R&D Expenditures on Innovation: A Panel Cointegration Study of the E.U. Countries
Abstract
:1. Introduction
1.1. Research and Development (R&D)
1.2. Innovation
- It uses a PVAR methodology, which considers all variables as endogenous by applying a panel data technique that allows for unobserved individual heterogeneity.
- Through a panel ARDL model, the short-run and long-run effects of research and development expenditures in EU countries are determined with the global innovation index.
- The estimation procedures are performed with the Mean Group (MG) and the Pooled Mean Group (PMG) estimators, as solutions to heterogeneity bias caused by heterogeneous gradients in dynamic panel coefficients [18].
- The causality check is performed with an ARDL error correction template.
- Based on the cointegration analysis, we use impulse response function (IRF) analysis by imposing Cholesky factorization to measure the effects on the values of innovation variables induced by a shock to the system using the bootstrap method (Standard Percentile Bootstrap).
- Variance decomposition analyses are used to determine the contribution of each structural impact to the endogenous variables.
2. Literature Review
3. Data
4. Methodology
- is a vector of endogenous dimensional variables .
- is a vector of exogenous dimensional variables .
- represents the country-effects variable that captures the unobservable individual heterogeneity of dimensions .
- is a dimensional pseudo-variable that captures the shocks affecting all countries during the period t.
- is an idiosyncratic error, which is dimensional .
- are parameters to be estimated in dimensions .
- is a parameter to be estimated in dimensions .
- Vector autoregressive models facilitate the linear approximation of real relationships by arbitrarily selecting lagged variables (within an empirically defined lag window), provided that the frame is large enough. This process enables researchers to adapt endogenous variables to a time series model even if there are no theoretically derived expectations about the exact nature of dynamic relationships.
- PVAR allows us to calculate impulse response functions to estimate the magnitude of an exogenous shock to one of the endogenous variables and all other variables over time. Impulse responses are typical econometric tools for analyzing the dynamic relationships between var model variables [37,38,39]. The estimated PVAR factors record only the “direct effect” of one variable on another, and impulse response functions are more informative, as they estimate the total direct and indirect effects that one variable can exert on another [40].
4.1. Panel ARDL Cointegration Test
4.2. Panel Causality Test
4.3. Impulse Response Function
4.4. Variance Decomposition
5. Preliminary Tests
5.1. Multicollinearity Tests
5.2. Hausman Test (Random Effects vs. Fixed Effects Estimation)
5.3. Cross-Sectional Dependence
5.4. Homogeneity–Heterogenety Test
6. Empirical Results
6.1. Panel Unit Root Tests
6.2. Panel ARDL Cointegration Test
6.3. Panel Causality Test
6.4. Impulse Response Functions
6.5. Variance Decomposition Analysis
7. Analysis of Results and Discussions
8. Conclusions
- There was a lack of data for more years, especially in new EU countries; therefore, we used annual data for the period of 2007–2020 (sample available in the sources for all EU countries).
- Economic growth has become the decisive element in all aspects of economic activity, as knowledge and innovation are the basis for economic and social development for all EU countries. Therefore, economic activities can be divided into sectors to examine their impact on innovation.
- Strategies should be adopted to improve high-tech in the countries of the weak group of countries shown in Table 13.
- In the same group of countries, governments should provide appropriate funding for research and development.
- Several EU countries should import technology from developed countries that may not suit their environment and thus cannot benefit from the technological innovation that is expected to be achieved.
- Finally, work should be carried out to create an environment that is conducive to innovation in all EU countries by expanding research and development spending and protecting intellectual property rights.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Economies Variables | Austria (AUT) | Belgium (BEL) | Bulgaria (BGR) | |||
---|---|---|---|---|---|---|
R&D | GII | R&D | GII | R&D | GII | |
Mean | 2.89 | 53.68 | 2.43 | 53.06 | 0.67 | 40.68 |
Maximum | 3.20 | 63.71 | 3.47 | 62.14 | 0.95 | 46.57 |
Minimum | 2.41 | 50.13 | 1.85 | 49.05 | 0.43 | 30.28 |
Std Dev | 0.25 | 3.77 | 0.47 | 4.17 | 0.16 | 3.51 |
Skewness | −0.59 | 1.72 | 0.84 | 1.26 | 0.01 | −1.67 |
Kurtosis | 1.92 | 4.97 | 2.90 | 3.47 | 1.78 | 7.02 |
J–B | 1.49 | 9.23 | 1.67 | 3.89 | 0.86 | 16.01 |
Cyprus (CYP) | Czech Republic (CZE) | Germany (DEU) | ||||
Mean | 0.52 | 46.76 | 1.67 | 49.58 | 2.87 | 59.26 |
Maximum | 0.82 | 51.51 | 1.99 | 53.85 | 3.16 | 71.28 |
Minimum | 0.38 | 39.11 | 1.23 | 44.28 | 2.46 | 54.89 |
Std Dev | 0.12 | 2.89 | 0.28 | 2.27 | 0.20 | 5.06 |
Skewness | 1.31 | −1.15 | −0.49 | −0.42 | −0.34 | 1.66 |
Kurtosis | 3.85 | 4.84 | 1.62 | 3.72 | 2.53 | 4.32 |
J–B | 4.45 | 5.07 | 1.68 | 0.73 | 0.40 | 7.52 |
Denmark (DNK) | Spain (ESP) | Estonia (EST) | ||||
Mean | 2.92 | 59.50 | 1.28 | 48.76 | 1.55 | 50.93 |
Maximum | 3.09 | 67.42 | 1.40 | 54.42 | 2.30 | 55.30 |
Minimum | 2.51 | 56.42 | 1.19 | 43.81 | 1.05 | 44.57 |
Std Dev | 0.14 | 3.43 | 0.06 | 2.68 | 0.34 | 2.57 |
Skewness | −1.76 | 1.69 | 0.39 | 0.50 | 0.84 | −0.77 |
Kurtosis | 6.14 | 4.40 | 1.97 | 3.50 | 2.99 | 4.02 |
J–B | 13.05 | 7.82 | 0.98 | 0.74 | 1.65 | 2.01 |
Finland (FIN) | France (FRA) | Greece (GRC) | ||||
Mean | 3.18 | 60.18 | 2.19 | 54.96 | 0.90 | 39.66 |
Maximum | 3.73 | 66.59 | 2.35 | 62.14 | 1.49 | 50.57 |
Minimum | 2.72 | 55.10 | 2.02 | 49.25 | 0.57 | 34.18 |
Std Dev | 0.37 | 3.01 | 0.08 | 3.76 | 0.29 | 4.10 |
Skewness | 0.11 | 0.62 | −0.58 | 0.82 | 0.64 | 1.38 |
Kurtosis | 1.49 | 3.22 | 3.84 | 2.74 | 2.22 | 4.83 |
J–B | 1.34 | 0.94 | 1.22 | 1.63 | 1.30 | 6.44 |
Croatia (HRV) | Hungary (HUN) | Ireland (IRL) | ||||
Mean | 0.86 | 40.44 | 1.26 | 45.37 | 1.37 | 57.21 |
Maximum | 1.24 | 46.85 | 1.60 | 50.57 | 1.61 | 61.42 |
Minimum | 0.73 | 37.00 | 0.95 | 41.14 | 1.17 | 52.28 |
Std Dev | 0.14 | 2.71 | 0.19 | 2.93 | 0.18 | 2.73 |
Skewness | 1.59 | 0.71 | −0.00 | 0.12 | 0.12 | −0.29 |
Kurtosis | 4.75 | 3.21 | 2.20 | 1.99 | 1.21 | 2.31 |
J–B | 7.69 | 1.21 | 0.36 | 0.62 | 1.89 | 0.47 |
Italy (ITA) | Lithuania (LTU) | Luxembourg (LUX) | ||||
Mean | 1.30 | 46.67 | 0.91 | 42.26 | 1.31 | 56.50 |
Maximum | 1.53 | 52.14 | 1.15 | 49.14 | 1.58 | 62.57 |
Minimum | 1.12 | 40.69 | 0.78 | 38.49 | 1.12 | 50.84 |
Std Dev | 0.11 | 2.72 | 0.11 | 3.27 | 0.16 | 3.43 |
Skewness | 0.24 | −0.08 | 0.62 | 1.17 | 0.66 | 0.27 |
Kurtosis | 2.18 | 3.56 | 2.63 | 3.52 | 1.90 | 2.45 |
J–B | 0.52 | 0.20 | 0.97 | 3.37 | 1.72 | 0.34 |
Latvia (LVA) | Malta (MLT) | Netherlands (NLD) | ||||
Mean | 0.60 | 43.85 | 0.62 | 50.49 | 1.99 | 61.02 |
Maximum | 0.71 | 47.00 | 0.80 | 56.10 | 2.29 | 66.28 |
Minimum | 0.43 | 38.14 | 0.50 | 40.28 | 1.62 | 56.31 |
Std Dev | 0.08 | 2.54 | 0.09 | 3.76 | 0.23 | 2.99 |
Skewness | −0.61 | −0.75 | 0.49 | −1.30 | −0.47 | 0.11 |
Kurtosis | 2.38 | 2.89 | 2.09 | 5.12 | 1.58 | 2.32 |
J–B | 1.08 | 1.32 | 1.03 | 6.59 | 1.69 | 0.29 |
Poland (POL) | Portugal (PRT) | Romania (ROU) | ||||
Mean | 0.92 | 41.04 | 1.38 | 47.56 | 0.47 | 38.78 |
Maximum | 1.39 | 46.85 | 1.61 | 51.89 | 0.52 | 46.10 |
Minimum | 0.56 | 36.14 | 1.12 | 42.45 | 0.38 | 34.85 |
Std Dev | 0.25 | 2.62 | 0.13 | 3.18 | 0.04 | 2.89 |
Skewness | 0.37 | 0.49 | 0.10 | −0.19 | −0.73 | 1.12 |
Kurtosis | 2.18 | 3.59 | 2.47 | 1.62 | 3.21 | 3.97 |
J–B | 0.71 | 0.76 | 0.19 | 1.19 | 1.29 | 3.53 |
Slovak Republic (SVK) | Slovenia (SVN) | Sweden (SWE) | ||||
Mean | 0.75 | 43.14 | 2.07 | 47.16 | 3.29 | 63.48 |
Maximum | 1.16 | 51.28 | 2.56 | 54.28 | 3.52 | 69.28 |
Minimum | 0.44 | 39.05 | 1.42 | 40.14 | 3.10 | 55.71 |
Std Dev | 0.20 | 3.36 | 0.33 | 3.53 | 0.12 | 3.29 |
Skewness | −0.03 | 1.46 | −0.19 | 0.05 | 0.41 | −0.23 |
Kurtosis | 2.53 | 4.31 | 2.37 | 3.05 | 2.28 | 4.12 |
J–B | 0.12 | 6.02 | 0.31 | 0.01 | 0.68 | 0.87 |
Appendix C
References
- Baden-Fuller, C.; Haefliger, S. Business models and technological innovation. Long Range Plan. 2013, 46, 419–426. [Google Scholar] [CrossRef] [Green Version]
- OECD/European Union. Chapter 7. Measuring external factors influencing innovation in firms. In OSLO MANUAL, Guidelines for Collecting, Reporting and Using Data on Innovation, 4th ed.; OECD Publishing: Paris, France, 2018; pp. 145–162. [Google Scholar] [CrossRef]
- O’Reilly, C.; Binns, A.J.M. The three stages of disruptive innovation: Idea generation, incubation, and scaling. Calif. Manag. Rev. 2019, 61, 49–71. [Google Scholar] [CrossRef]
- Sözen, I.; Tufaner, M.B. The relationship between R&D expenditures and innovative development: A panel data analysis for selected OECD countries. Marmara Üniversitesi İktisadi İdari Bilim. Derg. 2019, 41, 493–502. [Google Scholar]
- European Commission. 2018. Available online: https://commission.europa.eu (accessed on 12 March 2023).
- Najjar, M.; Alsurakji, I.H.; El-Qanni, A.; Nour, A.I. The role of blockchain technology in the integration of sustainability practices across multitier supply networks: Implications and potential complexities. J. Sustain. Financ. Invest. 2023, 13, 744–762. [Google Scholar] [CrossRef]
- Anderson, J.C.; Narus, J.A. Business marketing: Understand what customers value. Harv. Bus. Rev. 1998, 76, 53–65. [Google Scholar]
- Al Momani, K.M.K.; Jamaludin, N.; Abdullah, W.Z.W.Z.W.; Nour, A.-N.I.-H. The influence of relational capital on the relationship between intellectual capital and earnings per share in the digital economy in the Jordanian industrial sector. In The Big Data-Driven Digital Economy: Artificial and Computational Intelligence; Springer: Cham, Switzerland, 2021; pp. 59–76. [Google Scholar] [CrossRef]
- Wu, Y.; Gu, F.; Ji, Y.; Guo, J.; Fan, Y. Technological capability, eco-innovation performance, and cooperative R&D strategy in new energy vehicle industry: Evidence from listed companies in China. J. Clean. Prod. 2020, 261, 121–157. [Google Scholar]
- Markham, S.K.; Ward, S.J.; Aiman-Smith, L.; Kingon, A.I. The valley of death as context for role theory in product innovation. J. Prod. Innov. Manag. 2010, 27, 402–417. [Google Scholar] [CrossRef]
- Sarpong, D.; Boakye, D.; Ofosu, G.; Botchie, D. The three pointers of research and development (R&D) for growth-boosting sustainable innovation system. Technovation 2022, 122, 102581. [Google Scholar] [CrossRef]
- Ortega-Argilés, R.; Potters, L.; Vivarelli, M. R&D and productivity: Testing sectoral peculiarities using micro data. Empir. Econ. 2011, 41, 817–839. [Google Scholar]
- Science Business Network. 2021. Available online: https://sciencebusiness.net (accessed on 12 March 2023).
- Baregheh, A.; Rowley, J.; Sambrook, S. Towards a multidisciplinary definition of innovation. Manag. Decis. 2009, 47, 1323–1339. [Google Scholar] [CrossRef]
- Fagerberg, J.; Verspagen, B. Technology-gaps, innovation-diffusion and transformation: An evolutionary interpretation. Res. Policy 2002, 31, 1291–1304. [Google Scholar] [CrossRef]
- Chudnovsky, D.; Lopez, A.; Pupato, G. Innovation and Productivity: A Study of Argentine Manufacturing Firms’ Behavior (1992–2001); Working Papers; Universidad de San Andres, Departamento de Economia: Buenos Aires, Argentina, 2004; Volume 70. [Google Scholar]
- Das, R.C. Interplays among R&D spending, patent and income growth: New empirical evidence from the panel of countries and groups. J. Innov. Entrep. 2020, 9, 18. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Pooled mean group estimation of dynamic heterogeneous panels. J. Am. Stat. Assoc. 1999, 94, 621–634. [Google Scholar] [CrossRef]
- Bilbao-Osorio, B.; Rodríguez-Pose, A. From R&D to innovation and economic growth in the EU. Growth Change 2004, 35, 434–455. [Google Scholar]
- Ulku, H. R&D, Innovation, and Economic Growth: An Empirical Analysis; IMF Working Paper; No. 04/185; International Monetary Fund, Research Department: Washington, DC, USA, 2004. [Google Scholar]
- Hasan, I.; Tucci, C.L. The innovation–economic growth nexus: Global evidence. Res. Policy 2010, 39, 1264–1276. [Google Scholar] [CrossRef] [Green Version]
- Gocer, I.; Alatas, S.; Peker, O. Effects of R&D and innovation on income in EU countries: New generation panel cointegration and causality analysis. Theor. Appl. Econ. 2016, 23, 153–164. [Google Scholar]
- Kacprzyk, A.; Doryń, W. Innovation and economic growth in old and new member states of the European Union. Econ. Res.-Ekon. Istraživanja 2017, 30, 1724–1742. [Google Scholar] [CrossRef]
- Aynur, P. Innovation and economic growth in developing countries: Empirical implication of Swamy’s random coefficient model (RCM), 3rd World Conference on Technology, Innovation and Entrepreneurship (WOCTINE). Procedia Comput. Sci. 2019, 158, 1122–1130. [Google Scholar]
- Kolodziejczyk, B.P. Innovation in Europe: A Comparative Study. Master’s Thesis, Department of Political Science, Centre for European Studies, University of Gothenburg, Gothenburg, Sweden, 2020. [Google Scholar]
- Omri, A. Technological innovation and sustainable development: Doe the stage of development matter? Environ. Impact Assess. Rev. 2020, 83, 106398. [Google Scholar] [CrossRef]
- Minović, J.; Jednak, S. The Relationship Between Innovation, Foreign Direct Investment and Economic Growth in the Selected EU and EU Candidate Countries. In Finance, Innovation and Technology: New Models and Structures; Institute of Economics—Ss. Cyril & Methodius University: Skopje, North Macedonia, 2021; pp. 96–115. ISBN 978-608-4519-23-2. [Google Scholar]
- Uğurluay, K.; Kirikkaleli, D. Sustainable technology in high-income economies: The role of innovation. Sustainability 2022, 14, 3320. [Google Scholar] [CrossRef]
- Mohamed, M.M.A.; Liu, P.; Nie, G. Causality between Technological Innovation and Economic Growth: Evidence from the Economies of Developing Countries. Sustainability 2022, 14, 3586. [Google Scholar] [CrossRef]
- Bera, A.K.; Jarque, C.M. Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte Carlo Evidence. Econ. Lett. 1981, 7, 313–318. [Google Scholar] [CrossRef]
- Holtz-Eakin, D.; Newey, W.; Rosen, H.S. Estimating vector autoregressions with panel data. Econometrica 1988, 56, 1371–1395. [Google Scholar] [CrossRef]
- Love, I.; Zicchino, L. Financial development and dynamic investment behavior: Evidence from Panel VAR. Q. Rev. Econ. Financ. 2006, 46, 190–210. [Google Scholar] [CrossRef]
- Grossmann, A.; Love, I.; Orlov, A.G. The dynamics of exchange rate volatility: A panel VAR approach. J. Int. Financ. Mark. Inst. Money 2014, 33, 1–27. [Google Scholar] [CrossRef]
- Xing, X.; Ye, A. Consumption upgrading and industrial structural change: A general equilibrium analysis and empirical test with low-carbon green transition constraints. Sustainability 2022, 14, 13645. [Google Scholar] [CrossRef]
- Nickell, S. Biases in dynamic models with fixed effects. Econometrica 1981, 49, 1417–1426. [Google Scholar] [CrossRef]
- Karna, A.; Mavrovitis, C.; Richter, A. Disentangling reciprocal relationships between R&D intensity, profitability and capital market performance: A panel VAR analysis. Long Range Plan. 2022, 55, 102247. [Google Scholar]
- Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer: Berlin, Germany, 2005. [Google Scholar]
- Wu, O.Q.; Chen, H. Optimal control and equilibrium behavior of production-inventory systems. Manag. Sci. 2010, 56, 1362–1379. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; He, Z. Environmental regulation, R&D investment, and green technology innovation in China: Based on the PVAR model. PLoS ONE 2022, 17, e0275498. [Google Scholar]
- Stock, J.H.; Watson, M.W. Vector autoregressions. J. Econ. Perspect. 2001, 15, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, F.; Li, R. Revisiting the environmental kuznets curve hypothesis in 208 counties: The roles of trade openness, human capital, renewable energy and natural resource rent. Environ. Res. 2023, 216, 114637. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating causal relations by econometric models and cross spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Dumitrescu, E.-I.; Hurlin, C. Testing for Granger non-causality in heterogeneous Panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef] [Green Version]
- Mawejje, Μ.; Odhiambo, Ν.Μ. Macroeconomic determinants of fiscal policy in East Africa: A panel causality analysis. J. Econ. Financ. Adm. Sci. 2021, 27, 105–123. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W.J. Co-integration and error correction: Representation, estimation, and testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Liu, C.; Xia, G. Research on the dynamic interrelationship among R&D investment, technological innovation, and economic growth in China. Sustainability 2018, 10, 4260. [Google Scholar]
- Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Wu, M.; Zhao, M. Dynamic relations between energy consumption, environmental pollution and economic growth—Based on China’s 1990–2014 time series data. Res. Technol. Econ. Manag. 2016, 12, 25–29. [Google Scholar]
- Baltagi, B.H. Econometric Analysis of Panel Data, 3rd ed.; Wiley: Chichester, UK, 2005. [Google Scholar]
- Dritsaki, C.; Dritsaki, M. Introduction in Econometrics; Klidarithmos Publications: Athens, Greece, 2020. [Google Scholar]
- Hausman, J.A. Specification tests in econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Yang, T.; Li, R. Does income inequality reshape the environmental Kuznets curve (EKC) hypothesis? A nonlinear panel data analysis. Environ. Res. 2023, 216, 114575. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. The lagrange multiplier test and its applications to model specifications in econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels; Cambridge Working Papers in Economics 0435; Department of Applied Economics, University of Cambridge: Cambridge, UK, 2004. [Google Scholar]
- Baltagi, B.H.; Feng, Q.; Kao, C. Testing for sphericity in a fixed effects panel data model. Econom. J. 2011, 14, 25–47. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Li, R. Does urbanization redefine the environmental Kuznets curve? An empirical analysis of 134 Countries. Sustain. Cities Soc. 2022, 76, 103382. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Li, R. Trade protectionism jeopardizes carbon neutrality–Decoupling and breakpoints roles of trade openness. Sustain. Prod. Consum. 2023, 35, 201–215. [Google Scholar] [CrossRef]
- Hsiao, C. Analysis of Panel Data, 3rd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H.; Shin, Y. An autoregressive distributed-lag modelling approach to cointegration analysis. In Econometrics and Economic Theory in the 20th Century: The Ragnar Frisch Centennial Symposium; Strøm, S., Ed.; Cambridge University Press (Econometric Society Monographs): Cambridge, UK, 1999; pp. 371–413. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Khatib Saleh, F.A.; Nour, A.-N.I. The impact of corporate governance on firm performance during the COVID-19 pandemic: Evidence from Malaysia. J. Asian Financ. Econ. Bus. 2021, 8, 943–952. [Google Scholar] [CrossRef]
Variable | Symbol | Period | Source |
---|---|---|---|
R&D expenditure to GDP (ratio) | R&D | 2007–2020 | Database of www.worldbank.org. Εurostat (last update: 22 April 2022) |
Global innovation index | GII | 2007–2020 | Database of www.worldbank.org. IMF, Government Finance Statistics Yearbook. |
Variables | R&D | GII |
---|---|---|
Mean | 1.56 | 49.63 |
Std. Deviation | 0.89 | 7.95 |
Maximum | 3.73 | 71.28 |
Minimum | 0.38 | 30.28 |
Skewness | 0.64 | 0.29 |
Kurtosis | 2.24 | 2.34 |
Jarque–Bera | 35.02 | 12.04 |
Probability | 0.00 | 0.00 |
Observations | 378 | 378 |
Variables | R&D | GII |
---|---|---|
R&D | 1.000 | |
t-Statistic | ||
Probability | ||
GII | 0.673 | 1.000 |
t-Statistic | 19.72 | |
Probability | 0.000 |
Test Summary | Chi-Sq. Statistic | Chi-Sq. D.F. | Prob. |
---|---|---|---|
Cross-section random | 49.43 | 1 | 0.0097 |
Cross-Sectional Dependence Test (H0: No Cross-Sectional Dependence) | |||
---|---|---|---|
Test | Statistic | D.F | p-Value |
Breusch–Pagan LM | 2175.5 | 351 | 0.000 |
Pesaran scaled LMs | 68.862 | 0.000 | |
Bias-corrected scaled LMp | 67.823 | 0.000 | |
Pesaran CDBC | 41.899 | 0.000 |
Hypotheses | F-Stat | p-Value |
---|---|---|
H1 | 17.35 | 8.53 × 10−67 |
H2 | 2.348 | 0.0003 |
H3 | 29.405 | 2.78 × 10−72 |
Pesaran CIPS | ||||
---|---|---|---|---|
Intercept | Intercept and Trend | |||
Variable | T-Stat | Prob. | T-Stat | Prob. |
R&D | −1.394 | >0.10 | −2.424 | ≥0.10 |
GII | −2.332 ** | <0.05 | −3.063 ** | <0.05 |
ΔR&D | −3.766 * | <0.01 | −4.253 * | <0.01 |
ΔGII | −3.897 * | <0.01 | −7.329 * | <0.01 |
Test Statistics | Value | Df | Prob. |
---|---|---|---|
t-statistic | 1134.95 | 161 | 0.000 |
F-Statistic | 1,288,111 | (1,161) | 0.000 |
Chi-squared | 1,288,111 | 1 | 0.000 |
ARDL(4,4) | ||||
---|---|---|---|---|
Dependent Variable: GII | ||||
Variable | Coefficient | Std Error | T-Statistic | p-Value |
R&D | 0.643194 * | 0.000567 | 1134.950 | 0.000 |
ARDL(4,4) | ||||
---|---|---|---|---|
Dependent Variable: GII | ||||
Variable | Coefficient | Std Error | T-Statistic | p-Value |
ECM(-1) | −0.665377 * | 0.166063 | −4.006780 | 0.0001 |
DGII(-1) | −0.216349 | 0.123825 | −1.747213 | 0.0825 |
DGII(-2) | −0.172257 | 0.084845 | −2.030241 | 0.0440 |
DGII(-3) | 0.038774 | 0.057248 | 0.677301 | 0.4992 |
DR&D | −0.528136 * | 0.106472 | −4.960330 | 0.0000 |
DR&D(-1) | −0.428347 * | 0.117514 | −3.645057 | 0.0004 |
DR&D(-2) | −0.649927 * | 0.109801 | −5.919149 | 0.0000 |
DR&D(-3) | −0.271729 * | 0.110399 | −2.461331 | 0.0149 |
C | 12.84775 * | 3.483735 | 3.687925 | 0.0003 |
Short-Run | Long-Run | |||
---|---|---|---|---|
Variable | ΔGII | ΔR&D | F(2,324) | ECMt−1 |
ΔGII | - | −0.061 ** (0.046) | 35.43 * (0.000) | −0.041 * (0.000) |
ΔR&D | −0.004 (0.727) | - | 1.803 (0.673) | −0.042 (0.420) |
Period | GII | R&D | ||||
---|---|---|---|---|---|---|
S.E | GII | R&D | S.E | GII | R&D | |
1 | 1.940361 | 100.0000 | 0.000000 | 3.508925 | 1.256159 | 98.74384 |
2 | 2.593072 | 99.38839 | 0.611609 | 5.309684 | 1.570466 | 98.42953 |
3 | 2.857015 | 95.27458 | 4.725417 | 6.688517 | 2.015313 | 97.98469 |
4 | 3.125658 | 93.47782 | 6.522183 | 7.859282 | 2.326660 | 97.67334 |
5 | 3.422640 | 93.49409 | 6.505913 | 8.903911 | 2.565891 | 97.43411 |
6 | 3.660469 | 93.25372 | 6.746277 | 9.857417 | 2.822034 | 97.17797 |
7 | 3.855973 | 92.82575 | 7.174248 | 10.74376 | 3.092645 | 96.90735 |
8 | 4.040662 | 92.63744 | 7.362558 | 11.57990 | 3.358461 | 96.64154 |
9 | 4.213038 | 92.58319 | 7.416811 | 12.37608 | 3.622851 | 96.37715 |
10 | 4.367102 | 92.52278 | 7.477216 | 13.13916 | 3.891692 | 96.10831 |
Mean | 94.54575 | 5.454225 | 2.652217 | 97.34775 |
2007–2020 | |
---|---|
Average EU27 | 1.56 |
Top countries | Austria, Belgium, Czech Republic, Germany, Denmark, Finland, France, the Netherlands, Slovenia, Sweden |
Coefficient of variation | 0.102 |
Bottom countries | Bulgaria, Cyprus, Spain, Estonia, Greece, Croatia, Hungary, Ireland, Italy, Lithuania, Luxembourg, Latvia, Malta, Poland, Portugal, Romania, the Slovak Republic |
Coefficient of variation | 0.161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dritsaki, M.; Dritsaki, C. R&D Expenditures on Innovation: A Panel Cointegration Study of the E.U. Countries. Sustainability 2023, 15, 6637. https://doi.org/10.3390/su15086637
Dritsaki M, Dritsaki C. R&D Expenditures on Innovation: A Panel Cointegration Study of the E.U. Countries. Sustainability. 2023; 15(8):6637. https://doi.org/10.3390/su15086637
Chicago/Turabian StyleDritsaki, Melina, and Chaido Dritsaki. 2023. "R&D Expenditures on Innovation: A Panel Cointegration Study of the E.U. Countries" Sustainability 15, no. 8: 6637. https://doi.org/10.3390/su15086637
APA StyleDritsaki, M., & Dritsaki, C. (2023). R&D Expenditures on Innovation: A Panel Cointegration Study of the E.U. Countries. Sustainability, 15(8), 6637. https://doi.org/10.3390/su15086637