Impact of Paddy Field Reservoirs on Flood Management in a Large River Basin of Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Model H08
2.2.1. Creating Map Data
2.2.2. Preparing Meteorological Data
2.2.3. Land Surface Process Module
2.2.4. River Module
2.3. Model Calibration and Validation
2.4. Paddy Reservoir Impact Assessment through Model Improvement
3. Results
3.1. Calibration Parameter Sensitivity Analysis
3.2. Model Performance in Calibration and Validation
3.3. Effect of the Paddy Reservoir Strategy on Discharge Reduction
= [{1 m × (50% − 15%)} + 0.25 m] × 1000 kg/m3 = 600 kg/m2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Nakamura, S.; Oki, T. Paradigm shifts on flood risk management in Japan: Detecting triggers of design flood revisions in the modern era. Water Resour. Res. 2018, 54, 5504–5515. [Google Scholar] [CrossRef]
- Fan, J.; Huang, G. Evaluation of flood risk management in Japan through a recent case. Sustainability 2020, 12, 5357. [Google Scholar] [CrossRef]
- Nakamura, F.; Ishiyama, N.; Yamanaki, S.; Higa, M.; Akasaka, T.; Kobayashi, Y.; Ono, S.; Fuke, N.; Kitazawa, M.; Morimoto, J.; et al. Adaptation to climate change and conservation of biodiversity using green infrastructure, Innovative Approaches in River Management and Restoration. Wiley Online Libr. 2020, 36, 921–933. [Google Scholar] [CrossRef]
- Hai, P.T.; Masumoto, T.; Shimizu, K. Evaluation of flood regulation Role of paddies in the lower Mekong River basin using a 2D flood simulation model. Annu. J. Hydraul. Eng. JSCE 2006, 50, 73–78. [Google Scholar] [CrossRef]
- Sujono, J. Flood reduction function of paddy rice fields under different water saving irrigation techniques. J. Water Resour. Prot. 2010, 2, 555–559. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.O.; Lee, S.H.; Jang, K.S. Efforts to improve biodiversity in paddy field ecosystem of South Korea. Reintroduction 2011, 1, 25–30. [Google Scholar]
- Hao, L.; Sun, G.; Liu, Y.; Wan, J.; Qin, M.; Qian, H.; Liu, C.; Zheng, J.; John, R.; Fan, P.; et al. Urbanization dramatically altered the water balances of a paddy field-dominated basin in southern China. Hydrol. Earth Syst. Sci. 2015, 19, 3319–3331. [Google Scholar] [CrossRef] [Green Version]
- Sari, P.; Legono, D.; Sujono, J. Performance of retarding basin in flood disaster risk mitigation in Welang River, East Java Province, Indonesia. J. Civ. Eng. Forum 2018, 4, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Furuta, N.; Shimatani, Y. Integrating ecological perspectives into engineering practices—Perspectives and lessons from Japan. Int. J. Disaster Risk Reduct. 2018, 32, 87–94. [Google Scholar] [CrossRef]
- Yamada, Y.; Taki, K.; Yoshida, T.; Ichinose, T. An economic value for ecosystem-based disaster risk reduction using paddy fields in the kasumitei open levee system. Paddy Water Environ. 2022, 20, 215–226. [Google Scholar] [CrossRef]
- Yoshikawa, N.; Nagao, N.; Misawa, S. Watershed scale evaluation of flood mitigation function of paddy fields installed with runoff control devices. Proc. Agric. Rural Eng. Soc. 2009, 77, 273–280. [Google Scholar] [CrossRef]
- Miyazu, S.; Yoshikawa, N.; Abe, S.; Misawa, S. Economic evaluation of paddy field dam in the case of polder area. J. Jpn. Soc. Civ. Eng. 2013, 69, I_1531–I_1536. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, N. Can paddy fields mitigate disasters? Possible use and technical aspects of the paddy field dam. In Socio-Ecological Restoration in Paddy-Dominated Landscapes; Nishikawa, U., Miyashita, T., Eds.; Springer: Tokyo, Japan, 2014; pp. 197–210. [Google Scholar] [CrossRef]
- Oishi, T.; Nakano, R.; Matsuno, Y. Perception and valuation of Paddy Field Dam functions by rural communities: A CVM approach. Paddy Water Environ. 2019, 17, 383–390. [Google Scholar] [CrossRef]
- Chai, Y.; Touge, Y.; Shi, K.; Kazama, S. Evaluating potential flood mitigation effect of paddy field dam for typhoon no. 19 in 2019 in the Naruse river basin. J. Jpn. Soc. Civ. Eng. 2020, 76, 295–303. [Google Scholar] [CrossRef]
- Kobayashi, K.; Kono, Y.; Kimura, T.; Tanakamaru, H. Estimation of paddy field dam effect on flood mitigation focusing on Suse region of Hyogo, Japan. Hydrol. Res. Lett. 2021, 15, 64–70. [Google Scholar] [CrossRef]
- Hatcho, N.; Yamasaki, K.; Hirofumi, O.; Kimura, M.; Matsuno, Y. Estimation of the function of a paddy field for reduction of flood risk. In Sustainability of Water Resources; Yadav, B., Mohanty, M.P., Pandey, A., Singh, V.P., Singh, R.D., Eds.; Water Science and Technology Library; Springer: Cham, Switzerland, 2022; Volume 116. [Google Scholar] [CrossRef]
- Unami, K.; Kawachi, T. Systematic assessment of flood mitigation in a tank irrigated paddy fields area. Paddy Water Environ. 2005, 3, 191–199. [Google Scholar] [CrossRef]
- Masumoto, T.; Yoshida, T.; Kubota, T. An index for evaluating the flood-prevention function of paddies. Paddy Water Environ. 2006, 4, 205–210. [Google Scholar] [CrossRef]
- Yoshikawa, N.; Miyazu, S.; Yasuda, H.; Misawa, S. Development of inundation analysis model for low-lying agricultural reservoir. J. Jpn. Soc. Civ. Eng. Ser. B1 2011, 67, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Segawa, M.; Maruyama, T.; Takase, K. Estimation of unit flood discharge for various land use types with a focus on urbanization. Open J. Mod. Hydrol. 2016, 6, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, R.; Kato, T.; Jeong, J.; Arnold, J.G. Development of SWAT-paddy for simulating lowland paddy fields. Sustainability 2018, 10, 3246. [Google Scholar] [CrossRef] [Green Version]
- Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K. An integrated model for the assessment of global water resources—Part 1: Model description and input meteorological forcing. Hydrol. Earth Syst. Sci. 2008, 12, 1007–1025. [Google Scholar] [CrossRef] [Green Version]
- Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K. An integrated model for the assessment of global water resources—Part 2: Applications and assessments. Hydrol. Earth Syst. Sci. 2008, 12, 1027–1037. [Google Scholar] [CrossRef] [Green Version]
- Hanasaki, N.; Saito, Y.; Chaiyasaen, C.; Champathong, A.; Ekkawatpanit, C.; Saphaokham, S.; Sukhapunnaphan, T.; Sumdin, S.; Thongduang, J. A quasi-real-time hydrological simulation of the Chao Phraya River using meteorological data from the Thai Meteorological Department Automatic Weather Stations. Hydrol. Res. Lett. 2014, 8, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Mateo, C.M.; Hanasaki, N.; Komori, D.; Tanaka, K.; Kiguchi, M.; Champathong, A.; Sukhapunnaphan, T.; Yamazaki, D.; Oki, T. Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models. Water Resour. Res. 2014, 50, 7245–7266. [Google Scholar] [CrossRef]
- Masood, M.; Yeh, P.J.-F.; Hanasaki, N.; Takeuchi, K. Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna Basin. Hydrol. Earth Sci. 2015, 19, 747–770. [Google Scholar] [CrossRef] [Green Version]
- Hanasaki, N.; Matsuda, H.; Fujiwara, M.; Hirabayashi, Y.; Seto, S.; Kanae, S.; Oki, T. Toward hyper-resolution global hydrological models including human activities: Application to Kyushu Island, Japan. Hydrol. Earth. Syst. Sci. 2022, 26, 1953–1975. [Google Scholar] [CrossRef]
- Moriguchi, S.; Matsugi, H.; Ochiai, T.; Yoshikawa, S.; Inagaki, H.; Ueno, S.; Suzuki, M.; Tobita, Y.; Chida, T.; Takahashi, K.; et al. Survey report on damage caused by 2019 Typhoon Hagibis in Marumori Town, Miyagi Prefecture, Japan. Soil Found. 2021, 61, 586–599. [Google Scholar] [CrossRef]
- Konami, T.; Koga, H.; Kawatsura, A. Role of pre-disaster discussions on preparedness on consensus-making of integrated flood management (IFM) after a flood disaster, based on a case in the Abukuma River Basin, Fukushima, Japan. Int. J. Disaster Risk Reduct. 2021, 53, 102012. [Google Scholar] [CrossRef]
- Yamazaki, D.; Oki, T.; Kanae, S. Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrol. Earth Syst. Sci. 2009, 13, 2241–2251. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, D.; Kanae, S.; Kim, H.; Oki, T. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res. 2011, 47, W04501. [Google Scholar] [CrossRef]
- Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 2014, 50, 7505–7514. [Google Scholar] [CrossRef] [Green Version]
- Manabe, S. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Weather. Rev. 1969, 97, 739–774. [Google Scholar] [CrossRef]
- Robock, A.; Vinnikov, K.Y.; Schlosser, A.; Speranskaya, N.A.; Xue, Y. Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Clim. 1995, 8, 15–35. [Google Scholar] [CrossRef]
- Oki, T.; Sud, Y.C. Design of total runoff integrating pathways TRIP: A global river channel network. Earth Interact. 1998, 2, 1–37. [Google Scholar] [CrossRef]
- Oki, T.; Nishimura, T.; Dirmeyer, P. Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteorol. Soc. Jpn. 1999, 77, 235–255. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. Part I- A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Hanasaki, N.; Inuzuka, T.; Kanae, S.; Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 2010, 384, 232–244. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Otto, F.E.L. The role of human-induced climate change in heavy rainfall events such as the one associated with Typhoon Hagibis. Clim. Chang. 2022, 172, 7. [Google Scholar] [CrossRef]
Description of the Variable | Source |
---|---|
Digital elevation map (DEM), basin mask | Global river network map of CaMaFlood (Downscaled from 0.5° to 5-min) |
Meteorological data: air temperature, longwave downward radiation, shortwave downward radiation, surface pressure, wind speed, rainfall rate, snowfall rate, specific humidity, and albedo | WFD ERA-Interim (2018) JAXA Today’s Earth (2019) (Downscaled from 0.5° to 5-min) |
Observed river discharge | MLIT database |
River basin area (shape file) | MLIT database |
Land use map (paddy field area) | JAXA-EORC HRLULC (30 m resolution) |
Parameter | Range Selected | Best Value |
---|---|---|
SD | 0.5–3.0 m | 0.5 m |
CD | 0.001–0.004 | 0.001 |
Ɣ | 1.0–2.5 | 1.0 |
τ | 50–200 days | 200 days |
Model Default | After Calibration | |
---|---|---|
NSE (daily) | 0.41 | 0.50 |
NSE (monthly) | 0.46 | 0.82 |
Model Default | After Calibration | |
---|---|---|
R2 (daily) | 0.51 | 0.55 |
R2 (monthly) | 0.86 | 0.94 |
NSE (Daily) | NSE (Monthly) | |||
---|---|---|---|---|
Model Default | Validation | Model Default | Validation | |
Yawata | 0.38 | 0.52 | 0.35 | 0.86 |
Marumori | 0.21 | 0.47 | 0.15 | 0.82 |
Nihonmatsu | 0.46 | 0.56 | 0.26 | 0.85 |
Utushigawa | 0.44 | 0.58 | 0.59 | 0.82 |
Shirakawa | 0.42 | 0.50 | 0.68 | 0.85 |
R2 (Daily) | R2 (Monthly) | |||
---|---|---|---|---|
Model Default | Validation | Model Default | Validation | |
Yawata | 0.49 | 0.54 | 0.83 | 0.92 |
Marumori | 0.46 | 0.56 | 0.79 | 0.91 |
Nihonmatsu | 0.54 | 0.57 | 0.70 | 0.87 |
Utushigawa | 0.66 | 0.68 | 0.75 | 0.82 |
Shirakawa | 0.50 | 0.60 | 0.78 | 0.86 |
Peak Discharge (m3/s) | Typhoon Hagibis Rainfall | 80% of Hagibis Rainfall | 60% of Hagibis Rainfall | 40% of Hagibis Rainfall | 20% of Hagibis Rainfall |
---|---|---|---|---|---|
Without paddy reservoir | 3853.00 | 3061.86 | 2239.84 | 1329.29 | 174.37 |
With paddy reservoir | 3616.00 | 2817.11 | 1990.92 | 1099.50 | 142.78 |
Discharge reduction | 237.00 | 244.75 | 248.92 | 229.79 | 31.59 |
Reduction percentage (%) | 6.15 | 7.99 | 11.11 | 17.29 | 18.12 |
Typhoon Hagibis Rainfall | 80% of Hagibis Rainfall | 60% of Hagibis Rainfall | 40% of Hagibis Rainfall | 20% of Hagibis Rainfall | |
---|---|---|---|---|---|
Previous day moisture content (kg/m2) | ~150 | ~150 | ~150 | ~150 | ~150 |
Peak rainfall (mm) | 612.54 | 490.03 | 367.52 | 245.02 | 122.51 |
Total moisture (kg/m2) | 762.54 | 640.03 | 517.52 | 395.02 | 272.51 |
Overflow condition from paddy reservoir | >600 kg/m2 Overflow | >600 kg/m2 Overflow | <600 kg/m2 No overflow | <600 kg/m2 No overflow | <600 kg/m2 No overflow |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, D.; Oki, K.; Yoshida, K.; Hanasaki, N.; Kamiya, H. Impact of Paddy Field Reservoirs on Flood Management in a Large River Basin of Japan. Sustainability 2023, 15, 6604. https://doi.org/10.3390/su15086604
Saha D, Oki K, Yoshida K, Hanasaki N, Kamiya H. Impact of Paddy Field Reservoirs on Flood Management in a Large River Basin of Japan. Sustainability. 2023; 15(8):6604. https://doi.org/10.3390/su15086604
Chicago/Turabian StyleSaha, Debanjali, Kazuo Oki, Koshi Yoshida, Naota Hanasaki, and Hideaki Kamiya. 2023. "Impact of Paddy Field Reservoirs on Flood Management in a Large River Basin of Japan" Sustainability 15, no. 8: 6604. https://doi.org/10.3390/su15086604
APA StyleSaha, D., Oki, K., Yoshida, K., Hanasaki, N., & Kamiya, H. (2023). Impact of Paddy Field Reservoirs on Flood Management in a Large River Basin of Japan. Sustainability, 15(8), 6604. https://doi.org/10.3390/su15086604