Exploring the Spatiotemporal Heterogeneity of Carbon Emission from Energy Consumption and Its Influencing Factors in the Yellow River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Carbon Emission Calculating Method
2.2.2. LMDI Factor Decomposition Model
2.2.3. The M-R Spatial Decomposition Model
2.3. Data Sources and Processing
3. Results
3.1. Spatiotemporal Characteristics of CEEC in the YRB
3.2. Temporal Influencing Factors of CEEC in the YRB
3.3. Spatial Influencing Factors of CEEC in the YRB
4. Discussion
4.1. Spatiotemporal Differentiation of CEEC in the YRB
4.2. Influencing Factors of CEEC in the YRB
4.3. Policy Recommendations
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Basu, S.; Lehman, S.J.; Miller, J.B.; Tans, P.P. Estimating US fossil fuel CO2 emissions from measurements of C-14 in atmospheric CO2. Proc. Natl. Acad. Sci. USA 2020, 117, 13300–13307. [Google Scholar] [CrossRef] [PubMed]
- Schwalm, C.R.; Glendon, S.; Duffy, P.B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef]
- Qian, P.; Ma, C.H. Spatio-temporal dynamics of carbon emission of energy consumption in China. J. Southwest Univ. (Nat. Sci.) 2019, 41, 93–100. [Google Scholar]
- Wise, M.; Calvin, K.; Thomson, A.; Clarke, L.; Bond-lamberty, B.; Sand, R.; Smith, S.J.; Janetos, A.; Edmonds, J. Implications of limiting CO2 concentrations for land use and energy. Science 2009, 324, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- British Petroleum (BP). Statistical Review of World Energy; British Petroleum: London, UK, 2011; pp. 1–25. [Google Scholar]
- Zhang, Q.Y.; Zhang, Y.L.; Pan, B.B. Analysis of factors affecting China’s economic growth and carbon emissions during the 40 years of reform and opening. J. Arid Land Resour. Environ. 2019, 33, 9–13. [Google Scholar]
- Shi, Q.Q.; Lu, F.X.; Chen, H.; Zhang, L.J.; Wu, R.W.; Liang, X.Y. Temporal-spatial patterns and factors affecting indirect carbon emissions from urban consumption in the Central Plains Economic Region. Resour. Sci. 2018, 40, 1297–1306. [Google Scholar] [CrossRef]
- Li, J.; Jing, M.T.; Yuan, Q.M. Estimation of carbon emission and driving factors in Beijing-Tianjin-Hebei traffic under green development. J. Arid Land Resour. Environ. 2018, 32, 36–42. [Google Scholar]
- Zhang, Y.Z.; Feng, Y.; Zhang, L. Analysis on the progressive motivation of carbon emissions growth in China using structural decomposition analysis and structural path decomposition methods. Resour. Sci. 2021, 43, 1153–1165. [Google Scholar] [CrossRef]
- Xue, L.M.; Meng, S.; Wang, J.X.; Liu, L.; Zheng, Z.X. Influential Factors Regarding Carbon Emission Intensity in China: A Spatial Econometric Analysis from a Provincial Perspective. Sustainability 2020, 12, 8097. [Google Scholar] [CrossRef]
- Ma, X.; Gao, Y.X.; Li, J.P. Research on spatial network correlation and influencing factors of information entropy of carbon emission structure of China. Soft Sci. 2021, 35, 25–30+37. [Google Scholar] [CrossRef]
- Yu, Y.; Kong, Q.Y. Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method. Nat. Hazards. 2017, 88, 1691–1707. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Econ. 2011, 34, 177–188. [Google Scholar] [CrossRef]
- Lenzen, M. Primary energy and greenhouse gases embodied in Australian final consumption: An input–output analysis. Energy Policy 1998, 26, 495–506. [Google Scholar] [CrossRef]
- Zeng, X.F. A research into the influencing factors on China’s carbon emission according to its noncompetitive input–output tables. J. Grad. Sch. Chin. Acad. Sci. 2016, 2, 40–44. [Google Scholar]
- Yu, Y.; Chen, F.F. Research on carbon emissions embodied in trade between China and South Korea. Atmos. Pollut. Res. 2016, 8, 2–6. [Google Scholar] [CrossRef]
- Xu, J.H.; Fleiter, T.; Eichhammer, W.; Fan, Y. Energy consumption and CO2 emissions in China’s cement industry: A perspective from LMDI decomposition analysis. Energy Policy 2012, 50, 821–832. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.K. Export trade of China’s industrial sectors, domestic CO2 emissions and influence factors: A cross period comparative analysis based on structural decomposition. World Econ. Study 2012, 7, 29–34. [Google Scholar]
- Guo, C.X. Effect of Industrial Structure Change on Carbon Emission in China. China Popul. Resour. Environ. 2012, 22, 15–20. [Google Scholar]
- Ang, B.W. Decomposition of industrial energy consumption. Energy Econ. 1994, 16, 163–174. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Shi, X.P.; Wang, K.Y.; Cheong, T.S.; Zhang, H.W. Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data. Energy Econ. 2020, 92, 104942. [Google Scholar] [CrossRef]
- Yang, W.; Wang, B.; Xiang, D.X.; Lu, T.F.; Yu, J.; Sun, L.S. Study on decomposition and low-carbon development of energy consumption in Wuhan. China Popul. Resour. Environ. 2018, 28, 13–16. [Google Scholar]
- Ang, B.W.; Xu, X.Y.; Su, B. Multi-country comparisons of energy performance: The index decomposition analysis approach. Energy Econ. 2015, 47, 68–76. [Google Scholar] [CrossRef]
- Bartoletto, S.; Rubio, M.M. Energy transition and CO2 emissions in Southern Europe: Italy and Spain (1861–2000). Glob. Environ. 2008, 1, 46–82. [Google Scholar] [CrossRef]
- Lee, K.; Oh, W. Analysis of CO2 emissions in APEC countries: A time-series and a cross-sectional decomposition using the log mean Divisia method. Energy Policy 2006, 34, 2779–2787. [Google Scholar] [CrossRef]
- Gingrich, S.; Kušková, P.; Steinberger, J.K. Long-term changes in CO2 emissions in Austria and Czechoslovakia- identifying the drivers of environmental pressures. Energy Policy 2011, 39, 535–543. [Google Scholar] [CrossRef]
- Sun, J.W. An analysis of the difference in CO2 emission intensity between Finland and Sweden. Energy 2000, 25, 1139–1146. [Google Scholar] [CrossRef]
- Bataille, C.; Rivers, N.; Mau, P.; Joseph, C.; Tu, J.J. How malleable are the greenhouse gas emission intensities of the G7 nations? Energy J. 2007, 28, 145–170. [Google Scholar] [CrossRef]
- Ang, B.W.; Mu, A.R.; Zhou, P. Accounting frameworks for tracking energy efficiency trends. Energy Econ. 2010, 32, 1209–1219. [Google Scholar] [CrossRef]
- Ang, B.W.; Wang, H.; Su, B. A spatial–temporal decomposition approach to performance assessment in energy and emissions. Energy Econ. 2016, 60, 112–121. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, J. The characteristics and prospect of influencing factors of energy-related carbon emissions: Based on literature review. Geogr. Res. 2020, 41, 2587–2599. [Google Scholar]
- Cai, B.F.; Guo, H.X.; Cao, L.B.; Guan, D.B.; Bai, H.T. Local strategies for China’s carbon mitigation: An investigation of Chinese city-level CO2 emissions. J. Clean. Prod. 2018, 178, 890–902. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.F. Spatiotemporal dynamics and influencing factors of provincial carbon emissions in China. World Reg. Stud. 2020, 29, 512–522. [Google Scholar]
- Shuai, C.Y.; Chen, X.; Wu, Y.; Tan, Y.T.; Zhang, Y.; Shen, L.Y. Identifying the key impact factors of carbon emission in China: Results from a largely expanded pool of potential impact factors. J. Clean. Prod. 2018, 175, 612–623. [Google Scholar] [CrossRef]
- He, Z.X.; Long, R.Y.; Hong, C. Factors that influence carbon emissions due to energy consumption based on different stages and sectors in China. J. Clean. Prod. 2016, 115, 139–148. [Google Scholar] [CrossRef]
- Zheng, J.L.; Mi, Z.F.; Coffman, D.M.; Milcheva, S.; Shan, Y.L.; Guan, D.B.; Wang, S.Y. Regional development and carbon emissions in China. Energy Econ. 2018, 81, 25–39. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, C.C.; Pan, T.; Liu, C.L.; Chen, L.; Sun, L. County Scale Characteristics of CO2 Emission’s Spatial-Temporal Evolution in the Beijing-Tianjin-Hebei Metropolitan Region. Environ. Sci. 2014, 35, 385–393. [Google Scholar]
- Du, H.B.; Wei, W.; Zhang, X.Y.; Ji, X.P. Spatio-temporal evolution and influencing factors of energy-related carbon emissions in the Yellow River Basin: Based on the DMSP/OLS and NPP/VIIRS nighttime light data. Geogr. Res. 2021, 40, 2051–2065. [Google Scholar]
- Lyu, Q.; Liu, H. Multiscale Spatio-Temporal Characteristics of Carbon Emission of Energy Consumption in Yellow River Basin Based on the Nighttime Light Datasets. Econ. Geogr. 2020, 40, 12–21. [Google Scholar]
- IPCC. The National Greenhouse Gas Inventories Programme; IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- Li, L.; Che, N.C.; Xie, S.; Huang, C.; Cheng, Z.; Wang, H. Energy demand and carbon emissions under different development scenarios for Shanghai, China. Energy Policy 2010, 38, 4797–4807. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, J.; Ren, J.; Xiang, Y.Y.; Li, Q. Spatiotemporal variations and influencing factors of carbon emissions in the Yellow River Basin based on LMDI model. J. Earth Environ. 2022, 13, 418–427. [Google Scholar]
- Wang, Y.; Chen, Y.; Lu, Y.Q.; Ding, Z.S.; Che, B.Q. Analysis of the space-time dynamics and Influencing factors of scientific and technological innovation ability of tourism industry in China. J. Geo-Inf. Sci. 2017, 19, 613–624. [Google Scholar] [CrossRef]
- Mo, H.B.; Wang, S.J. Spatio-temporal evolution and spatial effect mechanism of carbon emission at county level in the Yellow River Basin. Sci. Geogr. Sin. 2021, 41, 1324–1335. [Google Scholar] [CrossRef]
- Feng, Z.X.; Gao, Y. Study on China’s Regional Driving Factors of Carbon Emission, Emission Reduction Contribution and Potential. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2019, 21, 13–20. [Google Scholar]
- Huang, G.Q.; Liu, F.L. Study on the Mechanism of the Effect of Energy Consumption Structure on Carbon Intensity in Shaanxi Province. Ecol. Econ. 2019, 35, 36–41. [Google Scholar]
- Wu, N.; Shen, L.; Zhong, S. Spatio-temporal pattern of carbon emissions based on nightlight data of Shanxi-Shaanxi-Inner Mongolia region of China. J. Geo-Inf. Sci. 2019, 21, 1040–1050. [Google Scholar] [CrossRef]
- Liu, H.J.; Shi, Y.; Lei, M.Y. Regional disparity in China’s carbon emissions and its structural decomposition from the perspective of carbon sources. China Popul. Resour. Environ. 2019, 29, 87–93. [Google Scholar]
- Jin, F.J.; Ma, L.; Xu, D. Environmental stress and optimized path of industrial development in the Yellow River Basin. Resour. Sci. 2020, 42, 127–136. [Google Scholar] [CrossRef]
- Zhao, X.M.; Bian, T.R. Factor decomposition of carbon emissions from energy consumption of Shaanxi Province based on LMDI. Econ. Probl. 2015, 35–39. [Google Scholar]
- Zhang, X.J.; Du, J.H. Analysis of carbon emissions intensity of Shanxi Province based on LMDI-attribution method. Hubei Agric. Sci. 2017, 56, 3358–3363. [Google Scholar]
- Wang, M.; Feng, X.Z.; An, Q.; Zhuo, Y.; Zhao, M.X.; Du, X.L.; Wang, P. Study on green and low-carbon development in Qinghai Province based on decoupling index and LMDI. Clim. Chang. Res. 2021, 17, 598–607. [Google Scholar]
- Lu, D.D.; Sun, D.Q. Development and management tasks of the Yellow River Basin: A preliminary understanding and suggestion. Acta Geogr. Sin. 2019, 74, 2431–2436. [Google Scholar]
- Zhang, B.B.; Xu, K.N.; Chen, T.Q. The influence of technical progress on carbon dioxide emission intensity. Resour. Sci. 2014, 36, 567–576. [Google Scholar]
- Zhao, Y.T.; Huang, X.J.; Zhong, T.Y.; Peng, J.W. Spatial pattern evolution of carbon emission intensity from energy consumption in China. Environ. Sci. 2011, 32, 3145–3152. [Google Scholar]
- Liu, X.P.; Ou, J.P.; Wang, S.J.; Li, X.; Yan, Y.C.; Liao, Y.M.; Liu, Y.L. Estimating spatiotemporal variations of city-level energy-related CO2 emissions:an improved disaggregating model based on vegetation adjusted nighttime light data. J. Clean. Prod. J. 2018, 177, 101–114. [Google Scholar] [CrossRef]
- Ping, Z.Y.; Wu, X.B.; Wu, X.L. Spatial temporal differences and its influencing factors of carbon emission efficiency in the Yangtze River economic belt. Ecol. Econ. 2020, 36, 31–37. [Google Scholar]
Energy Type | Coke | Gasoline | Crude Oil | Fuel Oil | Diesel Oil | Crude Coal | Kerosene | Natural Gas |
---|---|---|---|---|---|---|---|---|
Standard coal conversion coefficients | 0.9714 | 1.4714 | 1.4286 | 1.4286 | 1.4571 | 0.7143 | 1.4714 | 1.33 |
Carbon emission coefficient | 0.855 | 0.5538 | 0.5857 | 0.6185 | 0.5921 | 0.7559 | 0.5714 | 0.4483 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Lv, Y.; Xu, J.; Zhang, B. Exploring the Spatiotemporal Heterogeneity of Carbon Emission from Energy Consumption and Its Influencing Factors in the Yellow River Basin. Sustainability 2023, 15, 6724. https://doi.org/10.3390/su15086724
Zhang S, Lv Y, Xu J, Zhang B. Exploring the Spatiotemporal Heterogeneity of Carbon Emission from Energy Consumption and Its Influencing Factors in the Yellow River Basin. Sustainability. 2023; 15(8):6724. https://doi.org/10.3390/su15086724
Chicago/Turabian StyleZhang, Shumin, Yongze Lv, Jian Xu, and Baolei Zhang. 2023. "Exploring the Spatiotemporal Heterogeneity of Carbon Emission from Energy Consumption and Its Influencing Factors in the Yellow River Basin" Sustainability 15, no. 8: 6724. https://doi.org/10.3390/su15086724
APA StyleZhang, S., Lv, Y., Xu, J., & Zhang, B. (2023). Exploring the Spatiotemporal Heterogeneity of Carbon Emission from Energy Consumption and Its Influencing Factors in the Yellow River Basin. Sustainability, 15(8), 6724. https://doi.org/10.3390/su15086724