinus rhynchophylla | 1071 | 42.88% | 0.78 | 1.92% | 3.38% | 7.23% | 4.18% |
Tila amurensis | 982 | 30.74% | 0.92 | 2.25% | 3.10% | 5.18% | 3.51% |
Betula schmidtii | 686 | 26.54% | 0.96 | 2.36% | 2.16% | 4.47% | 3.00% |
Quercus variabilis | 546 | 19.26% | 0.99 | 2.44% | 1.72% | 3.25% | 2.47% |
Total | 31,701 | - | 40.74 | 100% | 100% | 100% | 100% |
Tree Species | No. of Trees | Appearance Rate (%) | Basal Area (m2/ha) | Relative Coverage RC (%) | Relative Density RD (%) | Relative Frequency RF (%) | Importance Percentage IP (%) |
---|---|---|---|---|---|---|---|
Quercus mongolica | 15,824 | 100.00% | 20.77 | 68.42% | 67.27% | 17.83% | 51.17% |
Pinus densiflora | 1270 | 51.77% | 2.81 | 9.27% | 5.40% | 9.23% | 7.97% |
Quercus variabilis | 934 | 42.70% | 1.77 | 5.83% | 3.97% | 7.61% | 5.81% |
Prunus serrulata var. pubescens (Makino) Nakai | 676 | 49.56% | 0.66 | 2.19% | 2.87% | 8.84% | 4.63% |
Quercus serrata | 474 | 31.64% | 0.70 | 2.31% | 2.02% | 5.64% | 3.32% |
Fraxinus rhynchophylla | 404 | 23.67% | 0.36 | 1.18% | 1.72% | 4.22% | 2.37% |
Styrax obassia | 514 | 22.57% | 0.17 | 0.55% | 2.19% | 4.02% | 2.25% |
Total | 23,531 | - | 30.36 | 100% | 100% | 100% | 100% |
Tree Species | No. of Trees | Appearance Rate (%) | Basal Area (m2/ha) | Relative Coverage RC (%) | Relative Density RD (%) | Relative Frequency RF (%) | Importance Percentage IP (%) |
---|---|---|---|---|---|---|---|
Quercus mongolica | 9504 | 100.00% | 20.88 | 69.71% | 64.43% | 16.01% | 50.05% |
Pinus densiflora | 577 | 48.85% | 2.27 | 7.57% | 3.91% | 7.82% | 6.43% |
Quercus variabilis | 468 | 37.79% | 1.41 | 4.71% | 3.17% | 6.05% | 4.64% |
Quercus serrata | 409 | 43.13% | 1.00 | 3.33% | 2.77% | 6.91% | 4.34% |
A. pseudosieboldianum | 541 | 31.30% | 0.40 | 1.33% | 3.67% | 5.01% | 3.34% |
Prunus serrulata var. pubescens (Makino) Nakai | 207 | 30.53% | 0.32 | 1.06% | 1.40% | 4.89% | 2.45% |
Fraxinus sieboldian | 273 | 22.52% | 0.13 | 0.43% | 1.85% | 3.61% | 1.96% |
Total | 14,751 | - | 29.94 | 100% | 100% | 100% | 100% |
Classification | N | Mean | SD | F(p) |
---|---|---|---|---|
Northern temperate zone | 618 | 1.069 | 0.474 | 2.856 (0.057) |
Central temperate zone | 452 | 1.008 | 0.423 | |
Southern temperate zone | 262 | 1.074 | 0.469 | |
Total | 1332 | 1.049 | 0.457 |
Classification | N | Mean | SD | F(p) | Scheffe |
---|---|---|---|---|---|
Northern temperate zone | 491 | 28.681% | 40.548 | 4.239 (0.015) | Central temperate zone > Northern temperate zone |
Central temperate zone | 294 | 35.862% | 40.127 | ||
Southern temperate zone | 150 | 36.856% | 34.945 | ||
Total | 935 | 32.250% | 39.708 |
Classification | N | Mean | SD | F(p) | Scheffe |
---|---|---|---|---|---|
Age class 2 (11–20 years) | 6 | 201.464% | 142.229 | 57.343 (0.000) | Age class 2 > Age class 3, 4, 5, 6 Age class 3 > Age class 4, 5, 6 Age class 4 > Age class 6 |
Age class 3 (21–30 years) | 186 | 51.864% | 52.969 | ||
Age class 4 (31–40 years) | 404 | 30.128% | 31.075 | ||
Age class 5 (41–50 years) | 186 | 23.917% | 22.832 | ||
Age class 6 (51–60 years) | 153 | 17.507% | 22.283 | ||
Total | 935 | 32.250% | 39.708 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, E.-S.; Yang, G.-S.; Kim, Y.-S.; Cho, D.-G. Community Structure and Growth Rate of Korean Quercus mongolica Forests by Vegetation Climate Zone. Sustainability 2023, 15, 6465. https://doi.org/10.3390/su15086465
Cho E-S, Yang G-S, Kim Y-S, Cho D-G. Community Structure and Growth Rate of Korean Quercus mongolica Forests by Vegetation Climate Zone. Sustainability. 2023; 15(8):6465. https://doi.org/10.3390/su15086465
Chicago/Turabian StyleCho, Eun-Suk, Geon-Seok Yang, Yong-Suk Kim, and Dong-Gil Cho. 2023. "Community Structure and Growth Rate of Korean Quercus mongolica Forests by Vegetation Climate Zone" Sustainability 15, no. 8: 6465. https://doi.org/10.3390/su15086465
APA StyleCho, E. -S., Yang, G. -S., Kim, Y. -S., & Cho, D. -G. (2023). Community Structure and Growth Rate of Korean Quercus mongolica Forests by Vegetation Climate Zone. Sustainability, 15(8), 6465. https://doi.org/10.3390/su15086465