Effects of the Most Appropriate Proportion of Phytohormones on Tree-Ring Growth in Clones of Hybrid Larch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design and Phytohormone Treatments
2.2.1. Experimental Design
2.2.2. Phytohormone Treatment
2.3. Collection of Samples
2.4. Anatomical Observations
2.5. Anatomical Measurements of Cell Morphology and Statistical Analysis
3. Results
3.1. ANOVA Analysis Revealed That IAA + GA3 Treatment Was a More Efficient Way to Promote Tree-Ring Growth
3.2. Tree-Ring Growth under Different Phytohormone Treatments
3.2.1. Development of Total Wood Layers
3.2.2. Development of Earlywood Layers
3.2.3. Development of Latewood Layers
3.2.4. Development of Cambium Layers
3.3. Calculation of Wood Cell Morphology under Different Phytohormone Treatments
3.3.1. Calculation of Newly Formed Wood Width, including Latewood and Earlywood
3.3.2. Measurement of Wall Radial Thickness and Lumen Radial Diameter in Latewood and Earlywood
3.4. The Pattern of Tree-Ring Growth
4. Discussion
4.1. IAA and GA3 (1:1) Combination Treatment Best Induced Tree-Ring Growth
4.2. Effect of Phytohormone Application on Wood Cell Morphology
4.3. High IAA/low GA3 Combination Treatment and High GA3 Treatment Led to the Death of Treated Seedlings
5. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Po-Kai, H.; Yohei, T.; Shintaro, M.; Ebe, M.; Kristiina, L.; Rainer, W.; Dianne, P.; Hannes, K.; Schroeder, J.I. Abscisic acid-independent Stomatal CO2 Signal Transduction Pathway and Convergence of CO2 and ABA Signaling Downstream of OST1 Kinase. Proc. Natl. Acad. Sci. USA 2018, 115, 9971–9980. [Google Scholar] [CrossRef] [Green Version]
- Chater, C.; Peng, K.; Movahedi, M.; Dunn, J.; Walker, H.; Liang, Y.; Mclachlan, D.; Casson, S.; Isner, J.; Wilson, I. Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling. Curr. Biol. 2015, 25, 2709–2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Gou, J.; Yordanov, Y.; Zhang, H.; Thakur, R.; Jones, W.; Burton, A. Global Transcriptomic Profiling of Aspen Trees under Elevated CO2 to Identify Potential Molecular Mechanisms Responsible for Enhanced Radial Growth. J. Plant Res. 2013, 126, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Yanhong, Z.; Shibei, G.; Lijuan, J.; Kaiqian, Y.; Yu, W.; Xiaodan, W.; Jie, Z.; Xiaojian, X.; Kai, S.; Christine, H.F.; et al. A Novel CO2-responsive Systemic Signaling Pathway Controlling Plant Mycorrhizal Symbiosis. New Phytol. 2019, 224, 106–116. [Google Scholar] [CrossRef]
- Wu, F.; Sun, X.; Zou, B.; Zhu, P.; Ji, K. Transcriptional Analysis of Masson Pine (Pinus massoniana) under High CO2 Stress. Genes 2019, 10, 804. [Google Scholar] [CrossRef] [Green Version]
- Li, X.M.; He, X.Y.; Zhang, L.H.; Chen, W.; Chen, Q. Influence of Elevated CO2 and O3 on IAA, IAA Oxidase and Peroxidase in the Leaves of Ginkgo trees. Biol. Plant 2009, 53, 339–342. [Google Scholar] [CrossRef]
- Teng, N.J.; Wang, J.; Chen, T. Elevated CO2 Induces Physiological, Biochemical and Structural Changes in Leaves of Arabidopsis thaliana. New Phytol. 2006, 172, 92–103. [Google Scholar] [CrossRef]
- Pan, C.; Huan, M.; Qiaomei, F.; Feijun, F.; Ruishuang, A.; Golam, J.; JingquanShi, K. Role of Ethylene Biosynthesis and Signaling in Elevated CO2-induced Heat Stress Response in Tomato. Planta 2019, 250, 563–572. [Google Scholar] [CrossRef]
- Li, X.; Ahammed Golam, J.; Li, Z.; Tang, M.; Yan, P.; Wenyan, H. Decreased Biosynthesis of Jasmonic Acid via Lipoxygenase Pathway Compromised Caffeine-Induced Resistance to Colletotrichum gloeosporioides under Elevated CO2 in Tea Seedlings. Biochem. Cell Biol. 2016, 106, 1270–1277. [Google Scholar] [CrossRef] [Green Version]
- Sytar, M. Phytohormone Priming: Regulator for Heavy Metal Stress in Plants. J. Plant Growth Regul. 2019, 38, 739–752. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, S.; Kanchan, V.; Vinod, K.; Namira, A.; Susmita, D.; Riya, J.; Edappayil, J.; Puthur, J.T.; Sasan, A.; Devendra Kumar, C.; et al. Metal/Metalloid-Based Nanomaterials for Plant Abiotic Stress Tolerance: An Overview of the Mechanisms. Plants 2022, 11, 316. [Google Scholar] [CrossRef]
- Yuan, H.; Zhao, L.; Guo, W.; Yu, Y.; Tao, L.; Zhang, L.; Song, X.; Huang, W.; Cheng, L.; Chen, J.; et al. Exogenous Application of Phytohormones Promotes Growth and Regulates Expression of Wood Formation-Related Genes in Populus simonii × P. nigra. Int. J. Mol. Sci. 2019, 20, 792. [Google Scholar] [CrossRef] [Green Version]
- Fischer, U.; Kucukoglu, M.; Helariutta, Y.; Bhalerao, R.P. The Dynamics of Cambial Stem Cell Activity. Annu. Rev. Plant Biol. 2019, 70, 293–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohashi-Ito, K.; Iwamoto, K.; Nagashima, Y.; Kojima, M.; Sakakibara, H.; Fukuda, H. A Positive Feedback Loop Comprising LHW-TMO5 and Local Auxin Biosynthesis Regulates Initial Vascular Development in Arabidopsis Roots. Plant Cell Physiol. 2019, 60, 2684–2691. [Google Scholar] [CrossRef] [PubMed]
- Smetana, O.; Makila, R.; Lyu, M.; Amiryousefi, A.; Sanchez Rodriguez, F.; Wu, M.F.; Sole-Gil, A.; Leal Gavarron, M.; Siligato, R.; Miyashima, S.; et al. High Levels of Auxin Signalling Define the Stem-cell Organizer of the Vascular Cambium. Nature 2019, 565, 485–489. [Google Scholar] [CrossRef]
- Johnsson, C.; Jin, X.; Xue, W.; Dubreuil, C.; Lezhneva, L.; Fischer, U. The Plant Hormone Auxin Directs Timing of Xylem Development by Iinhibition of Secondary Cell Wall Deposition through Repression of Secondary Wall NAC-domain Transcription Factors. Physiol. Plant 2019, 165, 673–689. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Shen, Y.; He, F.; Fu, X.; Yu, H.; Lu, W.; Li, Y.; Li, C.; Fan, D.; Wang, H.C.; et al. Auxin-mediated Aux/IAA-ARF-HB Signaling Cascade Regulates Secondary Xylem Development in Populus. New Phytol. 2019, 222, 752–767. [Google Scholar] [CrossRef]
- Buttò, V.; Deslauriers, A.; Rossi, S.; Rozenberg, P.; Shishov, V.; Morin, H. The Role of Plant Hormones in Tree-ring Formation. Trees 2020, 34, 315–335. [Google Scholar] [CrossRef]
- Funada, R.; Yamagishi, Y.; Begum, S.; Kudo, K.; Nakaba, S. Xylogenesis in Trees: From Cambial Cell Division to Cell Death. In Secondary Xylem Biology; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 25–43. [Google Scholar] [CrossRef]
- Fajstavr, M.; Paschova, Z.; Giagli, K.; Vavrcik, H.; Gryc, V.; Urban, J. Auxin (IAA) and Soluble Carbohydrate Seasonal Dynamics monitored During Xylogenesis and Phloemogenesis in Scots pine. Ifor.-Bioge For. 2018, 11, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.; Eckart, P.; Alsamadisi, N.; Noble, H.; Martin, C.; Spicer, R. Polar Auxin Transport is Implicated in Vessel Differentiation and Spatial Patterning during Secondary Growth in Populus. Am. J. Bot. 2018, 105, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Rojas, M.; Meneses, M.; Oviedo, K.; Carrasco, C.; Defilippi, B.; Gonzalez-Aguero, M.; Leon, G.; Hinrichsen, P. Exogenous Gibberellic acid Application Induces the Overexpression of Key Genes for Pedicel Lignification and an Increase in Berry Drop in Table Grape. Plant Physiol. Biochem. 2018, 126, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Felipo-Benavent, A.; Cristina, R.; Blanco-Tourián, N.; Serrano-Mislata, A.; Nicolas, B.; Achard, P.; Javier, A.B.M.; Alabadí, D. Regulation of Xylem Fiber Differentiation by Gibberellins through DELLA-KNAT1 Interaction. Development 2018, 145, 1048–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.; Jeon, W.; Kim, H.; Vo, K.; Kim, J.; Park, J.; Choi, I.; Lee, H.; Han, H.; Ko, H. Wood Forming Tissue-specific Bicistronic Expression of PdGA20ox1 and PtrMYB221 Improves Both the Quality and Quantity of Woody Biomass Production in a Hybrid Poplar. Plant Biotechnol. J. 2019, 17, 1048–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerttula, S.; Zinkgraf, M.; Muday, G.K. Transcriptional and Hormonal Regulation of Gravitropism of Woody Stems in Populus. Plant Cell 2015, 27, 2800–2813. [Google Scholar] [CrossRef] [Green Version]
- Ragni, L.; Nieminen, K.; Pacheco-Villalobos, D.; Sibout, R.; Schwechheimer, C.; Hardtke, C.S. Mobile Gibberellin Directly Stimulates Arabidopsis Hypocotyl Xylem Expansion. Plant Cell 2011, 23, 1322–1336. [Google Scholar] [CrossRef] [Green Version]
- Israelsson, M.; Moritz, T. Tissue-specific Localization of Gibberellins and Expression of Gibberellin-biosynthetic and Signaling Genes in Wood-forming Tissues in Aspen. Plant J. 2005, 44, 494–504. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Guo, G.S.; Qiu, Z.F.; Li, X.D.; Zeng, B.S.; Fan, C.J. Exogenous GA3 Application Altered Morphology, Anatomic and Transcriptional Regulatory Networks of Hormones in Eucalyptus grandis. Protoplasma 2018, 255, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Falcioni, R.; Moriwaki, T.; de Oliveira, D.M.; Andreotti, G.C.; de Souza, L.A.; Dos Santos, W.D.; Bonato, C.M.; Antunes, W.C. Increased Gibberellins and Light Levels Promotes Cell Wall Thickness and Enhance Lignin Deposition in Xylem Fibers. Front. Plant Sci. 2018, 9, 1391. [Google Scholar] [CrossRef] [Green Version]
- Digby, J.; Wareing, P.F. The Effect of Applied Growth Hormones on Cambial Division and the Differentiation of the Cambial Derivatives. Ann. Bot. 1966, 30, 539–548. [Google Scholar] [CrossRef]
- Wang, Q.; Little, C.H.A.; Odén, P.C. Control of Longitudinal and Cambial Growth by Gibberellins and Indole-3-acetic acid in Current-year Shoots of Pinus sylvestris. Tree Physiol. 1997, 17, 715–721. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, X.; Chhin, S.; Zhang, J. A Bimodal Pattern and Age-Related Growth of Intra-Annual Wood Cell Development of Chinese Fir in Subtropical China. Front. Plant Sci. 2021, 12, 757438. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, Q.; Li, Y.; Yang, L.; Zhang, Y.; Cai, Y. Effect of Exogenous Gibberellin, Paclobutrazol, Abscisic Acid, and Ethrel Application on Bulblet Development in Lycoris radiata. Front. Plant Sci. 2020, 11, 615547. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.M.; Ji, J.; Yue, J.Y.; Shi, S.Q.; Chang, E.M. Exogenous Abscisic Acid Modulates Reactive Oxygen Metabolism and Related Gene Expression in Platycladus orientalis under H2O2-Induced Stress. Russ. J. Plant Physiol. 2020, 67, 85–93. [Google Scholar] [CrossRef]
- Ewers, F.W.; Aloni, R. Effects of Applied Auxin and Gibberellin on Phloem and Xylem Production in Needle Leaves of Pinus. Bot. Gaz. 1985, 146, 466–471. Available online: http://www.jstor.org/stable/2474621 (accessed on 29 October 2015). [CrossRef]
- Mehdi, B.T.; Dagmar, R.; Martin, B.; Laura, R. Auxin and Gibberellin Signaling Cross-talk Promotes Hypocotyl Xylem Expansion and Cambium Homeostasis. J. Exp. Bot. 2021, 72, 3647–3660. [Google Scholar] [CrossRef]
- Yamazaki, K.; Kondo, Y.; Kojima, M.; Takebayashi, Y.; Sakakibara, H.; Fukuda, H. Suppression of DELLA Signaling Induces Procambial Cell Formation in culture. Plant J. 2018, 94, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Bjorklund, S.; Antti, H.; Uddestrand, I.; Moritz, T.; Sundberg, B. Cross-talk Between Gibberellin and Auxin in Development of Populus wood: Gibberellin Stimulates Polar Auxin Transport and Has a Common Transcriptome with Auxin. Plant J. 2007, 52, 499–511. [Google Scholar] [CrossRef]
- Wang, G.L.; Que, F.; Xu, Z.S.; Wang, F.; Xiong, A.S. Exogenous Gibberellin Enhances Secondary Xylem Development and Lignification in Carrot Taproot. Protoplasma 2016, 254, 839–848. [Google Scholar] [CrossRef]
- Siposova, K.; Kollarova, K.; Liskova, D.; Vivodova, Z. The Effects of IBA on the Composition of Maize Root Cell Walls. J. Plant Physiol. 2019, 239, 10–17. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, J.; Wang, K.; Li, D.; Zhang, W. MiR396GRF Module Associates with Switchgrass Biomass Yield and Feedstock Quality. Plant Biotechnol. J. 2021, 19, 1523–1536. [Google Scholar] [CrossRef]
- Yan, Q.; Li, J.; Lu, L.; Yi, X.; Yao, N.; Lai, Z.; Zhang, J. Comparative Transcriptome Study of the Elongating Internode in Elephant Grass (Cenchrus purpureus) seedlings in response to exogenous gibberellin applications. Ind. Crops Prod. 2022, 178, 114653. [Google Scholar] [CrossRef]
- Yang, X.; Hill, K.A.; Austin, R.S.; Tian, L. Differential Gene Expression of Brachypodium distachyon Roots Colonized by Gluconacetobacter diazotrophicus and the Role of BdCESA8 in the Colonization. Mol. Plant-Microbe Interact. 2021, 34, 1143–1156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Hassan, M.J.; Li, Z.; Peng, Y. Indole-3-acetic acid Improves Drought Tolerance of White Clover via Activating Auxin, Abscisic acid and Jasmonic acid Related Genes and Inhibiting Senescence Genes. BMC Plant Biol. 2020, 20, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shun-Ying, C.S.-R.K.; Ching-Te, C. Roles of Gibberellins and Abscisic acid in Dormancy and Germination of Red Bayberry (Myrica rubra) Seeds. Tree Physiol. 2008, 28, 1431–1439. [Google Scholar] [CrossRef]
- Qibing, L.; Fuqing, W.; Peike, S.; Zhe, Z.; Xin, Z.; Xiuping, G.; Jiulin, W.; Zhijun, C.; Jie, W.; Haiyang, W.; et al. The SnRK2-APC/CTE Regulatory Module Mediates the Antagonistic Action of Gibberellic acid and Abscisic acid Pathways. Nat. Commun. 2015, 6, 7981. [Google Scholar] [CrossRef] [Green Version]
Phytohormone Type | Concentration | ||||||||
---|---|---|---|---|---|---|---|---|---|
CK | IAA | GA3 | IG | CK | LCTs | MCTs | HCTs | ||
IH | Average | 5.81 | 6.14 | 11.00 * | 7.09 | 5.81 | 10.41 * | 7.28 * | 6.05 |
F | 38.43 | 28.23 | |||||||
P | 0.00 | 0.00 | |||||||
IBD | Average | 0.19 | 0.22 | 0.19 | 0.30 * | 0.19 | 0.28 * | 0.20 | 0.22 |
F | 15.59 | 9.29 | |||||||
P | 0.00 | 0.00 | |||||||
SR | Average | 1.00 | 1.00 | 0.92 | 0.83* | 1.00 | 1.00 | 0.92 | 0.83 * |
F | 8.80 | 8.80 | |||||||
P | 0.00 | 0.00 | |||||||
TWL | Average | 10.89 | 10.73 | 8.49 * | 13.03 * | 10.89 | 10.65 | 11.03 | 10.34 |
F | 15.57 | 0.33 | |||||||
P | 0.00 | 0.80 | |||||||
EWL | Average | 6.33 | 5.48 * | 5.28 * | 6.13 | 6.33 | 5.16 * | 5.54 * | 6.24 |
F | 6.26 | 9.01 | |||||||
P | 0.00 | 0.00 | |||||||
LWL | Average | 4.56 | 5.25 | 3.05 * | 6.90* | 4.56 | 5.49 | 5.33 | 4.10 |
F | 13.87 | 2.05 | |||||||
P | 0.00 | 0.11 | |||||||
CL | Average | 3.47 | 3.61 | 3.22 | 4.54 * | 3.47 | 3.51 | 3.84 * | 3.99 * |
F | 43.24 | 5.42 | |||||||
P | 0.00 | 0.00 |
WRTEW (μm) | LRDEW (μm) | RWLEW | WRTLW (μm) | LRDLW (μm) | RWLLW | |
---|---|---|---|---|---|---|
CK | 1.88 ± 0.13 | 12.26 ± 0.35 | 0.31 ± 0.02 | 6.27 ± 0.37 | 15.11 ± 0.84 | 0.85 ± 0.04 |
I100 | 1.73 ± 0.07 | 10.68 ± 0.31 * | 0.34 ± 0.02 | 4.29 ± 0.14 * | 8.30 ± 0.25 * | 1.06 ± 0.03 * |
I300 | 1.74 ± 0.07 | 13.18 ± 0.52 | 0.28 ± 0.01 | 4.56 ± 0.21 * | 8.67 ± 0.24 * | 1.14 ± 0.08 * |
I500 | 1.83 ± 0.07 | 10.93 ± 0.31 * | 0.34 ± 0.01 | 7.27 ± 0.33 * | 16.17 ± 1.02 | 0.99 ± 0.04 * |
G100 | 1.81 ± 0.05 | 10.88 ± 0.31 * | 0.34 ± 0.01 | 4.38 ± 0.19 * | 6.59 ± 0.23 * | 1.41 ± 0.09 * |
G300 | 2.42 ± 0.23 * | 17.21 ± 1.74 * | 0.30 ± 0.01 | 4.10 ± 0.10 * | 6.45 ± 0.22 * | 1.32 ± 0.05 * |
IG100 | 1.63 ± 0.09 | 10.81 ± 0.38 * | 0.31 ± 0.02 | 4.34 ± 0.11 * | 7.63 ± 0.32 * | 1.24 ± 0.06 * |
Treatment | TMR (DAT) | MR | AR |
---|---|---|---|
CK | 54.40 | 0.11 | 0.07 |
GA3 100 mg L−1 | 53.90 | 0.07 | 0.04 |
IAA 300 mg L−1 | 25.40 | 0.16 | 0.10 |
IAA + GA3 100 mg L−1 + 100 mg L−1 | 21.40 | 0.21 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xie, Y.; Sun, X.; Zhang, S. Effects of the Most Appropriate Proportion of Phytohormones on Tree-Ring Growth in Clones of Hybrid Larch. Sustainability 2023, 15, 6508. https://doi.org/10.3390/su15086508
Liu Y, Xie Y, Sun X, Zhang S. Effects of the Most Appropriate Proportion of Phytohormones on Tree-Ring Growth in Clones of Hybrid Larch. Sustainability. 2023; 15(8):6508. https://doi.org/10.3390/su15086508
Chicago/Turabian StyleLiu, Yucheng, Yunhui Xie, Xiaomei Sun, and Shougong Zhang. 2023. "Effects of the Most Appropriate Proportion of Phytohormones on Tree-Ring Growth in Clones of Hybrid Larch" Sustainability 15, no. 8: 6508. https://doi.org/10.3390/su15086508
APA StyleLiu, Y., Xie, Y., Sun, X., & Zhang, S. (2023). Effects of the Most Appropriate Proportion of Phytohormones on Tree-Ring Growth in Clones of Hybrid Larch. Sustainability, 15(8), 6508. https://doi.org/10.3390/su15086508