Predicting Raw Milk Price Based on Depth Time Series Features for Consumer Behavior Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Workflow
2.2. Data Preprocessing
2.3. Representation Learning of Raw Milk Price Data
2.3.1. Latent Representation Layer
2.3.2. Deep Convolutional Layer
- Sample selection
- Contextual representations
2.4. Predicting Raw Milk Price Based on the CNN
3. Results
3.1. Dataset
3.2. Evaluation Indicator
3.3. Performance of the Framework
4. Discussion
4.1. Factors Affecting Raw Milk Price
4.2. Consumer Purchasing Behavior Analysis Based on Raw Milk Price Fluctuation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scholz-Ahrens, K.E.; Ahrens, F.; Barth, C.A. Nutritional and health attributes of milk and milk imitations. Eur. J. Nutr. 2020, 59, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Kurajdova, K.; Táborecka-Petrovicova, J. Literature review on factors influencing milk purchase behaviour. Int. Rev. Manag. Mark. 2015, 5, 9–25. [Google Scholar]
- Ilie, D.M.; Lădaru, G.-R.; Diaconeasa, M.C.; Stoian, M. Consumer Choice for Milk and Dairy in Romania: Does Income Really Have an Influence? Sustainability 2021, 13, 12204. [Google Scholar] [CrossRef]
- Ali, B.J.; Anwar, G. Marketing Strategy: Pricing strategies and its influence on consumer purchasing decision. Environ. Health Res. 2021, 5, 26–39. [Google Scholar] [CrossRef]
- Kaliji, S.A.; Mojaverian, S.M.; Amirnejad, H.; Canavari, M. Factors affecting consumers’ dairy products preferences. AGRIS -Line Pap. Econ. Inform. 2019, 11, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.A.; Babu, S. Factors influencing consumer buying behavior with special reference to dairy products in Pondicherry state. Int. Mon. Ref. J. Res. Manag. Technol. 2014, 3, 65–73. [Google Scholar]
- Mehmood, A.; Mushtaq, K.; Ali, A.; Hassan, S.; Hussain, M.; Tanveer, F. Factors Affecting Consumer Behavior Towards Consumption of Fresh Milk. Pak. J. Life Soc. Sci. 2018, 16, 113–116. [Google Scholar]
- Zhou, H.; Nanseki, T. Traceability System of Dairy Products and Its Impacts on Consumer Behavior in China: An Application of Multinominal Logit Model. In Agricultural Innovation in Asia: Efficiency, Welfare, and Technology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 149–157. [Google Scholar]
- Le Ha, N.T.; Linh, N.P.T. Green Marketing Practices and Consumer Behavior of Organic Food. Int. J. Inf. Bus. Manag. 2023, 15, 27–41. [Google Scholar]
- Vakili, V.; Vakili, K.; Zamiri Bidari, M.; Azarshab, A.; Vakilzadeh, M.M.; Kazempour, K. Effect of Social Beliefs on Consumption of Dairy Products and Its Predicting Factors Based on the Transtheoretical Model: A Population-Based Study. J. Environ. Public Health 2023, 2023, 5490068. [Google Scholar] [CrossRef]
- Rombach, M.; Dean, D.L.; Bitsch, V. “Got Milk Alternatives?” Understanding Key Factors Determining US Consumers’ Willingness to Pay for Plant-Based Milk Alternatives. Foods 2023, 12, 1277. [Google Scholar] [CrossRef]
- Alonso, S.; Angel, M.D.; Muunda, E.; Kilonzi, E.; Palloni, G.; Grace, D.; Leroy, J.L. Consumer Demand for Milk and the Informal Dairy Sector Amidst COVID-19 in Nairobi, Kenya. Curr. Dev. Nutr. 2023, 7, 100058. [Google Scholar] [CrossRef] [PubMed]
- Vavra, P.; Goodwin, B.K. Analysis of Price Transmission along the Food Chain; OECD Publishing: Berlin, Germany, 2005. [Google Scholar]
- Engle, R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econom. J. Econom. Soc. 1982, 50, 987–1007. [Google Scholar] [CrossRef]
- Ilbeigi, M.; Castro-Lacouture, D.; Joukar, A. Generalized autoregressive conditional heteroscedasticity model to quantify and forecast uncertainty in the price of asphalt cement. J. Manag. Eng. 2017, 33, 04017026. [Google Scholar] [CrossRef]
- Joukar, A.; Nahmens, I. Volatility forecast of construction cost index using general autoregressive conditional heteroskedastic method. J. Constr. Eng. Manag. 2016, 142, 04015051. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 2000, 42, 80–86. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Yang, X.; Wen, W. Ridge and lasso regression models for cross-version defect prediction. IEEE Trans. Reliab. 2018, 67, 885–896. [Google Scholar] [CrossRef]
- Wang, S.; Ji, B.; Zhao, J.; Liu, W.; Xu, T. Predicting ship fuel consumption based on LASSO regression. Transp. Res. Part D Transp. Environ. 2018, 65, 817–824. [Google Scholar] [CrossRef]
- Pereira, J.M.; Basto, M.; Da Silva, A.F. The logistic lasso and ridge regression in predicting corporate failure. Procedia Econ. Financ. 2016, 39, 634–641. [Google Scholar] [CrossRef] [Green Version]
- Masini, R.P.; Medeiros, M.C.; Mendes, E.F. Machine learning advances for time series forecasting. J. Econ. Surv. 2021, 37, 76–111. [Google Scholar] [CrossRef]
- Su, W.; Bogdan, M.; Candes, E. False discoveries occur early on the lasso path. Ann. Stat. 2017, 45, 2133–2150. [Google Scholar] [CrossRef] [Green Version]
- Adebiyi, A.A.; Adewumi, A.O.; Ayo, C.K. Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction. J. Appl. Math. 2014, 2014, 614342. [Google Scholar] [CrossRef] [Green Version]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 1394–1401. [Google Scholar]
- Wang, Y.; Juan, L.; Peng, J.; Wang, T.; Zang, T.; Wang, Y. Explore potential disease related metabolites based on latent factor model. BMC Genom. 2022, 23, 269. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Shen, Y.; Shang, X.; Wang, Y. CircRNA-Disease Association Prediction based on Heterogeneous Graph Representation. In Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6–9 December 2022; pp. 2411–2417. [Google Scholar]
- Wang, Y.; Liu, X.; Shen, Y.; Song, X.; Wang, T.; Shang, X.; Peng, J. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information. Brief. Bioinform. 2023, 24, bbad069. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.E.; Cao, L. Application of support vector machines in financial time series forecasting. Omega 2001, 29, 309–317. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Lu, X.; Zhao, W. Research on optimized GA-SVM vehicle speed prediction model based on driver-vehicle-road-traffic system. Sci. China Technol. Sci. 2018, 61, 782–790. [Google Scholar] [CrossRef]
- Kaytez, F.; Taplamacioglu, M.C.; Cam, E.; Hardalac, F. Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power Energy Syst. 2015, 67, 431–438. [Google Scholar] [CrossRef]
- Wang, S.; Yu, L.; Tang, L.; Wang, S. A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China. Energy 2011, 36, 6542–6554. [Google Scholar] [CrossRef]
- Dupond, S. A thorough review on the current advance of neural network structures. Annu. Rev. Control 2019, 14, 200–230. [Google Scholar]
- Di Persio, L.; Honchar, O. Recurrent neural networks approach to the financial forecast of Google assets. Int. J. Math. Comput. Simul. 2017, 11, 7–13. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamboa, J.C.B. Deep learning for time-series analysis. arXiv 2017, arXiv:1701.01887. [Google Scholar]
- Siami-Namini, S.; Namin, A.S. Forecasting economics and financial time series: ARIMA vs. LSTM. arXiv 2018, arXiv:1803.06386. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; pp. 11106–11115. [Google Scholar]
- Yue, Z.; Wang, Y.; Duan, J.; Yang, T.; Huang, C.; Tong, Y.; Xu, B. Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; pp. 8980–8987. [Google Scholar]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [Green Version]
- Yudina, E.; Konovalov, S. Development Issues and prospects of milk processing enterprises. In Proceedings of the International Scientific Conference the Fifth Technological Order: Prospects for the Development and Modernization of the Russian Agro-Industrial Sector (TFTS 2019), Omsk, Russia, 15 October 2019; pp. 436–439. [Google Scholar]
- Kresova, S.; Hess, S. Identifying the Determinants of Regional Raw Milk Prices in Russia Using Machine Learning. Agriculture 2022, 12, 1006. [Google Scholar] [CrossRef]
Method | MAE | MSE |
---|---|---|
CRL + LSTM | 0.011336167 | 0.00021248289 |
CRL + Ridge | 0.009256353 | 0.00017419514 |
CRL + LASSO | 0.010821015 | 0.00019183145 |
CRL + SGD | 0.013666849 | 0.0003022581 |
CRL + CNN | 0.009880523 | 0.00015970702 |
LSTM | Ridge | LASSO | SGD | CNN | |
---|---|---|---|---|---|
MAE | 0.029185483 | 0.011006762 | 0.012051503 | 0.012768596 | 0.009396474 |
MSE | 0.000964175 | 0.000193256 | 0.000230174 | 0.000280158 | 0.000166165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zuo, A.; Li, C. Predicting Raw Milk Price Based on Depth Time Series Features for Consumer Behavior Analysis. Sustainability 2023, 15, 6647. https://doi.org/10.3390/su15086647
Li Z, Zuo A, Li C. Predicting Raw Milk Price Based on Depth Time Series Features for Consumer Behavior Analysis. Sustainability. 2023; 15(8):6647. https://doi.org/10.3390/su15086647
Chicago/Turabian StyleLi, Zongyu, Anmin Zuo, and Cuixia Li. 2023. "Predicting Raw Milk Price Based on Depth Time Series Features for Consumer Behavior Analysis" Sustainability 15, no. 8: 6647. https://doi.org/10.3390/su15086647
APA StyleLi, Z., Zuo, A., & Li, C. (2023). Predicting Raw Milk Price Based on Depth Time Series Features for Consumer Behavior Analysis. Sustainability, 15(8), 6647. https://doi.org/10.3390/su15086647