Thermodynamic Studies of the Micellar Properties of a Surfactant Used for Membrane Protein Solubilization and Stabilization
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Measurements
2.2.1. Surface Tension
2.2.2. Density and Viscosity
2.2.3. Dynamic Light Scattering
2.2.4. Fluorescence Emission
3. Results and Discussion
3.1. Critical Micelle Concentration
Surfactant | T [K] | CMC [mM] | Monomer OTG Solution | Micellar OTG Solution | |||||
---|---|---|---|---|---|---|---|---|---|
OTG | 293 | 10.89 | 8.50 | 12.30 | 15.0 | 7.20 | 9.70 | 0.54 | 0.88 |
303 | 10.65 | 7.60 | 12.00 | 14.0 | 6.90 | 9.20 | 0.55 | 0.90 | |
313 | 10.63 | 7.20 | 11.60 | 13.0 | 6.50 | 9.00 | 0.56 | 0.91 |
3.2. Apparent and Partial Molar Volume of OTG
3.3. Size and Shape of OTG Micelles
3.4. Microenvironmental Properties of OTG Micelles and Their Changes with Temperature
3.5. Standard Thermodynamic Functions of OTG Micellization
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosen, J.M. Surfactants and Interfacial Phenomena; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ruiz, C.C. Sugar-Based Surfactants: Fundamentals and Applications; Surfactant Science Series 143; CRC Press/Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Gaudin, T.; Huiling, L.; Fayet, G.; Berthauld-Drelich, A.; Rotureau, P.; Pourceau, G.; Wadouachi, A.; Van Hecke, A.; Nesterenko, A.; Pezron, I. Impact of the chemical structure on amphiphilic properties of sugar-based surfactants: A literature overview. Adv. Colloid Int. Sci. 2019, 270, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.; Rhode, O. Sugar-based surfactants for consumer products and technical applications. Fett/Lipid 1999, 101, 25–33. [Google Scholar] [CrossRef]
- Stubenrauch, C. Sugar surfactants-aggregation, interfacial, and adsorption phenomena. Curr. Opin. Colloid Int. Sci. 2001, 6, 160–170. [Google Scholar] [CrossRef]
- Kjellin, M.; Johansson, I. Surfactants from Renewable Resources, 1st ed.; Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Matsumura, S.; Imai, K.; Yoshikawa, S.; Kawada, K.; Uchibori, T. Surface activities, biodegrability and antimicrobial properties of n-alkyl glucosides, mannosides and galactosides. J. Am. Chem. Soc. 1990, 67, 996–1001. [Google Scholar]
- Dong, J.; Eng, Y.L.; Mo, X. The study of a new detergent (octyl-glucopyranoside) for decellularizing porcine pericardium as tissue engineering scaffold. J. Surg. Res. 2013, 183, 56–67. [Google Scholar] [CrossRef]
- Muzzalupo, R.; Tavano, L.; La Mesa, C. Alkyl glucopyranoside-based niosomes containing mathotrexate for pharmaceutical applications: Evaluation of physico-chemical and biological properties. Int. J. Pharm. 2013, 458, 224–229. [Google Scholar] [CrossRef]
- Bercier, A.; Goncalves, S.; Autefage, H.; Briand-Mesange, F.; Lignon, O.; Fitremann, J. Calcium phosphate bone cements including sugar surfactants: Part two-injectability, adhesive properties and biocompatibility. Materials 2010, 3, 5111–5129. [Google Scholar] [CrossRef] [Green Version]
- Gavvala, K.; Koninti, R.K.; Sengupta, A.; Hazra, P. Excited state proton transfer dynamics of an eminent anticancer drug, ellipticine, in octyl glucoside micelle. Phys. Chem. Chem. Phys. 2014, 16, 14953–14960. [Google Scholar] [CrossRef]
- Uchegbu, I.F.; Vyas, S.P. Non-ionic surfactant based vesicles (niosomes) in drug delivery (review). Int. J. Pharm. 1998, 172, 33–70. [Google Scholar] [CrossRef]
- von Rybinski, W.; Hill, K. Alkyl polyglucosides-Properties and applications of a new class of surfactants. Angew. Chem. Int. Ed. 1998, 37, 1328–1345. [Google Scholar] [CrossRef]
- Holmberg, K. Natural surfactants. Curr. Opin. Colloid Int. Sci. 2001, 6, 148–159. [Google Scholar] [CrossRef]
- Wilson, J.C.; Milton, J.K.; Donald, I.A.; von Itzstein, M. Investigation of the stability of thiosilanosides toward hydrolysis by sialidases using NMR spectroscopy. Org. Lett. 1999, 1, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, J.; Brazier, J.A.; Fisher, J.; Cosstick, R. Incorporation of a S-glycosidic linkage into a glyconucleoside changes the conformational preference of both furanose sugars. Carbohydr. Res. 2007, 342, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Wenk, R.; Seeling, J. Interaction of octyl-β-thioglucopyranoside with lipid membranes. Biophys. J. 1997, 73, 2565–2574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garavito, R.M.; Miller, S.F. Detergents as tool in membrane biochemistry. J. Biol. Chem. 2001, 276, 32403–32406. [Google Scholar] [CrossRef] [Green Version]
- Saito, S.; Tsuchiya, T. Characteristic of n-octyl-β-D-thioglucopyranoside, a new no-ionic detergent useful for membrane biochemistry. Biochem. J. 1984, 222, 829–832. [Google Scholar] [CrossRef]
- Ruiz, C.C.; Molina-Bolivar, J.A.; Aguiar, J.; Peula-Garcia, J.M. Aggregation behavior of octyl-β-thioglucopyranoside in the presence of glycine. Colloids Surf. A Physicochem. Eng. Asp. 2004, 249, 35–39. [Google Scholar] [CrossRef]
- López, O.; Cócera, M.; Parra, J.L.; de la Maza, A. Influence of the alkyl chain length of alkyl glucosides on their ability to solubilize phosphatidylcholine liposomes. Colloids Surf. A Physicochem. Eng. Asp. 2001, 193, 221–229. [Google Scholar] [CrossRef]
- Aoudia, M.; Zana, R. Aggregation behaviour of sugar surfactants in aqueous solutions: Effects of temperature and the addition of non-ionic polymers. J. Colloid Int. Sci. 1998, 206, 158–167. [Google Scholar] [CrossRef]
- Bogusz, S.; Venable, B.M.; Pastor, W. Molecular dynamics simulations of octyl glucoside micelles: Dynamic Properties. J. Phys. Chem. B 2001, 105, 8312–8321. [Google Scholar] [CrossRef]
- Bogusz, S.; Venable, B.M.; Pastor, W. Molecular dynamics simulations of octyl glucoside micelles: Structural Properties. J. Phys. Chem. B 2000, 104, 5462–5470. [Google Scholar] [CrossRef]
- Krawczyk, J. Temperature impact on the water-air interfacial activity of n-octyl and n- dodecyl-β-D-glucopyranosides. Colloids Surf. A Physicochem. Eng. Asp. 2017, 533, 61–67. [Google Scholar] [CrossRef]
- Krawczyk, J. Thermodynamic properties of disaccharide based surfactants adsorption at the water-air interface. Colloids Surf. A Physicochem. Eng. Asp. 2018, 551, 50–57. [Google Scholar] [CrossRef]
- Ruiz, C.C.; Hierrezuelo, J.M.; Garcia-Peula, J.M.; Aguiar, J. Interaction between N-octyl-β-D-thioglucopyranoside and Bovine Serum Albumin. Open Mol. J. 2008, 2, 6–18. [Google Scholar]
- Pastor, O.; Junquera, E.; Aircart, E. Hydration and micellization process of n-octyl-β-D-thioglucopyranoside in aqueous solution. A thermodynamic and fluorimetric study in the absence and presence of salts. Langmuir 1998, 14, 2950–2957. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Szymczyk, K.; Krawczyk, J.; Jańczuk, B. Activity and thermodynamic parameters of some surfactants adsorption at the water-air interface. Fluid Phase Equilibria 2012, 318, 25–33. [Google Scholar] [CrossRef]
- Krawczyk, J. Aggregation properties of sucrose fatty acid esters and some other sugar-based surfactants at different temperatures. J. Mol. Liq. 2018, 271, 610–620. [Google Scholar] [CrossRef]
- Hierrezuelo, J.M.; Aguiar, J.; Ruiz, C.C. Micellar properties of a mixed surfactant system constituted by n-octyl-β-D-thioglucopyranoside and sodium dodecyl sulphate. Colloids Surf. A Physicochem. Eng. Asp. 2005, 264, 29–36. [Google Scholar] [CrossRef]
- Frindi, M.; Michels, B. Ultrasonic absorption studies of surfactant exchange between micelles and bulk phase in aqueous micellar solutions of nonionic surfactants with a short alkyl chain. 3. Surfactants with a sugar head group. J. Phys. Chem. B 1992, 96, 8137–8141. [Google Scholar] [CrossRef]
- Capalbi, A.; Gente, G.; La Mesa, C. Solution properties of alkyl glucosides, alkyl thioglucosides and alkyl maltosides. Colloids Surf. A Physicochem. Eng. Asp. 2004, 246, 99–108. [Google Scholar] [CrossRef]
- Cardoso, M.V.C.; Sabadini, E. Before and beyond the micellization of n-alkyl glycosides. A water-1H NMR relaxation study. Langmuir 1998, 14, 2950–2957. [Google Scholar] [CrossRef] [PubMed]
- Claesson, P.M.; Kjellin, M.; Rojas, J.; Stubenrauch, C. Short-range interactions between non-ionic surfactant layers. Phys. Chem. Chem. Phys. 2006, 8, 5501–5514. [Google Scholar] [CrossRef] [PubMed]
- Arlt, B.; Datta, S.; Sottmann, T.; Wiegand, S. Soret effect on n-octyl-β-D-glucopyranoside (C8G1) in water around the critical micelle concentration. J. Phys. Chem. B 2010, 114, 2118–2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T. The hydration of glucose: The local configurations in sugar-water hydrogen bonds. Phys. Chem. Chem. Phys. 2008, 10, 96–105. [Google Scholar] [CrossRef]
- Bauer, C.; Bauduin, P.; Girard, L.; Diat, O.; Zemb, T. Hydration of sugar based surfactants under osmotic stress: A SAXS study. Colloids Surf. A Physicochem. Eng. Asp. 2012, 413, 92–100. [Google Scholar] [CrossRef]
- Orlando, J.; Rojas, O.J.; Neuman, R.D.; Claesson, P.M. Viscoelastic properties of isomeric alkylglucoside surfactants studied by surface light scattering. J. Phys. Chem. B 2005, 109, 22440–22448. [Google Scholar]
- Bergström, L.M.; Bastardo, L.A.; Garamus, V.M. A small-angle neutron and static light scattering study of micelles formed in aqueous mixtures of a nonionic alkylglucoside and an anionic surfactant. J. Phys. Chem. B 2005, 109, 12387–12393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Marone, P.A.; Thiyagarajan, P.; Tiede, D.M. Structure and molecular fluctuations of n-alkyl-β-D-glucopyranoside micelles determined by X-ray and neutron scattering. Langmuir 1999, 15, 7510–7519. [Google Scholar] [CrossRef]
- Ericsson, C.A.; Söderman, O.; Garamus, V.M.; Bergström, L.M.; Ulvenlund, S. Effects of temperature, salt and deuterium oxide on the self-aggregation of alkylglycosides in dilute solution. 1. n-nonyl-β-D-glucoside. Langmuir 2004, 20, 1401–1408. [Google Scholar] [CrossRef]
- Wu, X.; Chen, L.; Fu, F.; Luo, Z. Synthesis and surface properties of alkyl-β-D-thioglucopyranoside. J. Mol. Liq. 2019, 276, 282–289. [Google Scholar] [CrossRef]
- Molina-Bolivar, J.A.; Aguiar, J.; Peula-Garcia, J.M.; Ruiz, C.C. Surface activity, micelle formation and growth of n-octyl-β-D-thioglucopyranoside in aqueous solutions at different temperatures. J. Phys. Chem. B. 2004, 108, 12813–12820. [Google Scholar] [CrossRef]
- Molina-Bolivar, J.A.; Ruiz, C.C.; Hierrezuelo, J.M. Effect of NaCl on the self-aggregation of n-octyl-β-D-thioglucopyranoside in aqueous medium. Phys. Chem. B 2006, 110, 12089–12095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, C.C.; Molina-Bolivar, J.A.; Hierrezuelo, J.M.; Liger, E. Self-Assembly, Surface Activity and Structure of n-octyl-β-D-thioglucopyranoside in Ethylene Glycol-Water Mixtures. Int. J. Mol. Sci. 2013, 14, 3228–3253. [Google Scholar] [CrossRef] [Green Version]
- Molina-Bolivar, J.A.; Ruiz, C.C. Micellar size and phase behavior in n-octyl-β-D-thioglucopyranoside/Triton X-100 mixtures: The effect of NaCl addition. Fluid Phase Equilibria 2012, 327, 58–64. [Google Scholar] [CrossRef]
- Kale, K.M.; Zana, R. Effect of the nature of the counterion on the volume change upon micellization of ionic detergents in aqueous solutions. J. Colloid Int. Sci. 1997, 61, 312–322. [Google Scholar] [CrossRef]
- Benjamin, L. Partial molar volume changes during micellization and solution of nonionic surfactants and perfluorocarboxylates using a magnetic density balance. J. Phys. Chem. 1966, 70, 3790–3797. [Google Scholar] [CrossRef]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 1975, 272, 1525–1568. [Google Scholar] [CrossRef]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of self-assembly of lipid bilayers and vesicles. Biochem. Biophys. Acta 1977, 470, 185–201. [Google Scholar] [CrossRef]
- Tanford, C. The Hydrophobic Effect, 2nd ed.; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Jańczuk, B.; Méndez-Sierra, J.A.; González-Martίn, M.L.; Bruque, J.M.; Wójcik, W. Properties of decylammonium chloride and cesium perfluorooctanoate at interfaces and standard free energy of their adsorption. J. Colloid Int. Sci. 1997, 192, 408–414. [Google Scholar] [CrossRef]
- Wiśniewska-Becker, A.; Gruszecki, W.I. Biomembrane Models in Drug-Biomembrane Interaction Studies. The Application of Calorimetric Techniques; Pignatello, R., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2013; pp. 46–95. [Google Scholar]
- Ray, G.B.; Chakraborty, I.; Moulik, S. Pyrene absorption can be convinient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J. Colloid Int. Sci. 2006, 294, 248–254. [Google Scholar]
- Misra, P.K.; Somasundaran, P. Fluorescence probing of the surfactant assemblies in solutions and at solid-liquid interfaces. In Interfacial Processes and Molecular Aggregation of Surfactants; Narayanan, R., Ed.; Springer: Berlin, Germany, 2008. [Google Scholar]
- Aquiar, J.; Carpena, P.; Molina-Bolivar, J.A.; Ruiz, C.C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Int. Sci. 2003, 258, 116–122. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Szymczyk, K.; Krawczyk, J.; Jańczuk, B. Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase Equilibria 2012, 322–323, 26–134. [Google Scholar] [CrossRef]
- Butler, V. The thermodynamics of the surfaces of solutions. Proc. R. Soc. A 1932, 138, 348–375. [Google Scholar]
- Zdziennicka, A.; Krawczyk, J.; Jańczuk, B. Volumetric properties of rhamnolipid and surfactin at different temperatures. J. Mol. Liq. 2018, 255, 562–571. [Google Scholar] [CrossRef]
- Philips, J.N. Energetics of micelle formation. Trans. Faraday Soc. 1955, 51, 561–569. [Google Scholar] [CrossRef]
- Adamson, A.W.; Gast, A.P. Physical Chemistry of Surfaces, 6th ed.; Wiley-Interscience: New York, NY, USA, 1997. [Google Scholar]
Surfactant | Temperature [K] | [×10−6 m3/mol] | (Experimental) [×10−6 m3/mol] | (Experimental) [×10−6 m3/mol] | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | A | A’ | B | B’ | C | C’ | ||
OTG | 293 | 258.37 | 278.91 | 254.63 | 264.35 | 256.57 | 269.04 | 254.64 | 260.97 |
303 | 257.94 | 266.41 | 259.69 | 270.55 | 257.91 | 263.50 | |||
313 | 260.65 | 270.10 | 261.61 | 273.61 | 260.62 | 266.00 |
Surfactant | T [K] | r [nm] | [Å] | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | A | B | C | ||||
OTG | 293 | 3.5 | 18.00 | 33 | 29 | 89 | 113 | 111 | 114 |
303 | 3.5 | 112 | 110 | 113 | |||||
313 | 3.5 | 110 | 109 | 112 |
Parameter | T [K] | CMC [mM] | [kJ/mol] | [kJ/mol] | [kJ/mol] | [kJ/molK] |
---|---|---|---|---|---|---|
293 | 10.89 | −20.79 | 0.69 | 22.56 | 0.077 | |
303 | 10.65 | −21.55 | 0.73 | 23.33 | ||
313 | 10.63 | −22.26 | 078 | 24.10 | ||
298 | 8.50 | −21.39 | 6.01 | 27.54 | 0.094 | |
303 | 7.60 | −22.4 | 6.43 | 28.48 | ||
313 | 7.20 | −23.27 | 6.86 | 29.42 | ||
293 | 12.30 | −20.49 | 1.72 | 22.56 | 0.077 | |
303 | 12.00 | −21.25 | 1.84 | 23.33 | ||
313 | 11.60 | −22.03 | 1.96 | 24.10 | ||
293 | 1.50 | −20.01 | 5.15 | 25.20 | 0.086 | |
303 | 1.40 | −20.86 | 5.51 | 26.06 | ||
313 | 1.30 | −21.73 | 5.88 | 26.92 | ||
Py | 293 | 7.20 | −21.8 | 3.43 | 25.49 | 0.087 |
303 | 6.90 | −22.64 | 3.67 | 26.36 | ||
313 | 6.50 | −23.54 | 3.92 | 27.23 | ||
ANS | 293 | 9.70 | −21.07 | 2.58 | 23.73 | 0.081 |
303 | 9.20 | −21.92 | 2.75 | 24.54 | ||
313 | 9.00 | −22.69 | 2.94 | 25.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krawczyk, J. Thermodynamic Studies of the Micellar Properties of a Surfactant Used for Membrane Protein Solubilization and Stabilization. Sustainability 2023, 15, 6618. https://doi.org/10.3390/su15086618
Krawczyk J. Thermodynamic Studies of the Micellar Properties of a Surfactant Used for Membrane Protein Solubilization and Stabilization. Sustainability. 2023; 15(8):6618. https://doi.org/10.3390/su15086618
Chicago/Turabian StyleKrawczyk, Joanna. 2023. "Thermodynamic Studies of the Micellar Properties of a Surfactant Used for Membrane Protein Solubilization and Stabilization" Sustainability 15, no. 8: 6618. https://doi.org/10.3390/su15086618
APA StyleKrawczyk, J. (2023). Thermodynamic Studies of the Micellar Properties of a Surfactant Used for Membrane Protein Solubilization and Stabilization. Sustainability, 15(8), 6618. https://doi.org/10.3390/su15086618